6. Fourier-Transformation

Größe: px
Ab Seite anzeigen:

Download "6. Fourier-Transformation"

Transkript

1 6. Fourier-rasformatio Wir betrachte zuächst eie periodische Fuktio: f t+ f t. (6- Die Idee ist, das sie sich durch eie Überlagerug periodischer, harmoischer Schwiguge darstelle lässt. Aalogie: ( + cos( ω + ϕ + cos( ω + ϕ cos( ω + ϕ f t A A t A t A t ( ωt ϕ A cos +. Etwicklug eies Vektors ach Basisvektore: ; ( ( t t (6-3 (6-3 r x ˆ e Etwicklug eier Fuktio ach Polyome d f f t t t ayolor-etwicklug :! dt. Beispiel Rechteckschwigug ud Sägezahschwigug Approximatio eier so geate Rechteckschwigug (liks ud eier Sägezahlschwigug (rechts durch Überlagerug vo Sius-Fuktioe i verschiedeer Ordug. Abb übige, de 6.7.7

2 Umschreibuge: mit cos cos cos si cos ud a cos A, b si A ist f ( t acos( ωt + b si ( ωt iωt iωt iωt iωt ( e + e ( e e i iωt iωt ( ( a ib e + ( a + ib e ; ( ωt+ ϕ ( ϕ ( ωt ( ϕ ( ωt ( ϕ ( ϕ oder mit gazezahlige Idizes Fourier-Reihe Berechug der Koeffiziete c : i t ( c e ω. f t eberechug: für m, im ωt imωt imω dte e e i( m ω i( m ω sost; δ m (6-4 (6-5 (6-6 Multiplikatio, Itegratio: imωt i ( m ωt dte f ( t cdte cm δm iωt c dte f ( t ud iωt f ( t ce. Wikelgeschwidigkeit der Oberwelle: ω ω. (6-7

3 3 Reelle Fuktioe f f f c e c e c c * iωt * iωt * reell: ; iωt iωt * iωt f ce c + ( ce + ce iωt * iωt c + c e + c e a + ib ( cos( ωt + isi( ωt aib ( cos( ωt isi( ωt ( ( ω ( ω c + a cos t b si t. (6-8 Beispiele: Rechteckschwigug [ ] { } [ ] Fuktio: für t -,, Periodedauer, f ( t für t,,, Wikelgeschw. ω für t,. Koeffiziete: c dtf ( t ; it it it c dtf ( t e dte dte it it e (( e i i i i ( (( i i ,,,,... < > Fourier-Reihe: i( t i f ( t t e e i ix ix si (( t wege ( e e si x. i (6-9 übige, de 6.7.7

4 4 Sägezahschwigug Fuktio: Periodedauer, t für t [ -, ], f ( t für t {, }, Wikelgeschw. ω Koeffiziete: c dtt, it it i + i i + i c dtf ( t e dtte e e ( ( ( ( + ( t it+ it e i ( i ; Fourier-Reihe: ( it ( it ( f ( t i e e si t si. (6- Aperiodische Vorgäge Wir komme zu aperiodische Vorgäge, we wir die Periodedauer immer läger mache: Oberwelle: ω ; Differez beach- Δ ω ω+ ω ; barter Oberwelle: lim Δ ω dω ud iωt iωt f ( t ce f ( t dωc( ω e ; iωt iωt c dte f ( t c( ω dtf ( t e. ormierug: iωt iωt f ( t dω dtf ( t e e ( ( ω c iω( tt iω( tt dt dω f ( t e dt f ( t dωe f t δ ( tt siehe Ahag am Schluß des Kapitels! (6-

5 5 Beispiel Fourier-rasformierte der Gaußfuktio f x e. Fourier-rasformatio ikx ( x/ x ikx c( k f ( x e dx e e dx x x ikx ikx ikx + + x x kx x ikx + ( Quadratische Ergäzug x ( x/ x (6- e dx e e dx ikx ikx kx + x ikx + x ikx x ikx x x x e e dx e dx e dx + + ikx ikx + + Substitutio: x ikx x' +, dx xdx' x I I kx kx x ( x + y e x e dx e x e dx dy rdrdϕ ( Polarkoordiate kx kx r ρ e x rdr d ϕe e x dρe ρ r dρ rdr ρ e (6-3 kx. x e Vektorraumiterpretatio Aalogie zu räumliche Vektore: Ortsraum Fuktioeraum ikx Basis: eˆ k, e ; + Ieres Produkt ikx ilx eˆ ˆ k ej δkj, dx e e δ ( k l ; ( Orthogoalität : Darstellug vo ikx r a ˆ kek, f ( x dxc( k e. Vektore: (6-4 übige, de 6.7.7

6 6 Spektralaalyse: Sehr wichtig für die Utersuchug vor allem liearer Systeme (Astroomie, Atom-, Kerphysik, Elektroik, Medizi,. Das Leistugsspektrum c( ω zeigt, wie stark eizele Frequeze i eiem Sigal vorhade sid. Soeaktivität als Fuktio der Jahreszahl (liks ud das Leistugssprektrum dieser Fuktio (rechts als Fuktio der Jahre/Zyklus (siehe ute. Abb. 6- Im Leistugsspektrum vo Abb. 6- ist icht c( ω, soder c aufgetrage, so dass das ω Argumet icht Zykle/Jahr soder Jahre/Zyklus direkt abgelese werde ka. Lösug liearer Differetialgleichuge Die Basisfuktioe der Fourier-Aalyse sid Eigefuktio der Differetatio: ikx ikx si kx si kx, cos kx cos kx, e ie. (6-5 x x x Daher ka ma vor allem liear Differetialgleichuge aller Art (auch partielle mit Hilfe der Fourier-Aalyse i rei algebraische Gleichuge umwadel.

7 7 Beispiel Wellegleichug für das elektrische Potetial: ϕ ϕ μ Wellegleichug: t x ; ikx ( ωt Asatz: ϕ xt, dkdωc k, ω e ; ( ( ik ikx ( ωt Eisetze: dkdω ( iω c( k, ω e ; μ ikx ( ω t ik i( ( kk x( ωω t dxdte dkdω ( iω c( k ω dxdte μ δ( kk δ( ωω, ; ik also ( iω, ω ± k; μ μ ik( xt / c Feld: ϕ xt, dkdωc k, ω e. ( c (6-6 übige, de 6.7.7

8 8 Ahag: Beweis vo dxe ikx δ ( k Hilfsmittel: mit Zwischerechug: ikx ikx x I dxe lim dxe ik ik ik ik + + ikx x x x x x ik k x u I lim e dxe lim e due Polarkoordiate u v u + v r J due dve dudve rdr e dϕ ρ r dρ rdr ρ dρe ρ e I lim e k ik x k 4 J k 4 Das ist eie Darstellug der δ-distributio: es ist: k für k ; I lim e k ud J ik u x k r für ; ρ dki lim dke lim rdre lim dρe lim dxe ikx I δ ( k ρ r r ρ, dρ dr e rick wie obe (6-7 (6-8

Gaußsches Integral und Stirling-Formel

Gaußsches Integral und Stirling-Formel Gaußsches Itegral ud Stirlig-Formel Lemma. Gaußsches Itegral Es gilt für alle a > : e ax dx π a Beweis: Wir reche: e dx ax e ax dx e ay dy e ax e ay dx dy mit dem Satz vo Fubii e ax +y dx dy. Nu verwede

Mehr

Lösungen zum Übungsblatt 2

Lösungen zum Übungsblatt 2 Fakultät für Luft- ud Raumfahrttechik Istitut für Mathematik ud Recherawedug Partielle Differetialgleichuge II (ME), Prof. Dr. J. Gwier Übug: N. Ovcharova, K. Dvorsky 6. Jauar bis 9. Februar 011 Lösuge

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

44. Lektion: Stehende Wellen

44. Lektion: Stehende Wellen 44. Lektio: Stehede Welle H. Zabel 38. Lektio: Schwiguge 1 15.Schwiguge Lerziel Stehede Welle etstehe aus der Überlagerug vo laufede Welle a feste oder lose Ede. Die Superpositio vo eilaufeder ud reflektierter

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Eiführug i das Mathematikstudium ud desse Umfeld (Uterrichtsfach) LVA 05.700 C. Fuchs, K. Fuchs, C. Karolus Wiederholug Schulstoff II WS 2015/16 Die komplexe Zahle Wie wir bereits im erste Teil bemerkt

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Eiführug i das Mathematikstudium ud desse Umfeld (Uterrichtsfach) LVA 05.700 C. Fuchs, K. Fuchs, C. Karolus Wiederholug Schulstoff II WS 2017/18 Die komplexe Zahle Wie wir bereits im erste Teil bemerkt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Übungen zu Analysis II Blatt 2 Abgabe: Montag, , bis 12:15 Uhr

Übungen zu Analysis II Blatt 2 Abgabe: Montag, , bis 12:15 Uhr SS 0 Gesamt: 40 Pukte Übuge zu Aalysis II Blatt Abgabe: Motag, 30.04.0, bis :5 Uhr 6. (Tutoriumsaufgabe) Ma bestimme Stammfuktioe zu [+] (a) cos si µ für µ R, si > 0, (b) log ( + + ). + Lösug: (a) Für

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n)

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n) Übug &Praktikum zur digitale Nachrichtetechik Thema: Faltug Diskrete Faltug Wird ei zeitdiskretes Sigal ( T ) x mit Hile eies Sigalverarbeitugssystems oder eies Sigalverarbeitugsblocks weiter bearbeitet,

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Meßwerte in der Quantenmechanik

Meßwerte in der Quantenmechanik Meßwerte i der Quatemechaik w a s m i s s t m a d e e i g e t l i c h a e i e m W e l l e p a k e t?? 4. Postulat der Quatemechaik: (. Teil W e eie igefuktio zum Operator F ist, da führt die Messug vo

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Musterlösung Schnellserie 4

Musterlösung Schnellserie 4 D-ITET Aalysis HS 3 Prof. Richard Pik Musterlösug Schellserie 4. a Wir sete a : + 3 ud bereche a a + + + + + 7 3 + + 7 3 +. Der Limes existiert isbesodere ud liefert damit, ach dem Quotietekriterium, de

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach:

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach: Kursuterlage zum BSc Studiegag Geographie, FSU Jea, Modul 4 Die Eiheitsgagliie, Uit Hydrograph Eiheitsgagliie (Uit Hydrograph) Defiitio der Eiheitsgagliie Die Eiheitsgagliie (egl. uit hydrograph, Sherma

Mehr

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen.

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen. C300 Der Kalibrator für icht siusförmige Sigalverläufe - Oberwelle Erweiterte Spezifikatioe Calibratio Awedugsbericht Was bedeutet Leistugs-/Eergiekalibrierug bei icht siusförmige Ströme/Spauge Elektrische

Mehr

Taylor-Reihen 1-E1. Ma 2 Lubov Vassilevskaya

Taylor-Reihen 1-E1. Ma 2 Lubov Vassilevskaya Taylor-Reihe -E -E Brook Taylor (685-73) Brook Taylor war britischer Mathematiker. Nach ihm sid die Taylorreihe ud die Taylorsche Formel beat mit der ma stetig dierezierbare Fuktioe als Potezreihe darstelle

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Gruppe

Gruppe Übug&Praktikum zu digitale Kommuikatiossysteme Thema: Faltug Diskrete Faltug Wird ei zeitdiskretes Sigal x T mit Hile eies Sigalverarbeitugssystems oder eies Sigalverarbeitugsblocks weiter bearbeitet,

Mehr

2. Zeitdiskrete Signale

2. Zeitdiskrete Signale Uiversity of Applied Sciece 2. Zeitdiskrete Sigale Defiitioe Elemetarsigale Impuls-Folge δ(): (Dirac-Folge, Delta-Folge, Eiheitsimpuls) δ ( ) : : MATLAB-Erzeugug: 5; ; (-:)'; d[zeros(++,)]; d(+); Prof.

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Thermodynamik von Legierungen

Thermodynamik von Legierungen Thermodyamik vo Legieruge Ei System verädert sich solage, bis es das thermodyamische Gleichgewicht erreicht hat, wobei die Eistellug des Gleichgewichtes kietisch möglich sei muß. Das thermodyamische Gleichgewicht

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Jean Baptiste Joseph Fourier ( ) Fouriertransformation. Faltung. F : f (x) F (s) = f (x) e 2πi s x dx = F [f ] (s) (f (x), g(x)) (f g)(x) =

Jean Baptiste Joseph Fourier ( ) Fouriertransformation. Faltung. F : f (x) F (s) = f (x) e 2πi s x dx = F [f ] (s) (f (x), g(x)) (f g)(x) = FourierTrasformatio klassisch FourierTrasformatio klassisch (z.b. Sigalverarbeitug): Fouriers Idee: Darstellug vo (periodische) Fuktioe als Überlagerug vo eifache periodische Schwiguge verschiedeer Frequez

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

HM3 Formelsammlung. Jan Höffgen 21. April 2013

HM3 Formelsammlung. Jan Höffgen 21. April 2013 HM3 Formelsammlug Ja Höffge 21 Aril 2013 Diese Zusammefassug wurde auf Basis der Vorlesug Höhere Mathematik III für Bauigeieure im Witersemester 2011/12 erstellt Es besteht kei Asruch auf Vollstädigkeit

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechug vo Eigewerte 4.6 Berechug vo Eigewerte I diesem Abschitt befasse wir us mit dem Eigewertproblem: zu gegebeer Matrix A R sid die Eigewerte (ud gegebeefalls Eigevektore) gesucht. Wir erier a

Mehr

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009 Uiversität Karlsruhe TH Istitut für Kryptographie ud Sicherheit Willi Geiselma Vorlesug Marius Hillebrad Übug Lösuge zu Übugsblatt 2 Sigale, Codes ud Chiffre II Sommersemester 2009 Übug vom 26. Mai 2009

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Konzept der Quantenmechanik

Konzept der Quantenmechanik REFLEXION AM POTENTIALWALL Numerische Lösug der Schrödigergleichug i eier Dimesio. Übugseiheit H. Leeb Eiführug i die Dateverarbeitug Kozept der Quatemechaik Bei der Beschreibug mikroskopischer System

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene...

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene... KAPITEL 1 Komplexe Zahle 1.1 Lerziele im Abschitt: Komplexe Zahle...................... 1. Was sid komplexe Zahle?............................. 1. Komplexe Zahleebee............................... 1. Grudrechearte

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Kapitel 6 Lieare Abbilduge ud Matrize I diese Kapitel werde wir lieare Abbilduge ittels sogeater Matrize beschreibe. Das Matrizekalkül wurde i Wesetliche vo C.F. Gauß, J.J. Sylvester ud A. Cayley i 19.

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Istitut SS 2009 Uiversität Müche Prof. Dr. M. Schotteloher C. Paleai M. Schwigeheuer A. Stadelmaier Übuge zur Fuktioetheorie Übugsblatt. (a) Sei α: C C x y x + iy y x da ist α offesichtlich

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Konvergenz von Fourier-Reihen

Konvergenz von Fourier-Reihen Kovergez vo Fourier-Reihe Ausarbeitug zum Semiar zur Fourieraalysis, 3..27 obias Reimes Diese Ausarbeitug beschäftigt sich mit der Kovergez vo Fourier-Reihe. Hierzu werde im erste Abschitt eiige Vorbemerkuge

Mehr

Kunming Metallurgy College Physik 2. Semester Frühjahr Skript Aufgaben Vokabular DE CH

Kunming Metallurgy College Physik 2. Semester Frühjahr Skript Aufgaben Vokabular DE CH Kumig Metallurgy College Physik 2. Semester Frühjahr 2015 Skript Aufgabe Vokabular DE CH Autor: Herbert Müller (herbert-mueller.ifo) Quelle: Physik-Skript 2. Semester der Hochschule Ahalt (D) wikipedia.org

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

2 Differentialrechnung und Anwendungen

2 Differentialrechnung und Anwendungen Differetialrechug ud Aweduge Differetialrechug ud Aweduge Der Begriff des Differetialquotiete hat sich i zahlreiche Aweduge ierhalb ud außerhalb der Mathematik als äußerst fruchtbar erwiese. Bestimmug

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz Vorlesug 4 6 + 9 April Bei w,, w m, v R ; (w,, w m =: A R (,m ud ieres Produkt = euklidisches Produkt schrieb sich das Approximatiosproblem so: Fide w = Wiederholug: m ζ k w k mit w v w v w spa{w,, w m

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

6. Die Gamma-Funktion

6. Die Gamma-Funktion 6.. Die Gamma-Futio ist für C mit Re > 0 defiiert durch Γ( := 0 t e t dt (Euler-Itegral. Bemerug. Es ist t e t = t x e t mit x = Re. Beatlich overgiert 0 t x e t dt für x > 0 (das ist die reelle Gamma-Futio.

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER Elektrotechik ud Iformatiostechik Istitut für Nachrichtetechik, Vodafoe Chair Dr. Emil Matus - Digitale Sigalverarbeitugssysteme I/II - Übug 3 ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER.

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

fdv f x, yz, dzdydx Folie 1

fdv f x, yz, dzdydx Folie 1 fd f x, y, ddydx R R 1 1 f ( rcossi, rsisi, r cos) r si dddr Folie 1 Dreifachitegrale orspa Als orwisse sollte Sie die Grudlage u Doppelitegrale mitbrige (s..b. L. Papula, Mathematik für Igeieure ud Naturwisseschaftler

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Irrationalität und Transzendenz. 1 Algebraische Zahlen

Irrationalität und Transzendenz. 1 Algebraische Zahlen Vortrag im Rahme des Prosemiars zur Aalysis, 12.6.26 Marti Woitalla Der Vortrag beschäftigt sich mit dem Thema, welche Zahle als Lösug eies Polyoms i Q[X] auftrete öe. Außer de ratioale Zahle x a =, a

Mehr

Höhere Mathematik 4 Kapitel 14 Partielle Differentialgleichungen

Höhere Mathematik 4 Kapitel 14 Partielle Differentialgleichungen Höhere Mathematik 4 Kapitel 14 Partielle Differetialgleichuge Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 4 Kapitel 14 Ihaltsverzeichis 14 Partielle Differetialgleichuge...14-1 14.1 Grudbegriffe...14-1

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Vordiplomprüfung 2014 Mathematik Seite 1 von 3

Vordiplomprüfung 2014 Mathematik Seite 1 von 3 Vordiplomprüfug 14 Mathematik Seite 1 vo 1. Aufgabe Has hat eie Uhr bekomme. Er beobachtet, dass der Miutezeiger vo Zeit zu Zeit de Studezeiger überholt. a) Um welche Zeit zwische 9 ud 1 Uhr stehe die

Mehr