Seminar Statistik Institut für Stochastik 12. Februar 2009
Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung
Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung
Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung
Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung
Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung
Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung
Sei X 1, X 2, X 3,... eine Folge von iid ZVen mit gemeinsamer Verteilungsfunktion F. Definition Stichprobenmaximum M 1 := X 1 und M n := max(x 1,..., X n ), n 2 Definition Rechter Endpunkt x F := sup{x IR : F(x) < 1} Definition: Tail F := 1 F
Wir erhalten damit sofort für alle x < x F, P(M n x) = F n (x) 0, n und in dem Fall x F < erhalten wir für x x F, daß P(M n x) = F n (x) = 1. P Daher M n xf für n, falls x F ist. Weil die Folge (M n ) nicht absteigend ist in n, konvergiert sie fast sicher und daher schließen wir, daß M n f.s. x F, n.
Zentraler Grenzwertsatz Sei (X k ) k IN eine Folge von reellen unabhängig identisch verteilten (iid) Zufallsvariablen mit IEX 2 k < und Var(X i) > 0, dann gilt n k=1 X k niex 1 nvarx1 d N(0, 1).
In der Extremwertheorie stellt man sich die Frage, ob für das Maximum von unabhängig identisch verteilten ZV (X n ) n IN mit Verteilungsfunktion F eine Art ZGWS existiert, d.h. existieren Folgen c n > 0, d n IR, so dass c 1 n (M n d n ) d G, wobei G eine Verteilungsfunktion ist.
Definition Maxstabile Verteilung Eine ZV X (und ihre dazugehörige Verteilungsfunktion) nennen wir Maxstabil, wenn sie die Gleichung max(x 1,..., X n ) d = c n X + d n, n > 0, d n IR n 2. für iid X, X 1,...,X n und geeignete Konstanten c n und d n erfüllt.
Grenzwerteigenschaften Grenzwerteigenschaften von Maxstabilen Gesetzen Die Klasse der max-stabilen Verteilungen stimmt mit der Klasse aller möglichen Grenzverteilungen für Maxima von iid ZVen überein.
Für zwei ZV X und Y schreiben wir X d = Y wenn X, Y die gleiche Verteilung haben. Zwei ZV gehören zum selben Typ, falls Konstanten existieren a IR und b > 0 so dass. X d = by + a
Konvergenztypen-Theorem Seien A, B, A 1, A 2,... ZVen und b n > 0, β n > 0 und a n, α n IR sind Konstanten. Wenn dann gilt die Relation genau dann wenn b 1 n (A n a n ) d A, β 1 n (A n α n ) d B, (1) b n a n α n lim = b [0, ), lim = a IR, (2) n β n n β n
Konvergenztypen-Theorem Falls (1) gilt, dann ist B d = ba + a und a,b sind die einzigen Konstanten für welche dies gilt. Wenn (1) gilt, dann ist A nicht-entartet genau dann wenn b > 0, und dann gehören A und B zum selben Typ.
Fisher-Tippett Theorem, Grenzwertsatz von Maxima Sei (X n ) eine Folge von iid ZVen. Falls Normierungskonstanten c n > 0, d n IR existieren und eine Verteilungsfunktion H, so dass c 1 n (M n d n ) d H, dann gehört H zu einem der drei folgenden Typen von Verteilungsfunktionen:
Fisher-Tippett Theorem, Grenzwertsatz von Maxima { 0, x 0 Fréchet: Φ α (x) = exp ( x α α > 0. { ), x > 0 exp { ( x α )}, x 0 Weibull: Ψ α (x) = α > 0. 1, x > 0 Gumbel: Λ(x) = exp{ e x } x IR
Beweis impliziert für t > 0, c 1 n (M n d n ) d H, F [nt] (c [nt] x + d [nt] ) H(x), x IR wobei[*] die Gaußklammer bezeichnet. Jedoch, F [nt] (c n x + d n ) = (F n (c n x + d n )) [nt] n H t (x), mit dem Konvergenztypen Theorem folgt dann: Es existieren Funktionen γ(t) > 0, δ(t) IR die lim n c n c [nt] = γ(t), d n d [nt] lim = δ(t), t > 0 n c [nt]
Beweis-Fortsetzung: H t (x) = H(γ(t)x + δ(t)) Es ist nicht schwierig daraus zu folgern, daß für s, t > 0 γ(st) = γ(s)γ(t), δ(st) = γ(t)δ(s) + δ(t).
