WS 2008/09. Diskrete Strukturen

Größe: px
Ab Seite anzeigen:

Download "WS 2008/09. Diskrete Strukturen"

Transkript

1 WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München

2 Kapitel V Algebraische Strukturen Algebraische Strukturen Grundlagen Gruppen Endliche Körper Zahlenkörper Polynomkörper 2

3 Definition: Eine Algebra Operatoren und heißt Ring, falls R1. S, ist eine abelsche Gruppe mit neutralem Element 0 S. mit zwei zweistelligen R2. S, ist ein Monoid mit neutralem Element 1 S. R3. A S,, a ( b c) ( a b) ( a c) a, b,c S ( b c) a ( b a) (c a) a, b,c S 3

4 Definition: Eine Algebra A S,, mit zwei zweistelligen Operatoren und heißt Körper, falls K1. S, ist ein abelscher Gruppe mit neutralem Element 0 S. K2. S \ 0, ist eine abelsche Gruppe mit neutralem Element 1 S. K3. a ( b c) ( a b) ( a c) a,b,c S (Das Rechts-Distributivgesetz folgt aus den übrigen Eigenschaften.) 4

5 Beispiele (wobei im weiteren Verlauf häufig durch + und durch ersetzt werden),, : kommutativer (in Bezug auf ) Ring,, n,n n n n,,,,, : Körper 1: kommutativer Ring,, : Körper 5

6 Beispiel: Setzt man K = {0,1,a,b} und definiert eine Addition und Multiplikation wie folgt: 0 1 a b a b b a a a b 0 1 b b a a b a b a 0 a b 1 b 0 b 1 a 6 so bildet K,, einen Körper.

7 Endliche Körper sind in der Kryptographie und in der Computer-Algebra sehr nutzlich. Frage: wie findet man endliche Körper? Wir werden eine erste Antwort durch diesen Satz geben: Satz: Bezeichnet man mit + n und n die Addition bzw. Multiplikation Modulo n, so gilt: Z n, + n, n ist ein Körper n ist Primzahl. Zur Vorbereitung brauchen wir einige Grundeigenschaften des größten gemeinsamen Teilers zweier Zahlen. 7

8 Größter gemeinsamer Teiler 8 Definition: Seien a, b N. Der größte gemeinsame Teiler von a und b ist die größte natürliche Zahl, die sowohl a als auch b teilt, d.h. ggt(a, b) := max{k N k a und k b} wobei k m eine Abkürzung für k teilt m ist. Sind a 1,, a n N, n 3, dann definieren wir ggt(a 1,, a n ) := ggt(ggt(a 1,, a n-1 ), a n ).

9 Größter gemeinsamer Teiler Satz: Seien x, y 2 N mit x y : 1. Wenn y mod x = 0 dann ggt(x,y) = x 2. Wenn y mod x > 0 dann ggt(x,y) = ggt(x,y mod x) Beweis: 1. Klar. Zu 2. : Es gilt y = (y mod x) + by/xc x. Daraus folgt für alle z 2 N: (z x und z y) gdw. (z x und z (y mod x)). Damit haben (x,y) und (x, y mod x) dieselben gemeinsamen Teiler, und so ggt(x, y) = ggt(x, y mod x). 9

10 Größter gemeinsamer Teiler Der Satz führt zum Euklidischen Algorithmus zur Berechnung vom ggt zweier Zahlen: Procedure ggt (x, y N mit x y) if y mod x = 0 then return x else return ggt(y mod x, x) (Euklid von Alexandria, ca v. Chr.) 10

11 Größter gemeinsamer Teiler Satz: Seien x, y 2 N. Es gibt a, b 2 Z mit 11 ggt(x,y) = a x + b y Beweis: Durch Induktion über max{x,y}. Basis: max{x,y}=1. Dann x=1=y und ggt(x,y) = 1 = 1 x + 0 y. Schritt: max{x,y} > 1. O.b.d.A. sei x y. Wir betrachten zwei Fälle. Fall 1. y mod x = 0. Dann ggt(x,y) = x = 1 x + 0 y.

