Graphen für Einsteiger

Größe: px
Ab Seite anzeigen:

Download "Graphen für Einsteiger"

Transkript

1 Manfred Nitzsche Graphen für Einsteiger Rund um das Haus vom Nikolaus vieweg

2 1 Erste Graphen 1 Das Haus vom Nikolaus 1 Was ist ein Graph? 2 Auch das ist bei Graphen möglich! 3 Der Grad einer Ecke 4 Verschiedene Graphen - gleiche Graphen? 4 Zusätzliche Informationen 8 Aufgaben 9 Lösungshinweise 13 2 Über alle Brücken: Eulcrsche Graphen 17 Das Königsberger Brückenproblem 17 Kantenzüge 19 Eulersche Graphen 19 Welche Graphen sind eulersch? 21 Praxis: Eulersche Touren finden 24 Zwei Folgerungen 25 Besuch einer Ausstellung 26 Domino 27 Vollständige Vielecke 28 Zusätzliche Informationen 28 Aufgaben 29 Lösungshinweise 32 3 Durch alle Städte: Hamiltonsche Graphen 37 Reisepläne 37 Hamiltonsche Graphen 37 Hamiltonsch und eulersch 38 Hamiltonsche Kreise finden 39 Hamiltonsche Graphen neu zeichnen dann ist der Graph nicht hamiltonsch 41 Kreise und Wege 44 Wie viele hamiltonsche Kreise gibt es? 45 Reguläre Graphen 46 Für Schachspieler 46 Hamiltons Spiel 49 Sitzordnungen. 50 Eine billige Rundreise 50 Ein vielleicht unlösbares Problem 51

3 Gesucht: Bäcker mit Kenntnissen in Graphentheorie 52 Zusätzliche Informationen 53 Aufgaben 53 Lösungshinweise 58 4 Mehr über Grade von Ecken 65 Tennis-Turniere 65 Das handshaking lemma 66 Ecken mit ungeradem Grad 67 Schwierige Briefträgertouren 68 Jeder gegen jeden 69 Aufgaben 69 Lösungshinweise 70 5 Bäume 73 Was ist ein Baum? 73 Wege in Bäumen 75 Wie viele Kanten hat ein Baum? 76 "Äste absägen" 77 Aufspannende Bäume 78 Labyrinthe, Irrgärten und Höhlen 80 Straßenbahnen, Fischteiche und Bindfäden 83 Eckengrade in Bäumen 84 Die billigsten Straßen 85 Der kürzeste Weg 86 Die kürzeste Tour des Briefträgers 90 Zusätzliche Informationen 92 Aufgaben 93 Lösungshinweise 96 6 Bipartite Graphen 101 Ein Frühstücksgraph 101 Bipartite Kreise 102 Können Bäume bipartit sein? 103 Bipartite Graphen erkennen 104 Bipartite Graphen für Schachspieler 106 Fachwerkhäuser 107 Heiratsvermittlung mit Graphen 110 Der Heiratssatz 112 Eine Folgerung aus dem Heiratssatz 112 Noch einmal: Der Frühstücksgraph 114 Zusätzliche Informationen 114 Aufgaben 114 Lösungshinweise 118

4 XI 7 Graphen mit Richtungen: Digraphen 123 Was ist ein Digraph? 123 Alles hat eine Richtung 124 Wer hat gewonnen? 124 Isomorphie bei Digraphen 125 Lauter Einbahnstraßen 125 Nur noch Einbahnstraßen? 126 Eulersche Digraphen 129 Hamiltonsche Digraphen 129 Turniergraphen 129 Wer ist der beste Spieler? 130 Ranking kann fragwürdig sein. 133 Jeder Spieler hat gewonnen!. 133 Ein klarer Fall: Es gibt ein eindeutiges Ranking 134 Könige und Vizekönige 136 Hier ist jeder ein König! 137 Wolf, Ziege und Kohlkopf 139 Das Spiel Nim 140 Umfüllaufgaben 141 Graphen für Zahlen 142 Zusätzliche Informationen 143 Aufgaben 144 Lösungshinweise Körper und Flächen 153 Räumliche Graphen 153 Andere Wege vom Körper zum Graphen 156 Ebene und plättbare Graphen 156 Sind alle Graphen plättbar? 157 Elektrotechniker bevorzugen plättbare Graphen 162 Ebene Graphen haben Flächen 163 Die eulersche Formel 163 Zwei neue Beweise 165 Weitere Eigenschaften von Körpern aus der Sicht der Graphentheorie 166 Die platonischen Körper 167 Platonische Graphen 168 Es gibt nicht mehr als 5 platonische Graphen 169 Es gibt nur 5 platonische Körper 171 Platonische Körper auf Kugeln 172 Parkett-Fußboden 173 Zusätzliche Informationen 174 Aufgaben 176 Lösungshinweise 180