Beispiel: Sei (X i ) eine Folge von iid Standard-Cauchy-ZV. Die Standard-Cauchy-Verteilung ist absolut stetig mit der Dichte: Mit l Hospital erhalten wir lim n f (x) = (π(1 + x 2 )) 1, x IR F (x) = lim (πx) 1 n f (x) π 1 = lim x 2 n Damit erhalten wir F (πx) 1. Dies impliziert: ( P M n nx π ) = ( 1 F exp{ x 1 } = Φ 1 (x), x > 0 πx 2 π(1 + x 2 ) = 1, ( )) nx n ( = 1 1 ( )) 1 n π n x + o(1)
MDA Fréchet MDA Weibull MDA Gumbel Defintion Wir sagen daß die ZV X (die Verteilungsfunktion F von X, Die Verteilung von X) zu dem gleichem Maximum Domain of Attraction der Extremwertverteilung H gehört, falls Konstanten c n > 0, d n IR existieren, so dass cn 1 (M n d n ) d H gilt. Wir schreiben X MDA(H)
MDA Fréchet MDA Weibull MDA Gumbel Poisson-Approximation Für gegebenes τ [0, ] und eine Folge (u n ) von reellen Zahlen sind folgende Aussagen Äquivalent. nf(u n ) τ, P(M n u n ) exp ( τ),
MDA Fréchet MDA Weibull MDA Gumbel Zur Erinnerung: Die sind stetig auf IR, daher ist cn 1 (M n d n ) d H äquivalent zu lim P(M n c n x + d n ) = lim F n (c n x + d n ) = H(x), n n x IR
MDA Fréchet MDA Weibull MDA Gumbel Charakterisierung der MDA(H) Die Verteilungsfunktion F gehört zum MDA von der Extremwertverteilung H mit den Normierungskonstanten c n > 0, d n IR genau dann wenn lim nf(c nx + d n ) = ln H(x), x IR n. Falls H(x) = 0 interpretieren wir den Grenzwert als.
MDA Fréchet MDA Weibull MDA Gumbel Definition Regulär Variierend Ein Verteilungs-Tail F heißt regulär variierend, mit Index α für ein α > 0, falls F(xt) lim x F(x) = t α, t > 0 Schreibweise: F R α Falls α = 0 heißt der Verteilungs-Tail langsam variierend.
MDA Fréchet MDA Weibull MDA Gumbel Definition Tail-äquivalent Zwei Verteilungsfunktionen F und G werden Tail-äquivalent, falls sie den selben rechten Endpunkt besitzen, z.b. x F = x G, und für Konstanten 0 < c < gilt. lim x x F F(x) G(x) = c
MDA Fréchet MDA Weibull MDA Gumbel Mit der Taylorentwicklung erhalten wir 1 φ(x) = 1 exp{( x α )} x α, x Für F MDA(φ α ) kann die Konstante d n = 0 gewählt werden und c n mit Hilfe der Quantilfunktion. Genauer: c n = F (1 n 1 ) = inf {x IR : F(x) 1 n 1 } = inf {x IR : ( 1 F )(x) n} = ( 1 F ) (n)
MDA Fréchet MDA Weibull MDA Gumbel MDA der Fréchet-Verteilung Die Verteilungsfunktion F gehört zum MDA(Φ α ), α > 0, genau dann wenn F (x) = x α L(x) für eine langsam variierende Funktion L gilt. Falls F MDA(Φ α ), dann ist cn 1 d M n Φα wobei die Normierungskonstante c n entsprechend dem obigem gewählt werden kann. F MDA(Φ α ) F R α
MDA Fréchet MDA Weibull MDA Gumbel Von vorher wissen wir das die Standard-Cauchy-Verteilung mit l Hospital zu folgender Relation führt: F (πx) 1 F R 1 MDA(Φ 1 ) und als Normierungskonstante wählen wir c n = (πn). Damit folgt: (πn) 1 M n d Φ1 (x)
MDA Fréchet MDA Weibull MDA Gumbel MDA der Weibull-Verteilung Die Verteilungsfunktion F gehört zum MDA(Ψ α ), α > 0, genau dann wenn x F < und F(x F x 1 ) = x α L(x) für eine langsam variiernde Funktion L. Falls F MDA(Ψ α ), dann ist cn 1 (M n x F ) d Ψ α wobei die Normierungskonstanten c n = x F F (1 n 1 ) und d n = x F gewählt werden können.