12 Größter gemeinsamer Teiler 12 Fall 2. y mod x > 0. In diesem Fall gelten x < y und ggt(x, y) = ggt(y mod x, x). Wir haben max{y mod x, x} = x < y max{x,y} und so (Induktionsannahme) gibt es a, b 2 Z mit ggt(x,y) = ggt(y mod x, x) = a Mit y mod x = y - by/xc x erhalten wir ggt(x,y) = a (y -by/xc x) + b x = (b -by/xc a ) x + a y. (y mod x) + b x

13 Größter gemeinsamer Teiler 13 Der Beweis des Satzes führt zu einem Algorithmus für die Berechnung der Zahlen a und b, dem Erweiteten Euklidischen Algorithmus: Procedure ErwggT(Zahlen x,y N mit x y) if y mod x = 0 then return (1, 0) else (a, b ) Ã ErwggT(y mod x, x); (a, b) Ã (b -by/xc a, a ); return (a, b)

14 Größter gemeinsamer Teiler 14 Beispiel mit x= 45, y = 63. ggt(45,63) 9 = (1 b63/45c (-2)) 45 + (-2) 63 = = (-2) 63 ggt(18,45) 9 = (0 b45/18c 1) = = ggt( 9,18) 9 = = 9

15 Eigenschaften von Körpern 15 Satz: In jedem Körper K gilt für alle a K : Beweis: a 0 = 0 a = 0 Es sei a ein beliebiges Element aus K. Dann folgt aus den Axiomen: 0 + (a 0) = a 0 = a (0 + 0) = (a 0) + (a 0). Die Kürzungsregel ergibt 0 = a 0

16 Eigenschaften von Körpern Satz: In jedem Körper K gilt für alle a,b 2 K: a b = 0 a = 0 oder b = 0. (Körper sind nullteilerfremd) Beweis: Seien a,b mit a b = 0. Falls a 0, so existiert ein multiplikatives Inverses a 1 von a. Unter Verwendung des Satzes auf der letzten Seite folgt damit: b = 1 b = a 1 a b = a 1 0 = 0. 16

17 Eigenschaften von Körpern 17 Satz: Z n, + n, n ist ein Körper, n ist Primzahl. Beweis: ()): Wir beweisen die Kontraposition. Sei n 2 N eine zusammengesetzte Zahl (also keine Primzahl). Dann gibt es Zahlen a,b, mit 1 < a b < n und a b = n. Insbesondere gilt a 0 b. Aus a b = n folgt a n b = 0. Damit gilt a 0 b und a n b = 0. Aus dem Satz auf der vorigen Seite folgt, dass Z n, + n, n kein Körper ist.

18 Eigenschaften von Körpern Satz: Z n, + n, n ist ein Körper, n ist Primzahl. Beweis: ((): Sei n 2 N beliebig. Z n, + n ist eine abelsche Gruppe. Darüber hinaus ist n assoziativ und kommutativ mit neutralem Element 1. Die Distributivgesetze gelten. Wir zeigen: Wenn n eine Primzahl ist, dann hat jedes Element von Z n ein inverses Element. 18

19 Eigenschaften von Körpern Beweis (Forts.): Sei n Primzahl. Zu zeigen ist : für jedes x Z n gibt es ein y Z n mit (x n y) 1. Sei x Z n beliebig. Mit n Primzahl gilt ggt(x,n) = 1. Es existieren also Zahlen a, b 2 Z mit a x + b n = 1 (Erweiterter Euklidischer Algorithmus). Damit gilt (a n x) + n (b n n) 1. Aus (b n n) 0 folgt (a n x) 1. Wähle y := a. 19

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition +

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.11 2012/04/16 19:15:39 hk Exp $ $Id: gruppen.tex,v 1.11 2012/04/17 10:30:56 hk Exp $ 1 Modulare Arithmetik 1.3 Restklassen Wir waren gerade damit beschäftigt eine Beispiele zum Rechnen

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden Rechnen modulo n Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Kanonische Primfaktorzerlegung Jede natürliche Zahl n > 0 kann auf eindeutige Weise in der

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik Mathematik III (für Informatiker) Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt 10 Differentialgleichungen 11 Potenz- und Fourier-Reihen 12 Integraltransformationen 13 Algebraische

Mehr

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 15. November 2016 WS 2016/2017

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 15. November 2016 WS 2016/2017 IT-Sicherheit WS 2016/2017 Jun.-Prof. Dr. Gábor Erdélyi Lehrstuhl für Entscheidungs- und Organisationstheorie, Universität Siegen Siegen, 15. November 2016 Wiederholung Warum IT-Sicherheit? Grundlagen

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Primzahlen und die Riemannsche Vermutung

Primzahlen und die Riemannsche Vermutung Ralf Gerkmann Primzahlen und die Riemannsche Vermutung Probestudium an der LMU, 2.-6. September 2013 Die Primzahlen sind ein Untersuchungsobjekt der Zahlentheorie, einer Teildisziplin der Reinen Mathematik.

