Konvergenz von Fourier-Reihen

Größe: px
Ab Seite anzeigen:

Download "Konvergenz von Fourier-Reihen"

Transkript

1 Kovergez vo Fourier-Reihe Ausarbeitug zum Semiar zur Fourieraalysis, obias Reimes Diese Ausarbeitug beschäftigt sich mit der Kovergez vo Fourier-Reihe. Hierzu werde im erste Abschitt eiige Vorbemerkuge behadelt. Im zweite Abschitt werde ei eifaches Kriterium für die Kovergez ud die Ableituge vo Fourier-Reihe bearbeitet. Im letzte Abschitt wird zum Abschluss och auf Abschätzuge vo Fourier-Reihe eigegage.

2 Kovergez vo Fourier-Reihe Vorbemerkuge Vorbemerkuge Im Verlaufe der Ausarbeitug werde teilweise Bezeichuge, Defiitioe ud Sätze beutzt, die scho im Laufe des Semiares eigeführt wurde, oder aus der Aalysis stamme. Die wichtigste, die hier verwedet werde, sid hier kurz zusammegefasst. (.) Bezeichuge Sei f : C eie RIEMANN-itegrierbare Fuktio ud ˆf (r) Da ist f (t) exp ( irt)dt. S ( f, t) ˆf exp (irt) die -te Partialsumme vo der zu f gehörige FOURIER-Reihe a der Stelle t. (.2) Satz Seie f, g : C stetige Fuktioe ud ˆf (r) ĝ(r) für alle r Z. siehe [Kör], Kapitel 2, Satz 2.4, Seite 9. f g, d.h. f (t) g(t) für alle t. (.3) Defiitio Ma et die Fuktioefolge ( f ) auf D C gleichmäßig koverget gege die Fuktio f : D C, we es zu jedem ɛ > ei N N(ɛ) N gibt, so dass f (x) f (x) < ɛ für alle N ud alle x D. Hierfür schreibt ma kurz f glm f. I diesem Fall heißt f die Grezfuktio vo ( f ). Wichtig ist, dass, im Gegesatz zur puktweise Kovergez, das N icht vo x abhägt. 2

3 Kovergez vo Fourier-Reihe Vorbemerkuge (.4) Satz (Cauchy-Kriterium für Reihe) Eie Reihe k a k kovergiert geau da, we es zu jedem ɛ > ei o N gibt, so dass m k siehe [Kri5], Kap. IV, Satz(.8), Seite 68 a k < ɛ für alle m. (.5) Satz (WEIERSRASSsches Majoratekriterium) Gegebe sei eie Fuktioereihe k f k(x) auf D. We es eie Folge (M k ) k reeller Zahle gibt, so dass f k (x) M k für alle x D, k N ud M k < ɛ, k da kovergiert die Fuktioereihe k f k(x) gleichmäßig ud absolut gleichmäßig auf D. siehe [Kri6], Kap. VIII, Satz(.), Seite 84 (.6) Satz Ist F periodisch mit Periode P, da ist a+p a F(t)dt uabhägig vo a, also a+p a F(t)dt a+p F(t)dt a F(t)dt. 3

4 Kovergez vo Fourier-Reihe 2 Kovergez-Kriterie vo Fourier-Reihe 2 Kovergez-Kriterie vo Fourier-Reihe Dieses Kapitel beschäftigt sich mit Kriterie für die Kovergez vo Fourier-Reihe. Hierzu werde zuerst absolut summierbare Fourier-Reihe ud aschließed Eigeschafte der Ableitug behadelt. Um die wichtige Sätze (2.) ud (2.4) beweise zu köe, sid zudem och weitere Sätze otwedig. Eie der beide wichtige Aussage befidet sich im folgede Satz: (2.) Satz Sei f : C stetig. We gleichmäßig auf für. r ˆf (r) kovergiert, kovergiert S ( f, t) f (t) Dies bedeutet, dass eie Fourier-Reihe auf gleichmäßig gege f kovergiert, we die absolute Summatio der Fourier-Koeffiziete kovergiert. Der hierfür wird aus dem ächste Satz gefolgert. (2.2) Satz Ageomme a r kovergiert für. Da kovergiert a r exp(irt) gleichmäßig auf für gege ei g(t), wobei g : C stetig ud ĝ(r) a r für alle r Z. Da a r kovergiert, folgt ach dem Cauchy-Kriterium für Reihe(Satz.4), dass es zu jedem ɛ > ei (ɛ) N gibt, so dass r m a r + Hieraus folgt, dass r m m r a r exp (irt) a r a r < ɛ für alle m (ɛ) gilt. r m Ugl. exp irt a r exp (irt) r m a r < ɛ r m 4

5 Kovergez vo Fourier-Reihe 2 Kovergez-Kriterie vo Fourier-Reihe für alle t ud m (ɛ) gilt. Nach dem WEIERSRASSsche Majoratekriterium (Satz.5) (mit f k (x) a k exp (ikt) + a k exp ( ikt) ud M k a k + a k ) ud der Defiitio für gleichmäßige Kovergez (Defiitio.3) kovergiert a r exp(irt) u gleichmä- ßig auf für gege eie Fuktio g(t). Nach eiem Korollar aus der Aalysis II[Kri6](Kapitel 8, Korollar 3.4(a), Seite 92) folgt aufgrud der gleichmäßige Kovergez, dass die gefudee Grezfuktio g(t) ebefalls stetig ist. Jetzt ist och zu zeige, dass ĝ(r) a r für alle r Z gilt. Um dies zu zeige beötige wir die folgede Bemerkuge: (i) Da ( a r exp (irt) glm g(t) kovergiert, folgt, dass auch a r exp (irt)) exp ( ikt) glm g(t) exp ( ikt) mit exp ( ikt) [ ; ] gleichmäßig kovergiert, für. (ii) exp (i(r k)t)dt r k: {, rk, r k exp (i(r k)t)dt exp dt x r k: Setze s r k. exp (i(r k)t)dt exp (ist)dt (exp (ist) is ) is (cos (sπ) + i si (sπ) cos ( sπ) i si ( sπ)) }{{}}{{} (cos (sπ) cos ( sπ)) Sei u a k (ii) is a r } {{ }, da cos ugerade exp (i(r k)t)dt 5

6 Kovergez vo Fourier-Reihe 2 Kovergez-Kriterie vo Fourier-Reihe ( a r exp irt) exp ( ikt)dt } {{ } g(t) ĝ(k) a k, für alle k Z. (i) g(t) exp ( ikt)dt ĝ(k),. Durch diese Satz lässt sich der Satz (2.) u beweise. Satz (2.): Da ˆf (r) kovergiert, folgt ach (2.2), dass r S ( f, t) ˆf (r) exp(irt) gleichmäßig gege eie stetige Fuktio g(t) mit g : C ud ĝ(r) ˆf (r) für alle r Z kovergiert. Nach (.2) impliziert diese Aussage allerdigs, dass f g sei muss. S ( f, t) glm f (t). Wir erhalte durch Satz (2.) ei recht eifaches Kriterium, welches garatiert, dass eie Fourier-Reihe eier Fuktio gege diese gleichmäßig kovergiert. Als ächstes werde die Ableituge vo Fourier-Reihe betrachtet: (2.3) Satz Seie ( f ) : C stetig differezierbare Fuktioe ud ( f ) ihre Ableituge. Ageomme f kovergiert gleichmäßig gege f ud f gleichmäßig gege g auf für. Da ist f stetig differezierbar ud g die Ableitug vo f. Dieser Satz wurde bereits i der Aalysis II(vgl. [Kri6], Kapitel VIII) bewiese. Die Differezierbarkeit folgt dort aus Satz (2.9), S.89 ud die Stetigkeit aus Korollar (3.4), S.92. 6

7 Kovergez vo Fourier-Reihe 2 Kovergez-Kriterie vo Fourier-Reihe (2.4) Satz Sei f : C eie stetige Fuktio. We differezierbar ist ud. r r ˆf (r) kovergiert, folgt, dass f ir ˆf (r) exp (irt) gleichmäßig gege f (t) kovergiert für Sei f S ( f, ). Da für ˆf (r) r ˆf (r) [r ] folgt, dass woraus wiederum folgt, dass f f gleichmäßig kovergiert. Auf der adere Seite ist f (t) f glm ˆf (r) kovergiert, ir ˆf (r) exp (irt). Nach Satz (2.2) kovergiert glm g gleichmäßig. Nach Satz (2.3) ist dieses g geau die Ableitug vo f. Eie weitere wichtige Eigeschaft wird im folgede Lemma beschriebe: (2.5) Lemma Sei f : C eie ( )-mal stetig differezierbare Fuktio ud f differezierbar mit stetiger Ableitug außer a eier edliche Azahl a Pukte x, x 2,..., x. Für f () (t) M, t x, x 2,..., x folgt, dass ˆf (r) M r, r. Mit partieller Itegratio erhalte wir: ˆf (r) f (t) exp( irt)dt r [ f (t) exp( irt) ] π + ir ir }{{}, da exp ( irπ)exp (irπ) ir f (t) exp ( irt)dt f (t) exp ( irt)dt Wird das Itegriere -mal wiederholt, erhält ma 7