MDA Fréchet MDA Weibull MDA Gumbel Die Verteilungsfunktion mit rechtem Endpunkt x F gehört zu dem MDA(Λ) genau dann wenn ein x x F existiert, so daß F folgende Darstellung besitzt x g(t) F(x) = c(x) exp z a(t) dt, z < x x F wobei c und g meßbare Funktionen sind die c(x) c > 0, g(x) 1 genügen, wenn x x F und a(x) eine positive absolut setige Funktion (in Bezug auf das Lebesguemaß) ist mit der Dichte a (x) für die gilt lim x xf a (x) = 0. Für ein F mit der obigen Darstellung können wir d n = F (1 n 1 ) und c n = a(d n ) als Normierungskonstanten wählen.
Verallgemeinerte Extremewertverteilung Führen wir noch einen Parameter ξ ein, so können wir die drei Standardfälle in einer Familie von Verteilungsfunktionen darstellen. ξ = α 1 > 0 entspricht Fréchetverteilung Φ α ξ = 0 entspricht Gumbel Λ ξ = α 1 < 0 entspricht Weibull Ψ α
Verallgemeinerte Extremewertverteilung (GEV) Verallgemeinerte Extremwertverteilung Definiere { die Verteilungsfunktion H ξ so: exp{ (1 + ξx) 1 ξ }, f ür ξ 0 H ξ (x) = wobei 1 + ξx > 0. exp{ exp{ x}}, f ür ξ = 0 Der Fall ξ = 0 folgt aus ξ 0 für ξ 0, (1 + ξx) 1 ξ 0 ξ e x da Wir nennen H ξ die verallgemeinerte Extremwertverteilung (GEV).
Charakterisierung der MDA(H ξ ) Für ein ξ IR sind folgende Aussagen äquivalent: 1 F MDA(H ξ ). 2 Es existiert eine positiv messbare Funktion a( ) so daß für 1 + ξx > 0 gilt: lim u xf F (u+xa( )) F (u) = { (1 + ξx) 1 ξ, f ür ξ 0 exp{ x}, f ür ξ = 0
Sei X eine ZV mit Verteilungsfunktion F MDA(H ξ ), dann kann man Punkt 2 folgendermaßen umschreiben: ( ) { X u lim P u x F a(u) > x X > u (1 + ξx) 1 ξ, f ür ξ 0 = exp{ x}, f ür ξ = 0
Definition Verallgemeinerte Paretoverteilung (GPD) Definiere die Verteilungsfunktion G ξ mit G ξ = { 1 (1 + ξx) 1 ξ, f ür ξ 0 1 exp{ x}, f ür ξ = 0 wobei { x 0, f ür ξ 0 0 x 1 ξ f ür ξ < 0 Wir nennen G ξ die verallgemeinerte Paretoverteilung (GPD).
Zusammenfassung Die GEV H ξ, ξ IR beschreibt die Grenzwertverteilung der Maxima. Die GPD G ξ, ξ IR beschreibt die Grenzwertverteilung der Überschreitungen von hohen Schwellwerten.
Der Multivariate Fall Im folgenden sind alle Operationen Komponentenweise zu verstehen. z.b. x < y x (i) < y (i), 1 i d (a, b] = {x IR d : a < x b} = {(x 1,..., x d ) : a i < x i b i } Definition d-variater Maxima Sei X i = (X i,1,..., X i,d ), i n eine Folge von iid d-variaten Vektoren mit gemeinsamer Verteilungsfunktion F. Das d-variate Maximum is definiert als: ( ) M n = max i n (X i ) := max i n (X i,1 ),..., max i n (X i,d )
Multivariate Definition MDA und Extremwertverteilung Die Verteilungsfunktion F gehört zum MDA einer Funktion G, genau dann wenn, x IR d, n gilt: F n (c n,1 x 1 + d n,1,..., c n,d x d + d n,d ) G(x) für geeignete Vektoren c n > 0 und d n. G heißt multivariate Extremwertverteilung. Für die j-ten Randverteilungen F j und G j gilt: F n j (c n,j x j + b n,j ) G j (x j )
Max Stabil Definition Max-stabile Verteilung Eine Verteilung F heißt max-stabil, falls n IN gilt: F n (d n + c n x) = F(x) für geeignete Vektoren c n > 0 und d n. Satz Die Familie der stimmt exakt mit der Familie der max-stabilen Funktionen überein.
Definition Einfach Eine max-stabile Verteilungsfunktion F heißt einfach, falls alle ihre Randverteilungen Fréchet verteilt sind. d.h. F 1.α (x) = exp( x α ), x > 0, α > 0 Definition max-id Eine Verteilungsfunktion F(x) IR d heißt max-id falls es n IN F n (x) IR d gibt, so daß: F(x) = F n n (x) d.h. falls F 1/n (x) eine Verteilungsfunktion ist.
Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Definition unterer Endpunkt Der untere Endpunkt einer max-id d-variaten Verteilungsfunktion F ist definiert durch: α = (α 1,..., α d ) wobei α j den linken Endpunkt der j-ten Randverteilung F j (x) bezeichnet, für 0 < F j (x) < 1.
Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Definition Exponenten Maß Das Exponentenmaß ν von einer max-id VF F ist definiert, mit x (α, ] durch: ν([α, ) \ [α, x]) := ln F(x) wobei α der untere Endpunkt von F ist.
Darstellung mit ν Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Darstellung mit Exponentenmaß Eine max-id VF F kann dargestellt werden durch: { exp( ν([, x] c )), x α; F(x) = 0, sonst mit α [, ) := [, ) d und ν der zu F gehörige Exponentenmaß. Aus F(x) > 0 für x > α folgt das α der untere Endpunkt ist.
Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Eigenschaften von ν Das Maß ν hat folgende Eigenschaften: (a) ν ist konzentriert auf [α, ) \ {α} (b) ν([, t] c ) < t > α
De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Betrachte eine einfache, d-variate max-stabile VF F. Dann gilt, für n IN und x IR d : Daraus folgt: F n (n 1/α x) = F (x) F n/m ((n/m) 1/α x) = F(x), n, m IN, x IR d Wähle n,m so daß n/m t α > 0. Dann folgt, mit der Stetigkeit von F: F tα (tx) = F(x), t > 0, x IR d Da F auch max-id ist, folgt aus der vorherigen Darstellung: F(x) = exp( ν([0, x] c ))
De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung mit ν der zu F gehörige Exponentenmaß, der konzentriert ist auf E := [0, ) \ {0} Es gilt: ν([0, x] c ) = t α ν([0, tx] c ) = t α ν(t[0, x] c ) Nun können wir diese Gleichung erweitern zu: ν(b) = t α ν(tb) wobei B eine Borelmenge ist und tb := {tx : x B} Für t > 0 und eine beliebige Borel Untermenge A von S E := {z E : z = 1} in E folgt: ν( { x E : x t, x }) x A
De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung = t α ν( { y E : y 1, φ ist das Winkelmaß. y y A } ) := t α φ(a). x Definiere T : E (0, ) S E durch T (x) := ( x, x ) Das Maß (T ν)(b) := ν(t 1 (B)) erfüllt: { } (T ν)([t, ) A) = ν( ) x x E : x t, x A = 1 t α φ(a) = [t, ) A α 1 r (α+1) dr dφ(a)
De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Es gilt: ν([o, x] c ) = ν([o, x] c E) = (T ν)(t [o, x] c E) Und T ([o, x] c E) = T ({y E : y i > x i für manche i d}) = {(r, a) (o, ) S E : (ra) i > x i für manche i d} = {(r, a) (o, ) S E : ra i > x i für manche i d} = {(r, a) (o, ) S E : r > min i d (x i /a i )}
De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Insgesamt erhalten wir: ν([o, x] c ) = (T ν) ( {(r, a) (0, ) S E : r > min i d (x i /a i )} ) = S E (min i d (x i /a i, )) α 1 r (α+1) dr dφ(a) = S E 1 min i d (x i /a i ) α dφ(a) = S E max i d ( ai x i ) α dφ(a)
De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Somit haben wir die De Haan-Resnick Darstellung hergeleitet: ( ) (a F(x) = exp max i ) αdφ(a) i d, x [0, ) S E x i für eine einfache, max-stabile Verteilungsfunktion F.