5 XII Inhaltsverzeichnis 9 Farben 185 Farbige Landkarten 185 Aus Landkarten werden Graphen 186 Man kann auch Körper anmalen 188 Wir färben alle Graphen 189 Ampelschaltungen 191 Ein moderner Zoo 192 Das Problem mit den Museumswärtern 193 Die chromatische Zahl kann nicht größer sein als 195 Wie viele Farbmuster gibt es? 195 Chromatische Polynome für beliebige Graphen 199 Bekanntschaftsgraphen 203 Befreundet - bekannt - unbekannt 205 Kantenfärbung mit strengen Regeln 205 Der chromatische Index eines vollständigen Vielecks 206 Für den chromatischen Index kommen nur zwei Werte in Frage 208 Lateinische Quadrate 210 Zusätzliche Informationen 211 Aufgaben 212 Lösungshinweise 217 Was ist was? 225 Literatur 229 Stichwortverzeichnis 231

Manfred Nitzsche. Graphen für Einsteiger

Manfred Nitzsche. Graphen für Einsteiger Manfred Nitzsche Graphen für Einsteiger Aus dem Programm.. Mathematik für Einsteiger Algebra für Einsteiger von Jörg Bewersdorff Algorithmik für Einsteiger von Armin P. Barth Diskrete Mathematik für Einsteiger

Mehr

Manfred Nitzsche. Graphen für Einsteiger

Manfred Nitzsche. Graphen für Einsteiger Manfred Nitzsche Graphen für Einsteiger Aus dem Programm Mathematik für Schüler, Lehrer, Studierende Kombinatorische Optimierung erleben von Stephan Hußmann und Brigitte Lutz-Westphal Algebra für Einsteiger

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

Was ist was? Ein kleines Wörterbuch der Graphentheorie

Was ist was? Ein kleines Wörterbuch der Graphentheorie Was ist was? Ein kleines Wörterbuch der Graphentheorie Diese Zusammenstellung von Definitionen enthält auch Begriffe, die nur in den zusätzlichen Hinweisen vorkommen. Die Zahlen geben an, auf welcher Seite

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Inhalt: W.1 Grundlagen W.2 Das Königsberger Brückenproblem W.3 Bäume W.4 Planare Graphen W.5 Färbungen W.1 Grundlagen Ein Ein Graph besteht aus

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

Übungen zu Kombinatorik und Graphentheorie

Übungen zu Kombinatorik und Graphentheorie Übungen zu Kombinatorik und Graphentheorie Ilse Fischer, SS 07 (1) (a) In einer Schachtel sind 4 rote, 2 blaue, 5 gelbe und 3 grüne Stifte. Wenn man die Stifte mit geschlossenen Augen zieht, wieviele muss

Mehr

(v) bezeichnet man die Menge aller Nachbarn eines Knotens v in G. Ferner bezeichnet man mit N G

(v) bezeichnet man die Menge aller Nachbarn eines Knotens v in G. Ferner bezeichnet man mit N G MALA Zirkel 1 à Beginn Nikolaus-Haus - nur links unten, zu diesem Punkt kann man mit Stift hinkommen und von ihr weg, dies kann ein oder zweimal erfolgen - Frage: owie müsste man das Haus verändern, um

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Königsberger Brückenproblem Gibt es in Königsberg einen Spaziergang, bei dem man

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

242 Literatur. Diskrete Mathematik. Springer, Berlin, Heidelberg, New York 2002

242 Literatur. Diskrete Mathematik. Springer, Berlin, Heidelberg, New York 2002 Literatur 1] 2] 3] 4] 5] 6] 7] 8] 9] 10] 11] 12] 13] 14] 15] 16] 17] 18] AIGNER,M.,BEHRENDS,E.(Herausgeber):AllesMathematik. Vieweg+Teubner, Wiesbaden 2008 AIGNER, M.: Diskrete Mathematik. Vieweg, Wiesbaden

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

1. Übung Graphentheorie WS2016/17

1. Übung Graphentheorie WS2016/17 1. Übung Graphentheorie WS2016/17 1. Schreiben Sie für jede Ecke der folgenden 7 Graphen den Grad auf! Welche der Graphen sind regulär? G 1 G 2 G 5 G 3 2. Bestimmen Sie alle paarweise nicht-isomorphen

Mehr

Formale Grundlagen. bis , Lösungen. 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist.

Formale Grundlagen. bis , Lösungen. 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist. Formale Grundlagen 4. Übungsaufgaben bis 2011-06-03, Lösungen 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist. 2. Finden Sie einen Eulerschen Weg im Briefumschlag, d.h. in: { ((1,

Mehr

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung

Mehr

Diskrete Mathematik. Kryptographie und Graphentheorie

Diskrete Mathematik. Kryptographie und Graphentheorie Diskrete Matheatik Kryptographie und Graphentheorie Jochen Hores & Jonas Bühler 14.06.006 Jochen Hores, Jonas Bühler Kryptographie & Graphentherorie 1 Inhaltsverzeichnis Inhaltsverzeichnis 1. Kryptographie

Mehr

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen?

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen? Kapitel 7 Graphentheorie Verständnisfragen Sachfragen 1. Was ist ein ungerichteter Graph? 2. Erläutern Sie den Begriff Adjazenz! 3. Erläutern Sie den Eckengrad in einem Graphen! 4. Welchen Zusammenhang

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Hausarbeit aus. Graphentheorie Formale Grundlagen Professor Franz Binder. zum Thema. Herbert Huber k Seite 1 von 21

Hausarbeit aus. Graphentheorie Formale Grundlagen Professor Franz Binder. zum Thema. Herbert Huber k Seite 1 von 21 Hausarbeit aus 368.712 Formale Grundlagen Professor Franz Binder zum Thema Graphentheorie Herbert Huber k0455780 Seite 1 von 21 Inhaltsverzeichnis Graphen Grundlagen und Begriffsdefinitionen...3 Graphenstrukturen...6

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht Prof. Dr. Andreas Meister SS 2004 digital von: Frank Lieberknecht Geplanter Vorlesungsverlauf...1 Graphentheorie...1 Beispiel 1.1: (Königsberger Brückenproblem)... 1 Beispiel 1.2: (GEW - Problem)... 2

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

Hamiltonsche Graphen (2. Teil)

Hamiltonsche Graphen (2. Teil) Hamiltonsche Graphen (2. Teil) Themen des Vortrages Für Schachspieler Hamiltons Spiel Sitzordnungen Eine billige Rundreise Ein vielleicht unlösbares Problem Bäcker mit Kenntnissen in Graphentheorie Fazit

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

9: Gewichtete Graphen

9: Gewichtete Graphen Chr.Nelius: Graphentheorie (WS 06/7) 9 9: Gewichtete Graphen Beispiel: Eine Straßenkarte mit Entfernungsangaben zwischen den Orten ist ein Beispiel für einen gewichteten Graphen. (9.) DEF: Ein Graph G

Mehr

Graphentheorie. Ralph-Hardo Schulz

Graphentheorie. Ralph-Hardo Schulz Graphentheorie Ralph-Hardo Schulz FU Berlin, 2000/2005 2, Stand 9. April 2005 Inhaltsverzeichnis Modellierungen durch Graphen. Wege in Graphen........................ Königsberger Brückenproblem...........

Mehr

Graphentheorie. Dr. Theo Overhagen Mathematik Universität Siegen

Graphentheorie. Dr. Theo Overhagen Mathematik Universität Siegen Graphentheorie Dr. Theo Overhagen Mathematik Universität Siegen I Literatur Beutelspacher/Zschiegner: Diskrete Mathematik für Einsteiger, Springer Spektrum, 204 Bollobas: Modern Graph Theory, Springer,

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

1] AIGNER, M., BEHRENDS, E. (Herausgeber): Alles Mathematik. Braunschweig,

1] AIGNER, M., BEHRENDS, E. (Herausgeber): Alles Mathematik. Braunschweig, Literatur 1] AIGNER, M., BEHRENDS, E. (Herausgeber): Alles Mathematik. Braunschweig, Wiesbaden 2000 2] AIGNER, M.: Diskrete Mathematik. Braunschweig, Wiesbaden 1993 3] AIGNER, M.: Graphentheorie. Skript

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten Graphentheorie Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten gerichteter Graph (DiGraph (directed graph) E: Teilmenge E

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Weitere Ergebnisse. Beispiel Sei G = (E, K) mit E = { 1,, 5 } und K = { 12, 13, 14, 23, 24, 34, 35, 45 }. Das Haus vom Nikolaus

Weitere Ergebnisse. Beispiel Sei G = (E, K) mit E = { 1,, 5 } und K = { 12, 13, 14, 23, 24, 34, 35, 45 }. Das Haus vom Nikolaus 4. Euler-Züge und Hamilton-Kreise 161 Weitere Ergebnisse Die Analyse des Problems Durchlaufe alle Kanten ist mit den obigen Ergebnissen keineswegs abgeschlossen. Eine Frage ist zum Beispiel: Was gilt,

Mehr

Ein Turnierplan mit fünf Runden

Ein Turnierplan mit fünf Runden Mathematik I für Informatiker Graphen p. 1 Ein Turnierplan mit fünf Runden c b a c b a c b a c b a c b a d e d e d e d e d e Mathematik I für Informatiker Graphen p. 2 Definition: Graph Ein (schlichter)

Mehr

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht 1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Minimale aufspannende Bäume und Matchings Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline Minimale aufspannende

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

William Rowan Hamilton,

William Rowan Hamilton, 3.2.2 Hamiltonkreise Definition 130. In einem Graph G = (V,E) nennt man einen Kreis, der alle Knoten aus V genau einmal durchläuft, einen Hamiltonkreis. Enthält ein Graph eine Hamiltonkreis, nennt man

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS Über klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Sabrina Klöpfel Wintersemester

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... 2/29 > Dauerwerbeveranstaltung für ein Studium der Informatik- aber mit mathematischem Inhalt! Hier: Ein Auszug aus

Mehr

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni CHAPTER. GRAPHEN.. B Ä UME.. Bäume Ein schlichter Graph ohne Kreise heisst Wald, ist er noch zusätzlich zusammenhängend so wird er Baum genannt. Bevor wir Bäume genauer beschreiben ein kleines LEMMA...

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Einführung in die Graphentheorie. Modellierung mit Graphen. Aufgabe

Einführung in die Graphentheorie. Modellierung mit Graphen. Aufgabe Einführung in die Graphentheorie Modellierung mit Graphen Aufgabe Motivation Ungerichtete Graphen Gerichtete Graphen Credits: D. Jungnickel: Graphen, Netzwerke und Algorithmen, BI 99 G. Goos: Vorlesungen

Mehr

entheoretische Konzepte und Algorithmen

entheoretische Konzepte und Algorithmen Sven Oliver Krumke, Hartmut Noitemeier entheoretische Konzepte und Algorithmen Teubner Inhaltsverzeichnis 1 Einleitung 1 1.1 Routenplanung 1 1.2 Frequenzplanung im Mobilfunk I 1.3 Museumswärter 3 1.4 Das

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Elemente der Graphentheorie

Elemente der Graphentheorie Universität Karlsruhe Elemente der Graphentheorie Schnupperkurs SS 2008 verfasst von Prof. Dr. Andreas Kirsch Institut für Algebra und Geometrie Universität Karlsruhe (TH) 1 Literaturliste über Graphentheorie

Mehr

Drei Anwendungen der Eulerschen Polyederformel

Drei Anwendungen der Eulerschen Polyederformel Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................

Mehr

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Ein Turnierplan mit fünf Runden c d b e a c d b e a c d b e a c d b b c a a d e e Das Diagramm beschreibt

Mehr

2. Graphentheorie, Reinhard Diestel, Springer Verlag, 4. Auflage, 2012

2. Graphentheorie, Reinhard Diestel, Springer Verlag, 4. Auflage, 2012 Das vorliegende Skript beschäftigt sich mit dem Thema Graphentheorie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Jahr 2013. Die vorliegende Version

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008 Grundlagen der Graphentheorie Thomas Kamps 6. Oktober 2008 1 Inhaltsverzeichnis 1 Definition von Graphen 3 2 Unabhängigkeit von Ecken und Kanten 3 3 Teil- und Untergraphen 4 4 Schnitt, Vereinigung und

Mehr

Daniel Platt Einführung in die Graphentheorie

Daniel Platt Einführung in die Graphentheorie Einführung in die Für die Mathematische Schülergesellschaft Leonhard Euler Humboldt Universität zu Berlin, Institut für Mathematik Das vorliegende Skript beschäftigt sich mit dem Thema. Das Skript entsteht

Mehr

Anwendungen von Graphen

Anwendungen von Graphen Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke elektrische Schaltpläne Entity-Relationship Diagramme Beweisbäume endliche Automaten Syntaxbäume für Programmiersprachen Entscheidungsbäume

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Proseminar Graphentheorie Vortrag 3 Matching. Inhalt: 1. Grundlagen 2. Matchings in bipatiten Graphen 3. Matchings in allgemeinen Graphen

Proseminar Graphentheorie Vortrag 3 Matching. Inhalt: 1. Grundlagen 2. Matchings in bipatiten Graphen 3. Matchings in allgemeinen Graphen Proseminar Graphentheorie Vortrag 3 Matching Inhalt: 1. Grundlagen 2. Matchings in bipatiten Graphen 3. Matchings in allgemeinen Graphen 1. Grundlagen Definition Matching: Eine Menge M von unabhängigen

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Achilles und die Schildkröte Sommersemester 2008

Achilles und die Schildkröte Sommersemester 2008 Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte

Mehr

Was sind eulersche Graphen? Und wie kann man sie charakterisieren? Welche Voraussetzung muss der Graph erfüllen?

Was sind eulersche Graphen? Und wie kann man sie charakterisieren? Welche Voraussetzung muss der Graph erfüllen? Prüfungsprotokoll - 1306 Graphentheorie Datum: 20.02.2009 Prüfer: Dr. Müller Möchten sie mit einem Lieblingsthema beginnen? Was sind eulersche Graphen? Und wie kann man sie charakterisieren? Welche Voraussetzung

Mehr

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier 4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.

Mehr

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem...

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem... Inhaltsverzeichnis 4 Färbungen 41 4.1 Begriffe....................... 41 4.2 Komplexität..................... 42 4.3 Greedy-Algorithmus................ 42 4.4 Knotenreihenfolgen................. 43 4.5

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Meisterklasse Dresden 2014 Olaf Schimmel

Meisterklasse Dresden 2014 Olaf Schimmel Meisterklasse Dresden 2014 Olaf Schimmel 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische Parkette 5 Welche Kombination von Vielecken erfüllen die Winkelbedingung?

Mehr

Königsberger Brückenproblem

Königsberger Brückenproblem Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Dr. Harald Upmeier, Benjamin Schwarz Referentin: Lene Baur WS 2009/2010 Königsberger

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Prof. Dr. Peter Berger. Einführung in die. Graphentheorie

Prof. Dr. Peter Berger. Einführung in die. Graphentheorie Prof. Dr. Peter Berger Einführung in die Graphentheorie Stand: 0.0.017 Inhalt 0 EINSTIEG 0.1 Was ist Graphentheorie? 0. Wie geht Graphentheorie? 5 1 GRUNDLAGEN 1 1.1 Graphen 1 1. Bäume und Wälder 1. Isomorphie

Mehr

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen 3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen

Mehr

Beweise und Widerlegungen

Beweise und Widerlegungen Beweise und Widerlegungen Alberto Abbondandolo Ruhr-Universität Bochum Tag der offenen Tür 2015 Einige Polyeder Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 Einige Polyeder V = 4, S = 6, F

Mehr

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und

Mehr

Hamilton-Pfad auf Gittergraphen ist NP vollständig

Hamilton-Pfad auf Gittergraphen ist NP vollständig Hamilton-Pfad auf Gittergraphen ist NP vollständig von Stephanie Wilke 1. Einleitung Ein Hamilton-Pfad in einem ungerichteten Graphen ist ein Pfad, der jeden Knoten genau einmal enthält. Es soll nun gezeigt

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Knotenfärbung Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Die chromatische Zahl χ(g) eines Graphen G ist die minimale

Mehr

Graphen- und Netzwerkop mierung

Graphen- und Netzwerkop mierung Graphen- und Netzwerkop mierung Chris na Büsing Graphen- und Netzwerkop mierung Autorin: Christina Büsing TU Berlin Fakultät II Mathematik und Naturwissenschaften, Institut für Mathematik Straße des 17.

Mehr

Kap. IV: Färbungen von Graphen

Kap. IV: Färbungen von Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 46 Kap. IV: Färbungen von Graphen 12. Eckenfärbungen Bereits im 6 ten Paragraphen haben wir Eckenfärbungen benutzt, um bipartite Graphen charakterisieren zu können.

Mehr