8 Kovergez vo Fourier-Reihe 2 Kovergez-Kriterie vo Fourier-Reihe ˆf (r) (ir) ˆf (r) (ir) f () (t) exp ( irt)dt, so dass f () (t) exp ( irt) dt (ir) Mdt (ir) M gilt. Für die Stelle x, x 2,..., x, wo f () icht stetig differezierbar ist, wird das Itegral i mehrere eilitegrale aufgesplittet, die (ach [Kri6] Kapitel VII, Satz(3.3)(b), Seite 76) existiere. Aus diesem Lemma ka u folgeder Satz hergeleitet werde. (2.6) Satz Sei f : C eie zweifach stetig differezierbare Fuktio. Da kovergiert S ( f, t) gleichmäßig gege f. Nach Lemma (2.5) ist ˆf (r) Mr 2 [r ], mit M sup f (2) (t) <. Weil kovergiert, folgt, dass auch Satz(2.) S ( f, t) glm f (t). ˆf (r) t für kovergiert. r 2 r Dass jede zweifach stetig differezierbare -periodische Fuktio eie gleichmäßig kovergierede Fourier-Reihe besitzt, köte zu dem Schluss führe, dass die Kovergez eier Fourier-Reihe leicht festzustelle ist. Es sollte allerdigs och erwäht werde, dass dies icht die beste Möglichkeit ist ud die hier vorgestellte Sätze auch Probleme mit sich brige köe. 8

9 Kovergez vo Fourier-Reihe 3 Abschätzug der Kovergez 3 Abschätzug der Kovergez I diesem Kapitel wird sich mit der Geauigkeit der Kovergez vo Fourier-Reihe beschäftigt. Es stellt sich also die Frage, wie groß ei gewählt werde muss, also die wievielte Partialsumme vo der zu f gehörige Fourierreihe eie gute Approximatio darstellt. Dies wird zuerst a eiem Beispiel gezeigt ud aschließed i eiem Lemma zusammegefasst. (3.) Beispiel Sei h : R, mit h(x) π/2 x, [ x π]. Da ist (i) h(x) S (h, x) /( ) (ii) h() S (h, ) /( + 2) Bevor diese Eigeschafte bewiese werde, sollte zuerst ĥ(r) bestimmt werde: ĥ(r) Satz.6 cos (t) e it +e it 2 r h(t) exp ( irt)dt π h(t) exp ( irt)dt π π h(t)(exp (irt) + exp ( irt))dt h(t) cos (rt)dt π [ ] si (rt) π (π/2 t) π r }{{}, da si rπ, r Z πr + π h(t) exp ( irt)dt (π/2 t) cos (rt)dt si (rt) dt (partiell itegriert) r si (rt)dt πr 2 [ cos (rt)]π {, r gerade, r 2/(πr 2 ), r ugerade 9

10 Kovergez vo Fourier-Reihe 3 Abschätzug der Kovergez Zudem gilt: ĥ() h(t) exp ()dt ( π π 2 + t)dt + ( π 2 t)dt Daher kovergiert ĥ(r) ud ach Satz(2.) kovergiert da auch S (h, x) glm h(x) gleichmäßig auf. Die Eigeschafte (i) ud (ii) lasse sich u achweise. (i) Da S (h, x) glm h(x) für, folgt: h(x) S (h, x) Mit r +, r ugerade r + ĥ(r) exp (irx) Ugl. r + 2/(πr 2 ). r +, r ugerade r 2 2r 2 r 2 (r(r )) r +, r r r ugerade folgt, dass h(x) S (h, x) /( ). ((r ) r eleskop summe ) ( ) r (ii) Es gilt, dass S (h, ) r, r ugerade 2/(πr 2 ), wobei alle erme positiv sid, da S (h, ) h() kovergiert, h() S (h, ) 2/(πr 2 ). r +, r ugerade Wege r +, r ugerade r 2 2r 2 r +, r ugerade r 2 r +2 (r(r + ))) r +2 (r (r + ) eleskop summe ) ( + 2) r +2 folgt, dass h() S (h, ) /( + 2). Für 6 ergibt sich beispielsweise h(x) S 6 (h, x) /5, 2 ud h() S 6 (h, ) /8, 8. I diesem Fall erhält ma also scho bei der sechste

11 Kovergez vo Fourier-Reihe 3 Abschätzug der Kovergez Partialsumme eie recht gute Approximatio. Eie solch gute Abschätzug erhält ma allerdigs icht bei jeder Fuktio. Graphisch betrachtet, sieht der Abstad zwische de Fuktioe wie folgt aus: Allgemeier formuliert, ka ma folgedes Lemma zur Abschätzug aufführe: (3.2) Lemma Für eie gegebee, fallede Folge δ, δ 2,..., δ mit δ für köe wir eie stetige Fuktio g : C fide mit folgede Eigeschafte: (i) S (g, t) glm g(t) (ii) sup g(t) S (g, t) δ,. t Setze a r für alle r, a δ ud a r δ r δ r für r. Da gilt:

12 Kovergez vo Fourier-Reihe 3 Abschätzug der Kovergez a r δ + r für alle ud (δ r δ r ) 2δ δ 2δ a r kovergiert für. Nach Satz (2.2) folgt, dass a r exp irt gleichmäßig gege eie stetige Fuktio g(t) kovergiert, mit ĝ(r) a r. Somit gilt S (g, t) glm g, aber auch S (g, ) g() a r (δ r δ r ) δ. r+ r+ 2

13 Kovergez vo Fourier-Reihe Literatur Literatur [Fol] [Kör] Follad, Gerald B.: Fourier aalysis ad its applicatios Körer,.W.: Fourier Aalysis [Kri5] Krieg, Aloys: Aalysis I. RWH Aache, 25 [Kri6] Krieg, Aloys: Aalysis II. RWH Aache, 26 3

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie, 7.2.2007 Holger Witermayr I diesem Vortrag werde wir Kovergezeigeschafte vo Dirichlet-Reihe erarbeite ud eie Vergleich zu Potezreihe ziehe. Ei weiteres Ziel dieses

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

Übungen zu Einführung in die Analysis, WS 2014

Übungen zu Einführung in die Analysis, WS 2014 Übuge zu Eiführug i die Aalysis, WS 2014 Ulisse Stefaelli 19. Jauar 2015 1 Wiederholug 1. Seie p, q ud r Aussage. Zeige Sie, dass dei Aussage Tautologie sid. p ( p q), (b) ( p q) ( p q), [ ((p ) ( ) ]

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

Gaußsches Integral und Stirling-Formel

Gaußsches Integral und Stirling-Formel Gaußsches Itegral ud Stirlig-Formel Lemma. Gaußsches Itegral Es gilt für alle a > : e ax dx π a Beweis: Wir reche: e dx ax e ax dx e ay dy e ax e ay dx dy mit dem Satz vo Fubii e ax +y dx dy. Nu verwede

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Kapitel IV: Unendliche Reihen

Kapitel IV: Unendliche Reihen Igeieurmathemati I WS 13/14 - Prof. Dr.. Mafred Leitz Kapitel IV: Uedliche Reihe 11: Uedliche Zahlereihe Kapitel IV: Uedliche Reihe 11 Uedliche Zahlereihe A Zum Begriff uedliche Zahlereihe B Uedliche Reihe

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen Agabe Aalysis - Beweise, Vollstädige Idutio, Folge 4. März 0 Aufgabe : Zum Aufwärme i Zeige durch geschictes Umforme, dass + + gilt. +!!!!!! +!! +! + + + + + ii Zeige durch vollstädige Idutio, dass 6 +

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

3.2 Potenzreihen und komplexe Taylorentwicklung

3.2 Potenzreihen und komplexe Taylorentwicklung 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu. 3.2. Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5-d begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Konvergenz von Folgen von Zufallsvariablen

Konvergenz von Folgen von Zufallsvariablen Kapitel 5 Kovergez vo Folge vo Zufallsvariable 5.1 Fa-sichere ud ochaische Kovergez Seie Ω, A, P ei W-Raum, X N eie Folge R k -wertiger Zufallsvariable auf Ω ud X eie R k -wertige Zufallsvariable auf Ω

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

( 1) n 1 n n n + 1. n=1

( 1) n 1 n n n + 1. n=1 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmud Musterlösug zum 6. Übugsblatt zur Höhere Mathematik I P/ET/AI/IT/IKT/MP) WS 20/2 Aufgabe mittels Zeige Sie die Kovergez der Reihe )

Mehr

Eulersche Summationsformel

Eulersche Summationsformel Eulersche Summatiosformel ei Prosemiarvortrag Sve Grützmacher Betreut vo Dr. Kaste Cotets Vorwort Die eifache Formel 3 Die allgemeie Formel 5 4 Awedug 7 VORWORT Vorwort Dieser Prosemiarvortrag beschäftigt

Mehr

7. Potenzreihen und Taylor-Reihen

7. Potenzreihen und Taylor-Reihen 7. Potezreihe ud Taylor-Reihe 39 7. Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

2. Verteilung der Primzahlen. Bertrands Postulat

2. Verteilung der Primzahlen. Bertrands Postulat O Forster: Prizahle 2 Verteilug der Prizahle Bertrads Postulat 21 Satz (Euklid Es gibt uedlich viele Prizahle Beweis Wir zeige, dass es zu jeder edliche Mege 1, 2,, vo Prizahle ier och eie weitere Prizahl

Mehr

Lösungsvorschlag zur Klausur zur Analysis III

Lösungsvorschlag zur Klausur zur Analysis III Prof. Dr. H. Garcke, D. Deper WS 9/ NWF I - Mathematik 8..9 Uiversität Regesburg Lösugsvorschlag zur Klausur zur Aalysis III 6 Pukte pro Aufgabe) Aufgabe i) Bestimme Sie für die Fuktioefolge f :, 4) R,

Mehr

6. AufdemRaumder stetigdifferenzierbaren FunktionenC 1 ([a,b],r n ) kannman auch folgende Norm betrachten:

6. AufdemRaumder stetigdifferenzierbaren FunktionenC 1 ([a,b],r n ) kannman auch folgende Norm betrachten: 2 Kapitel. Gewöhliche Differetialgleichuge.2 Baachräume Um de Satz vo Picard ud Lidelöf auf höhere Dimesioe übertrage zu köe, wird hier zuächst der Begriff des Baachraums bereitgestellt ud da der Baachsche

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

1.1 Mengensysteme. Ω Grundmenge, 2 Ω Potenzmenge, A 2 Ω Mengensystem. Definition 1.1: a) A stabil ( stabil, \-stabil), wenn für A, B A auch A B A

1.1 Mengensysteme. Ω Grundmenge, 2 Ω Potenzmenge, A 2 Ω Mengensystem. Definition 1.1: a) A stabil ( stabil, \-stabil), wenn für A, B A auch A B A 1.1 Megesysteme Grudmege, 2 Potezmege, A 2 Megesystem Defiitio 1.1: a) A stabil ( stabil, \-stabil), we für A, B A auch A B A (A B A, A\B A). b) A heißt Halbrig, we i) A ii) A ist stabil iii) A, B A es

Mehr

12. Übungsblatt zur Vorlesung Mathematik I für Informatik

12. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Se Herrma Dipl.-Math. Susae Pape. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 9./0. Jauar 00 Gruppeübug Aufgabe G (Logarithmus-Fuktio)

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Didaktik der Mathematik der Sek II Umkehrfuktioe Ableitugsregel für Umkehrfuktioe (Umkehrregel) Beispiele für die Awedug der Umkehrregel Stetigkeit ud Differezierbarkeit Neuma/Roder Umkehrfuktio Fuktio

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit Kapitel VI Reihe VI.1 Defiitioe ud Beispiele Defiitio VI.1. Sei (a K N eie Zahlefolge. Da heißt die Folge (s m K N, mit m s m : a, (VI.1 Reihe i K. Ist (s m koverget, so schreibe wir { a : lim {s m m}

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud e Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 008/009 Übug am 8..008 Übug 5 Eileitug Zuerst soll auf de aktuelle Übugsblatt ud Stoff der Vorlesug eigegage werde. Dazu werde

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr