Zusätzliche Dimensionen der Raumzeit

Ähnliche Dokumente
Die Grundidee der Landscapes

Lösungen zu Übungsblatt 1

String Theorie - Die Suche nach der großen Vereinheitlichung

ν und λ ausgedrückt in Energie E und Impuls p

Physik jenseits des Standardmodells

Extradimensionen und mikroskopische schwarze Löcher am LHC. Anja Vest

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

Probeklausur zu Physikalische Chemie II für Lehramt

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Stringtheorie: Auf der Suche nach der Weltformel

Kapitel 10. Potentiale Elektronen im Potentialtopf

Inhaltsverzeichnis. Einleitung 1

Mathematische Grundlagen der Stringtheorie und Supersymmetrie. Klausur 1,

Silvia Arroyo Camejo. Skurrile Quantenwelt ABC

T2 Quantenmechanik Lösungen 4

Extradimensionen am LHC

Denition eines Orthonormalsystems (ONS) Eine Teilmenge M eines Prähilbertraums V mit dim(m) = n dim(v ) = m heiÿt Orthonormalsystem, wenn gilt:

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Übung 1 - Musterlösung

Was ist Gravitation?

Spezielle Relativität

Teil II: Quantenmechanik

, = 2x, dz = 2x dx dx c und d) Partielle Integration u v = u v u v

Die Schrödinger Gleichung

WKB-Methode. Jan Kirschbaum

Relativistische Mechanik und Quantenmechanik

Bewegung im elektromagnetischen Feld

2.2 Kollineare und koplanare Vektoren

1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

Allgemeine Relativitätstheorie und Quantenphysik

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

Dunkle Materie und Dunkle Energie. Claus Grupen 2014

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

Theoretische Physik II: Quantenmechanik

Extra Dimensionen. Gibt es sie, und wie können wir sie finden? Seminarvortrag am Peter Müller

Mittwochsakademie WS 15/16 Claus Grupen

Bewegungsgleichung im Gravitationsfeld mit dem 2. Axiom von Newton und mit Gravitationsladungen ausgedrückt. Gyula I. Szász*

Lösung III Veröentlicht:

Vorkurs: Mathematik für Informatiker

Der harmonische Oszillator anhand eines Potentials

7 Die Hamilton-Jacobi-Theorie

46 Der Satz von Fubini

Wiederholung: Gravitation in der klassischen Physik

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Seminar zur Theorie der Teilchen und Felder Supersymmetrie

Gequetschte Zustände beim harmonischen Oszillator

Moderne Theoretische Physik WS 2013/2014

Schrödingers Katze -oder- Wo ist der Übergang?

Das Volumen und die Oberfläche einer n-dimensionalen Kugel

Fallender Stein auf rotierender Erde

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Zum gravitativen Massendefekt einer homogenen Kugel

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

Vorkurs: Mathematik für Informatiker

PHYSIK AM FREITAG. 15. Januar 2016 Markus Leuenberger, 22. Januar 2016 Michele Weber. 29. Januar 2016 Susanne Reffert. 4. März 2016 Martin Rubin

Topologie metrischer Räume

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond?

2 Die Newton sche Gravitationstheorie

Vorkurs: Mathematik für Informatiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen.

Physikalisches Pendel

2. Vorlesung Wintersemester

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Zahlen in der Physik:

2 Klassische Mechanik

Unverkäufliche Leseprobe des S. Fischer Verlages. Lisa Randall Verborgene Universen. Eine Reise in den extradimensionalen Raum

String Theory for Pedestrians (Stringtheorie für Fußgänger)

Vorkurs Mathematik Übungen zu Komplexen Zahlen

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

Vertiefende Theoretische Chemie Übungen

Name: Gruppe: Matrikel-Nummer:

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Ferienkurs Quantenmechanik

Theoretische Physik fürs Lehramt: L2

Serie 5. Figure 1: 1.a)

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich?

Theoretische Physik 2 (Theoretische Mechanik)

2.7 Gravitation, Keplersche Gesetze

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

3.8 Das Coulombsche Gesetz

Grundlagen der Physik 1 Lösung zu Übungsblatt 1

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich?

mit 0 < a < b um die z-achse entsteht.

Seminar zum Thema Kryptographie

Partielle Differentialgleichungen

Elektrizitätslehre und Magnetismus

Musterlösung 02/09/2014

Transkript:

Zusätzliche Dimensionen der Raumzeit Mark Wirges Institut für Physik, Fachbereich 08 Johannes Gutenberg-Universität Mainz 18. Juni 2015 Betreuerin: Jun.-Prof. Dr. Gabriele Honecker 1 Einleitung und Motivation Es wird wohl niemand der Tatsache widersprechen, dass unser tagtägliches Leben in drei Dimensionen stattndet. Wenn wir die Gröÿe eines Objektes beschreiben, unterscheiden wir in Höhe, Breite und Tiefe. Der von den mit Abstand meisten Physikern anerkannte Fakt, dass mit der Zeit eine weitere Dimension hinzugefügt wird, die die anderen drei Raumdimensionen sogar beeinusst, stöÿt da schon auf gröÿere Verwunderung, gar Ungläubigkeit. Nun behauptet ein groÿer Teil theoretischer Physiker, dass uns mindestens sechs, eventuell sogar 22, weitere Raumdimensionen tagtäglich begleiten. Die Verizierung dieser These würde nun wirklich alle bisherigen Weltvorstellungen auf den Kopf stellen und für weltweites Staunen sorgen. Die Idee von einer zusätzliches Raumdimension ist allerdings alles andere als ein brandneuer Gedanke. Bereits in den 1920er Jahren fügten Theodor Kaluza und Oskar Klein der vierdimensionalen Raumzeit eine weitere Raumdimension zu, um die einzigen damals bekannten fundamentalen Wechselwirkungen Gravitation und Elektromagnetismus zu vereinigen. Zwar geriet diese Idee durch die Erfolge der Quantenmechanik vorerst in den Hintergrund, jedoch erinnerte man sich in den 1960ern wieder daran, um Aspekte der Stringtheorie zu erklären. Darunter versteht man ein physikalisches Modell, welches das Standardmodell (nämlich die Beschreibung von elektromagnetischer, starker und schwacher Wechselwirkung) und die Gravitation miteinander verbindet. Man spricht deshalb von Quantengravitation. Die Stringtheorie identiziert Elementarteilchen als Vibrationen von oenen und geschlossenen eindimensionalen Strings, anstatt als punktförmige Teilchen der Dimension Null. Eine experimentelle Bestätigung dieser Behauptungen bleibt bisher aus, es handelt sich also allein um ein hypothetisches Modell. Falls dieses Modell allerdings mit der Realität übereinstimmt, sind zusätzliche Raumdimensionen notwendig. Die Anzahl der Raumdimensionen ergibt sich aus den Berechnungen in diesen Theorien, man erhält entweder eine zehn-, elf- oder 26-dimensionale Raumzeit. Dabei stellen wir uns den dreidimensionalen Raum als eine Hyperebene vor, die in den höherdimensionalen Raum eingebettet ist, und sprechen von einer D3-Brane. Wir werden anhand von mehreren Beispielen die Möglichkeit von zusätzlichen Raumzeit-Dimensionen diskutieren und vor allem auf die Frage eingehen, warum diese bis zum heutigen Tag nicht entdeckt wurden. Dabei werden wir zuerst den wichtigen Begri der Kompaktizierung diskutieren, um damit und mit einem einfachen quantenmechanischen Beispiel zu folgern, dass hinreichend kleine Zusatzdimensionen uns bisher verborgen geblieben sein könnten. Anschlieÿend werden wir mit Hilfe des Planck-Einheitensystems auf mögliche Längen der Zusatzdimensionen schlieÿen, insbesondere schauen wir uns dabei groÿe Zusatzdimensionen an. Inhaltlich haben wir uns weitestgehend an die ersten drei Kapitel von Barton Zwiebach's A First Course in String Theory [2] gehalten, woraus auch sämtliche Abbildungen genommen wurden. Zusätzlich waren Wikipedia-Artikel [1] zu diversen Themen hilfreich. 1

2 Kompakte Zusatzdimensionen Die drei Dimensionen, die unser tägliches Leben bestimmen, wir sprechen also vom R 3, sind nicht kompakt. Dies ist der fundamentale Unterschied zu möglichen zusätzlichen Raumdimensionen. Wir setzen voraus, dass diese kompakt sein müssen. Um dies zu veranschaulichen, betrachten wir eine Dimension, das heiÿt den R 1 = R, versehen mit der Relation x x + 2πRn, für x R, wobei n Z und R R beliebig, aber fest ist. Mit dieser Relation wird die nicht kompakte Gerade zu einem kompakten Kreis aufgewickelt Abbildung 1: Kompaktizierung einer Gerade zum Kreis (siehe Abbildung 1). Man spricht auch von der sogenannten Kaluza-Klein-Kompaktizierung. Wir nennen das Intervall I = [0, 2πR) ein Fundamentalgebiet, denn es gelten folgende Bedingungen: (i) Für keine x 1 I und x 2 I gilt: x 1 x 2, (ii) Für alle x R existiert ein x 0 I, so dass x x 0. Die Kompaktizierung von zwei Dimensionen kann man sich anschaulich folgendermaÿen vorstellen: 2

3 Beispiel aus der Quantenmechanik Wir betrachten nun einen zweidimensionalen Raum mit den Koordinaten (x, y), wobei die Dimension mit der Koordinate y kompaktiziert ist. Es gilt also (x, y) (x, y + 2πRn) und wir können uns den Raum als Zylinder mit Umfang 2πR vorstellen. Abbildung 2: Zweidimensionaler Raum, wobei Dimension y aufgewickelt ist Dazu betrachten wir das von y unabhängige Potential { 0, falls x (0, a), V (x, y) =, sonst, der Länge a >> R. Ein Teilchen ist sozusagen gefangen im Potentialtopf des Intervalls 0 < x < a. Abbildung 3: Eindimensionaler Potentialtopf der Länge a Nun wenden wir die Schrödinger-Gleichung 2 2m ( 2 x 2 Ψ + 2 Ψ) = EΨ (3.1) y2 an, um die Energieeigenwerte der Gesamtwellenfunktion Ψ(x, y) zu berechnen. Dafür wählen wir den Produktansatz Ψ(x, y) = ψ(x) φ(y), der aufgrund der Unabhängigkeit des Potentials V von x sinnvoll erscheint. Einsetzen in die Schrödinger-Gleichung liefert E = 2 2m ( 1 ψ(x) 2 x 2 ψ(x) + 1 φ(y) 2 y 2 φ(y)). 3

Die von x und y abhängigen Terme dieser Gleichung müssen konstant sein, da die Energie E konstant ist. Zusammen mit den Stetigkeitsbedingungen für die Wellenfunktionen in x und y, ψ(0) = ψ(a) = 0 und φ(y) = φ(y + 2πRn), erhalten wir für k, l N die zweifach entartete Gesamtwellenfunktion Ψ k,l (x, y) = ψ k (x) φ l (y), wobei ψ k (x) analog zum eindimensionalen Problem ist: ψ k (x) = c k sin( kπx a ) φ l (y) = a l sin( ly R ) + b l cos( ly R ). Erneutes Einsetzen in Gleichung (3.1) ergibt die Energieeigenwerte E k,l = 2 2m ((kπ a )2 + ( l R )2 ). Das niedrigste neue, also auch von der Zusatzdimension mit Radius R abhängige, Energieniveau ist E 1,1 = 2 2m (( π a )2 + 1 R 2 ). Infolge der Annahme R << a gilt E 1,1 = 2 2m 1 R 2. Dieses Energieniveau ist allerdings wiederum wegen R << a so weit über dem Grundzustand E 1,0, dass es in Experimenten nicht beobachtet werden kann. Wir schlussfolgern: Eine zusätzliche, aufgerollte Raumdimension kann uns auch bis heute verborgen geblieben sein, solange ihr Umfang klein genug ist. Und genau auf die möglichen Umfänge von Zusatzdimensionen wird im Folgenden eingegangen. 4 Planck-Einheiten Um das Verständnis einer höherdimensionalen Raumzeit besser zu verstehen, benötigen wir einige Hilfsmittel. Eines davon ist das sogenannte Planck'sche Einheitensystem. Wir alle kennen die Werte für die Gravitationskonstante G 6, 67 10 11 m3, die Lichtgeschwindigkeitzeit c 3 10 8 m kg m2 kg s 2 s und das reduzierte Planck'sche Wirkungsquantum 1, 06 10 34 s, wobei alle Konstanten im Internationalen Einheitensystem (SI-System) berechnet wurden. In Planck- Einheiten sind alle drei Gröÿen auf den Wert 1 normiert: lp G = 1 3 m pt, c = 1 lp 2 p t p, = 1 mpl2 p t p. Wir nennen l p Planck-Länge, t p Planck-Zeit und m p Planck-Masse. Wieder umgerechnet in SI- Einheiten erhalten wir G l p = c 3 1, 61 10 33 cm (4.1) t p = l p c 5, 4 10 44 s (4.2) c m p = G 2, 17 10 5 g. (4.3) Es fällt sofort auf, dass sowohl die Planck-Länge, als auch die Planck-Zeit, sehr kleine, mit heutigen Methoden nicht messbare, Werte besitzen. Im Verhältnis dazu erscheint die, im Alltag natürlich auch sehr kleine, Planck-Masse riesig. Wohingegen die Plancklänge etwa das 10 20 -fache des Radius eines Protons ist, beträgt die Planck-Masse ungefähr das 10 +20 -fache der Masse des Protons. Bei der Berechnung der Masse eines Protons, die nötig ist, damit die Gravitationskraft die elektrische Abstoÿung aufhebt, erhält man jedoch eine Masse, deren Gröÿenordnung nahe an m p ist. GM 2 r 2! = e2 4πɛ 0 r 2 M m p 12 4

Planck-Einheiten sind somit die natürlichen Einheiten jeder Quantengravitationstheorie, einer Theorie, die versucht, die vier fundamentalen Wechselwirkungen zu vereinheitlichen und vor allem die damit verbundene Frage, warum die Gravitation so viel schwächer ist als die anderen Wechselwirkungen (Hierarchieproblem), zu beantworten. In den kommenden Kapiteln werden wir die vorhin eingeführten Konstanten für eine höherdimensionale Raumzeit berechnen, um damit auf mögliche Gröÿen von Zusatzdimensionen zu schlieÿen. 5 Planck-Wellenlänge für beliebige Raumdimensionen Unser Ziel ist es, tiefere Einblicke in die Gravitationstheorie der Zusatzdimensionen zu gewinnen. Dabei werden wir die Newton'schen Gravitationsgesetze verwenden. Zwar sind diese nur für ein schwaches Gravitationspotential und kleine Geschwindigkeiten gültig, allerdings werden sie uns trotzdem helfen, unser Verständnis von Gravitationskonstante und Planck-Länge für höhere Raumdimensionen zu verbessern. Hierbei betrachten wir die Poisson-Gleichung der klassischen, beziehungsweise Newton'schen Mechanik. Φ( r) = 4πGρ m ( r), wobei der Laplaceoperator, Φ das Gravitationspotential und ρ m die Massendichte ist. Dieses Gesetz gilt auch für beliebig viele, D Raumzeit-Dimensionen: Φ (D) ( r) = 4πG (D) ρ (D) m ( r). (5.1) Der Subindex (D) verdeutlicht die Werte der Gröÿen für die entsprechende Anzahl an Raumzeit- Dimensionen. Wir schreiben ab jetzt: G = G (4), l p = l p (4) usw. Nun studieren wir die Einheiten von Gleichung (5.1) genauer: Da die Einheit des Gravitationspotentials auch für zusätzliche Raumdimensionen Energie geteilt durch Masse ist, für die Massendichte allerdings immer Masse geteilt durch Volumen, also [ρ (D) m ] = m, gilt, muss sich die Gravitationskonstante ändern. Wir L D 1 folgern: [G (D) ρ (D) m ] = [G (D) m! ] L D 1 = [G ρ m ] = [G] m L 3. Multiplikation beider Seiten mit L D 1, Division durch die Masse und Einsetzen von [c]3 L2 [ ] vierdimensionale Gravitationskonstante liefert: für die [G (D) ] = [G] L D 4 = [c]3 L 2 [ ] L D 4 = [c]3 L D 2. [ ] Da die Planck-Länge die eindeutig bestimmte Länge ist, die ausschlieÿlich aus Potenzen von G, und c berechnet wird, erhalten wir die folgende Formel für die Planck-Länge in D Raumdimensionen, (l p (D) ) D 2 = G(D) c 3 = G c 3 G(D) G = l2 p G(D) G, (5.2) indem wir im letzten Schritt die Denition der vierdimensionalen Planck-Länge aus Gleichung (4.1) einsetzen. Auÿerdem gilt das für unsere vierdimensionale Raumzeit konsistente Gravitationsgesetz (ohne Herleitung) F G 1. (5.3) rd 2 5

Abbildung 4: Gleichmäÿige Massenverteilung um aufgewickelte Zusatzdimension x 4 Wir betrachten nun eine fünfdimensionale Raumzeit (x 0, x 1, x 2, x 3, x 4 ), wobei x 0 die Koordinate der Zeit und x 4 kompaktiziert ist mit einem Umfang von 2πR. Dabei ist an der Stelle x 1 = x 2 = x 3 = 0 um die Zusatzdimension x 4 ein Ring mit der Masse M gleichmäÿig verteilt(siehe Abbildung 5). Für die Masse gilt M = 2πRm, wobei m die Masse pro Längeneinheit bezeichnet. Da die Massenverteilung für alle Punkte auÿer x 1 = x 2 = x 3 = 0 ungleich Null ist, erscheint die δ-distribution als passender Ansatz für die Massendichte ρ (5). Diese Funktion hat fast überall den Wert 0 (δ(x) = 0 x 0), allerdings gilt δ(x)dx = 1. Mit δ( r) = δ(x 1) δ(x 2 ) δ(x 3 ) zeigen wir nun ρ (5) = m δ( r), indem wir die fündimensionale Massendichte integrieren, die Unabhängigkeit von der x 4 -Komponente, die Eigenschaften der δ-distribution ausnutzen und das erforderte Ergebnis der Gesamtmasse M herausbekommen: 2πR ρ (5) = ρ (5) dx 4 d r V ol = m R 3 0 = 2πRm. 2πR δ(x 1 )dx 1 δ(x 2 )dx 2 δ(x 3 )dx 3 dx 4 Für einen Beobachter, der die aufgewickelte Zusatzdimension nicht sieht, erscheint die Masse allerdings punktartig. Folglich gilt für die vierdimensionale Massendichte ρ (4) = M δ(x 1 ) δ(x 2 ) δ(x 3 ), und verglichen mit der fünfdimensionalen erhalten wir ρ (5) = ρ(4) 2πR. Dies setzen wir nun in die fünfdimensionale Poisson-Gleichung (5.1) ein, Φ (5) ( r) = 4πG (5) ρ (5) = 4π G(5) 2πR ρ(4)! = Φ (4) ( r) = 4πGρ (4), und da Φ (5) unabhängig von x 5 ist, können wir es gleich Φ (4) setzen. Daraus schlieÿen wir die Identität G = G(5) 2πR und erhalten durch umstellen G G (5) = 2πR =: l C, mit l C als Länge der kompakten Zusatzdimension. Dies kann für D 4 Zusatzdimension verallgemeinert werden, indem der Quotient von G und G (D) gleich dem Volumen der aufgewickelten Dimensionen ist: G G (D) = l C 1 l C2... l CD 4 =: V C. (5.4) 0 6

6 Groÿe Zusatzdimensionen Ziel dieses Kapitels ist es, die in den vorherigen Abschnitten hergeleiteten Formeln mit Leben zu füllen. Wir werden Obergrenzen für mögliche Gröÿen von Zusatzdimensionen berechnen und diese mit dem Modell, also der Stringtheorie, verknüpfen. Dafür nehmen wir zuerst eine Raumzeit mit einer kompakten Zusatzdimension der Länge l C. Aus Gleichungen (5.2) und (5.4) erhalten wir (l p (5) ) 3 = (l p ) 2 G(5) G = (l p) 2 l C (6.1) l C = (l(5) p ) 3 (l p ) 2. (6.2) Heutzutage können Bereiche bis 10 16 cm erforscht werden. Deshalb wählen wir eine fünfdimensionale Plank-Länge von l p (5) 10 18 cm. Dies, und den Wert der vierdimensionalen Planck-Länge aus (4.1) eingesetzt, ergibt einen Umfang l C 10 7 km. Das ist ein Vielfaches der Strecke von der Erde zum Mond und wäre natürlich längst erkannt worden. Betrachten wir allerdings eine sechsdimensionale Raumzeit mit zwei gleichgroÿen Zusatzdimensionen, so erhalten wir analog zu (6.1) einen Umfang von l C = (l(6) p ) 2 l p 10 3 cm. Diese Länge erscheint immernoch zu groÿ, allerdings nur auf den ersten Blick. Werden mögliche Zusatzdimensionen mit Gravitationsexperimenten erforscht, geschieht dies in der Bestätigung des Gravitationsgesetzes F G 1 für immer kleiner werdende Distanzen. Da die Formel r 2 aus (5.3), F G 1 nur für Distanzen < l r 4 C gilt, geschähe dies in unserem Fall ab 10 3 cm. Aufgrund von Störungen, die vor allem wegen der viel stärkeren elektromagnetischen Kraft auftreten, sind präzise Messungen allerdings sehr schwer und bisher wurde F G 1 nur bis zu einer Distanz von r 2 10 2 cm bestätigt. Zusatzdimensionen mit Längen von 10 3 cm sind also nicht unmöglich! (Für eine elfdimensionale Raumzeit erhalten wir einen Umfang der kompakten Zusatzdimensionen von circa 1fm = 10 13 cm.) Nur warum testen wir das ganze ausschlieÿlich mit Gravitation und nicht mit anderen Wechselwirkungen? Die Coulomb-Kraft ist beispielsweise bis auf 10 11 cm bestätigt. Die Gründe in der exponierten Situation für die Gravitation liegen im Grundprinzip der String-Theorie. Wie schon im ersten Kapitel bemerkt, werden Elementarteilchen durch Vibrationen von oenen und geschlossenen Strings identiziert. Oene Strings können sich entlang der drei euklidischen Dimension frei bewegen, sind allerdings in allen Zusatzdimensionen an einem festen Punkt lokalisiert. Sie sehen die Extradimensionen nicht. Die drei Wechselwirkungen des Standardmodells (elektromagnetische, starke und schwache Wechselwirkung) sind rein vierdimensional (, zählen wir die Zeitdimension hinzu). Gravitation auf der anderen Seite entsteht durch Schwingungen geschlossener Strings. Diese können sich in allen Dimensionen frei bewegen und spüren somit auch die Zusatzdimensionen. Literatur [1] https://en.wikipedia.org/wiki/main_page. [2] B. Zwiebach. A First Course in String Theory. Cambridge University Press, 2. edition, 2009. 7