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist:

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: Gruppe Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: : G G G, d.h. jedem Elementepaar (a, b): a, b G ist ein Element a b G zugeordnet. Gruppe 1-1 Gruppe

Mehr

1.2. Teilbarkeit und Kongruenz

1.2. Teilbarkeit und Kongruenz 1.2. Teilbarkeit und Kongruenz Aus den Begriffen der Teilbarkeit bzw. Teilers ergeben sich die Begriffe Rest und Restklassen. Natürliche Zahlen, die sich nur durch sich selbst oder die 1 dividieren lassen,

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Einführung in die Kryptographie - Multiple Choice Quiz

Einführung in die Kryptographie - Multiple Choice Quiz Technische Universität Darmstadt Einführung in die Kryptographie - Multiple Choice Quiz Oren Halvani. M.Sc. Inf ormatik. Matrikel N o. Disclaimer Um was für ein Dokument handelt es sich hier genau?. Im

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005

Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005 Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005 Inhaltsverzeichnis Abelsche Gruppe 3 Kommutativer Ring 5 Körper 6 Endliche Körper 7 Endliche

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Zahlentheorie, Arithmetik und Algebra 1

Zahlentheorie, Arithmetik und Algebra 1 Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen

Mehr

Grundlagen der Algebra und der elementaren Zahlentheorie

Grundlagen der Algebra und der elementaren Zahlentheorie Grundlagen der Algebra und der elementaren Zahlentheorie Kurz-Skript zur Vorlesung Sommersemester 2011 von Dr. Dominik Faas Institut für Mathematik Fachbereich 7: Natur- und Umweltwissenschaften Universität

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2012/2013 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Elliptische Kurven Einführendes Bsp.

Elliptische Kurven Einführendes Bsp. Elliptische Kurven Einführendes Bsp. Eine Menge von Kugeln wird als eine quadratische Pyramide angeordnet. Mit 1 Kugel oben, 4 weiteren darunter, dann 9 weiteren darunter usw. Wenn diese quadratische Kugelpyramide

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 10. Teilbarkeit in Ringen 67 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

Elementare Zahlentheorie (Version 1)

Elementare Zahlentheorie (Version 1) Elementare Zahlentheorie (Version (Winter Semester, 2005-6 Zur Notation N ist die Menge der natürlichen Zahlen:, 2, 3, 4, 5,... und so weiter. Z ist die Menge aller ganzen Zahlen:..., 4, 3, 2,, 0,, 2,

Mehr

Elementare Zahlentheorie. Diskrete Strukturen. Winter Semester 2012 #

Elementare Zahlentheorie. Diskrete Strukturen. Winter Semester 2012 # Erster Teil 1 Elementare Diskrete Strukturen Winter Semester 2012 # 342 207 Prof. Armin Biere Institut für Formale Modelle und Verifikation Johannes Kepler Universität, Linz http://fmv.jku.at/ds Literatur

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

1 Algebraische Grundbegriffe

1 Algebraische Grundbegriffe 1 Algebraische Grundbegriffe Eine Algebra besteht aus einer Trägermenge S sowie eineroder mehreren Operationen. Eine Operation ist dabei eine k-stellige Abbildung, d.h. es gilt für eine Operation f f S

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Prof. S. Krauter Endliche Geometrie. SS 05. Blatt Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung.

Prof. S. Krauter Endliche Geometrie. SS 05. Blatt Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung. Prof. S. Krauter Endliche Geometrie. SS 05. Blatt03 1. Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung. 2. Die zahlentheoretische Kongruenz ist folgendermaßen

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein.

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. 3 1384788374932954500363985493554603584759389 mod 28374618732464817362847326847331872341234 Wieso kann ein

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Division mit Rest - der heimliche Hauptsatz der Algebra

Division mit Rest - der heimliche Hauptsatz der Algebra Division mit Rest - der heimliche Hauptsatz der Algebra Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 3. Juni 2004 Einleitung

Mehr

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128 Aufgabe 1 Wir betrachten die beiden Zahlen a = 57 101 3 und b = 3 57 79 101 (4+2+4=10 Punkte) ( Es gilt: 3, 57, 79, 101 P ) Hier liegt ein Fehler in der Aufgabenstellung vor, denn wegen 57 = 3 19 ist 57

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr