Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Ähnliche Dokumente
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester gehalten von Harald Baum

Eigenwerte und Eigenvektoren von Matrizen

4 Vorlesung: Matrix und Determinante

3.3 Eigenwerte und Eigenräume, Diagonalisierung

7 Die Determinante einer Matrix

Der Zwei-Quadrate-Satz von Fermat

7. Ringe und Körper. 7. Ringe und Körper 49

Einführung in die Algebra

Musterlösungen zur Linearen Algebra II Blatt 5

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Lineare Gleichungssysteme

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

0, v 6 = , v 4 = span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

7 Rechnen mit Polynomen

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

Lineare Algebra - alles was man wissen muß

Modulabschlussklausur Analysis II

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

2 Die Darstellung linearer Abbildungen durch Matrizen

Lineare Gleichungssysteme I (Matrixgleichungen)

1.9 Eigenwerte und Eigenvektoren

Lösungen zum 3. Aufgabenblatt

Kevin Caldwell. 18.April 2012

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Gleichungssysteme

Vorkurs Mathematik Übungen zu Polynomgleichungen

4. Übungsblatt Matrikelnr.:

Approximation durch Taylorpolynome

3. LINEARE GLEICHUNGSSYSTEME

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

1 Mathematische Grundlagen

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Gleichungen und Ungleichungen

Rekursionen. Georg Anegg 25. November Methoden und Techniken an Beispielen erklärt

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

Repetitionsaufgaben Wurzelgleichungen

Übung zur Algebra WiSe 2008/2009, Blatt 1

Mathematischer Vorbereitungskurs für Ökonomen

Primzahlen und RSA-Verschlüsselung

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x y = x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

Lineare Gleichungssysteme

Lineare Gleichungssysteme

6.2 Perfekte Sicherheit

8. Quadratische Reste. Reziprozitätsgesetz

Kapitel 15. Lösung linearer Gleichungssysteme

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Frohe Weihnachten und ein gutes neues Jahr!

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Korrelation (II) Korrelation und Kausalität

Leitfaden Lineare Algebra: Determinanten

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Vorkurs Mathematik Übungen zu Differentialgleichungen

Informationsblatt Induktionsbeweis

3.1. Die komplexen Zahlen

a n auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Professionelle Seminare im Bereich MS-Office

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

Im Jahr t = 0 hat eine Stadt Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Repetitionsaufgaben: Lineare Funktionen

11. Das RSA Verfahren und andere Verfahren

5 Eigenwerte und die Jordansche Normalform

Was meinen die Leute eigentlich mit: Grexit?

W-Rechnung und Statistik für Ingenieure Übung 11


Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Kap. 8: Speziell gewählte Kurven

Linearen Gleichungssysteme Anwendungsaufgaben

Definition 27 Affiner Raum über Vektorraum V

Lösungen zu Kapitel 7

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

3. Zusammenhang. 22 Andreas Gathmann

WS 2008/09. Diskrete Strukturen

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Bestimmung einer ersten

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen?

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Zeichen bei Zahlen entschlüsseln

Absolute Stetigkeit von Maßen

1 Aussagenlogik und Mengenlehre

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Transkript:

Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h 2 mit h 1 f + h 2 g h gibt, wenn ggt(f, g) ein Teiler von h ist. Sei s ggt(f, g).,, : Seien h 1, h 2 Polynome mit h 1 f + h 2 g h. Da s f und s g gilt, gibt es r 1 und r 2 mit sr 1 f und sr 2 g. Setzt man dies in die Gleichung ein, so erhält man s(h 1 r 1 + h 2 r 2 ) h, also teilt s das Polynom h. : Sei nun s ein Teiler von h, d.h. es gibt ein Polynom r mit sr h. Dann gibt es Polynome p 1, p 2 mit p 1 f + p 2 g s (siehe ) Dann ist p 1 rf + p 2 rg h, also erfüllen h 1 : p 1 r und h 2 : p 2 r die Forderung. Aufgabe 2 (5+5 Punkte) 1. Seien x, y R und x y : x + y xy. Zeigen Sie, dass (R \ {1}, ) eine kommutative Gruppe ist. 2. Sei die Teilmenge Q[ (2)] : {x+ 2y x, y Q} von R gegeben, zusammen mit den üblichen Operationen +,. Zeigen Sie, dass (Q[ 2], +, ) ein Körper ist. 1. Seien x, y R und x y : x + y x y. Zu zeigen: (R {1}, ) ist eine kommutative Gruppe. Also: (a) ist wohldefiniert auf R {1} (b) x, y, z R {1} gilt: (x y) z x (y z) (c) e R {1} : x R {1} : e x x x e (d) x R {1} x 1 mit x 1 x e 1

(e) x, y R {1} : x y y x (a) Wir wissen, dass die Operationen + und auf R wohldefiniert sind. Das einzige, was es zu überprüfen gilt ist, ob x y nicht auf 1 abgebildet werden kann. Dazu betrachte folgende Gleichung: x y x + y xy 1 x(1 y) + y 1 x 1 y 1 y 1 Das bedeutet x y wird immer auf R {1} abgebildet. (b) Assoziativgesetz: (c) Neutrales Element: (d) Inverses Element: Probe: x (x y) z (x + y xy) z (x + y xy) + z (xz + yz xyz) x + y + z xy xz yz + xyz x (y z) x (y + z yz) x x 1 x + (e) Kommutativität: x + y + z yz (xy + xz xyz) x + y + z xy xz yz + xyz x x + x x x + x x x x + y xy y x 1 x x x 1 x x x 1 x x 1 x2 x + x x 2 x 1 x y x + y xy y + x yx y x Damit sind alle Voraussetzungen für eine abelsche Gruppe erfüllt. 2. Zu zeigen: Q[ 2] : {x+ 2y x, y Q} bildet mit + und einen Körper. Also: (a) + und sind wohldefiniert über Q[ 2] (b) (Q[ 2], +) ist kommutative Gruppe (c) (Q[ 2], ) ist Halbgruppe 2

(d) a, b, c Q[ 2] gilt: (e) a Q[ 2] a 1 mit a 1 a 1. (a) Die Wohldefiniertheit gilt wegen: a (b + c) ab + ac (a + b) c ac + bc a+b (x 1 + 2y 1 )+(x 2 + 2y 2 ) (x 1 + x 2 ) + 2(y 1 + y 2 ) Q[ 2] } {{ } } {{ } Q Q a b (x 1 + 2y 1 ) (x 2 + 2y 2 ) (x 1 x 2 + 2y 1 y 2 ) + 2(x 2 y 1 + x 1 y 2 ) Q[ 2] } {{ } } {{ } Q Q (b) Klar, wie in R. Neutrales Element: ( + 2) (c) Klar, wie in R. Einselement:(1 + 2) (d) Distributivgesetze: (x 1 + y 1 2) ((x2 + y 2 2) + (x3 + y 3 2)) x 1 (x 2 + x 3 ) + 2x 1 (y 2 + y 3 ) + 2y 1 (x 2 + x 3 ) + 2y 1 (y 2 + y 3 ) x 1 x 2 + x 1 x 3 + 2y 1 y 2 + 2y 1 y 3 + 2(x 1 y 2 + x 1 y 3 + x 2 y 1 + x 3 y 1 ) (x 1 + y 1 2)(x2 + y 2 2) + (x1 + y 1 2)(x3 + y 3 2) x 1 x 2 + 2y 1 y 2 + 2(x 1 y 2 + x 2 y 1 ) + x 1 x 3 + 2y 1 y 3 + 2(x 3 y 1 + x 1 y 3 ) x 1 x 2 + 2y 1 y 2 + x 1 x 3 + 2y 1 y 3 + 2(x 1 y 2 + x 2 y 1 + x 3 y 1 + x 1 y 3 ) Damit ist das erste Distributivgesetz gezeigt. Das zweite ergibt sich, da die Multiplikation kommutativ ist (e) Inverses: a 1 a (x + y 2)(x + 2y) 1 + 2 x x + 2x y + 2xy + 2y y 1 x x + 2y y 1 x y + xy Löst man dieses Gleichungssystem (durch Einsetzen, Gleichsetzen) erhält man für das Inverse a 1 (x + 2y) 1 Damit ist Q[ 2] mit + und ein Körper. y x 2 + 2y 2 x 2 x 2 + 2y 2 3

Aufgabe 3 (8 Punkte) Gegeben sei die Matrix A 1 4 7 2 5 8 3 6 9 4 8 12 Benutzen Sie den Gauß-Algorithmus zur Bestimmung des Ranges von A. Wir berechnen den Rang von A mit Hilfe des Gauß-Algorithmus. 1 4 7 1 4 7 1 4 7 A 2 5 8 3 6 9 3 6 6 12 3 6 4 8 12 8 16 Damit ergibt sich: rang(a) 2. Anmerkung: Die Zwischenschritte werden hier nicht alle aufgeführt, dürfen allerdings bei ausführlichen Lösungen nicht fehlen. Aufgabe 4 (8 Punkte) Berechnen Sie die Determinante der Matrix A 1 1 1 1 1 1 1 1 1 1 1 1 Führen Sie dabei mit Hilfe geeigneter Umformungen und des Laplaceschen Entwicklungssatzes die Berechnung der Determinante der (4 4)-Matrix A auf die Berechnung der Determinante einer (3 3)-Matrix zurück. Zu berechnen ist die Determinante der Matrix 1 1 1 1 1 1 A det 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4

Wir formen die Matrix leicht auf,,obere Dreiecksgestalt um: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( 1) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 3 Im letzten Schritt wird nach erster Spalte entwickelt (muss man im Grunde nicht). Aufgabe 5 (4+4+4 Punkte) 1. Für eine Matrix A R n n sei Spur(A) : n a ii. Zeigen Sie: Die Abbildung ϕ 1 (A) : R n n R mit ϕ 1 (A) Spur(A) ist eine lineare Abbildung. 2. Sei ϕ 2 : V W bijektive lineare Abbildung, d.h. isomorphe Abbildung. Zeigen Sie, dass dann auch ϕ 1 2 linear ist. 3. Sei ϕ 3 : R 2 R 3 lineare Abbildung mit ϕ 3 (x, y) : (x y, y x, x). Bestimmen Sie jeweils die Dimensionen von Kern(ϕ) und Bild(ϕ), sowie jeweils eine Basis von Kern(ϕ) und Bild(ϕ). 1. Zu zeigen: Die Abbildung ϕ 1 (A) Spur(A) ist eine lineare Abbildung. Beweis: Es sei A (a ij ) und B (b ij ). Dann ist A + B (a ij + b ij ), und man erhält: Spur(A + B) (a ii + b ii ) Spur(cA) a ii + b ii SpurA + SpurB ca ii c a ii cspura Damit gelten für ϕ 1 die Eigenschaften einer linearen Abbildung. 2. Zu zeigen: Ist ϕ 2 : V W eine isomorphe Abbildung, so ist auch ϕ 1 2 linear. 5

Beweis: Es seien u, v W. Da ϕ 2 bijektiv (also insbesondere surjektiv) ist, gibt es x, y V mit ϕ 2 (x) u und ϕ 2 (y) v. Da ϕ 2 linear ist, gilt außerdem ϕ 2 (x + y) ϕ 2 (x) + ϕ 2 (y) u + v und ϕ 2 (αx) αϕ 2 (x) αu. Nach Definition von ϕ 1 2 gild ϕ 1 2 (u) x, ϕ 1 2 (v) y, ϕ 1 2 (u + v) x + y und ϕ 1 2 (αu) αx. Damit folgt: ϕ 1 2 Also ist auch ϕ 1 2 linear. (u + v) x + y ϕ 1 2 (u) + ϕ 1 2 (v) und ϕ 1 2 (αu) αx αϕ 1 2 (u) 3. Für die lineare Abbildung ϕ 3 : R 2 R 3 mit ϕ 3 (x, y) (x y, y x, x) sind jeweils die Dimension und eine Basis von Kern(ϕ 3 ) sowie Bild(ϕ 3 ) zu bestimmen: Es ist (x, y) Kern(ϕ 3 ) ϕ 3 (x, y) (,, ). Mit der gegebenen Abbildung ist also (x, y) Kern(ϕ 3 ) x x y. Daraus folgt Kern(ϕ 3 ) {(, )}, also hat der Kern die Dimension, da er nur das Nullelement aus R 2 beinhaltet. Damit wissen wir nach dem Kern-Bild-Satz schon, dass die Dimension von Bild(ϕ 3 ) 2 ist. Es gilt (a, b, c) Bild(ϕ 3 ) b a, da y x (x y). Also ist {(1, 1, ), (,, 1)} eine Basis von Bild(ϕ 3 ). Aufgabe 6 (6 Punkte) Gegegen sei die Matrix A R n n sowie das euklidische Produkt u, v : n u iv i mit u, v R n. Beweisen Sie, dass A y, x y, Ax gilt. 6

A y, x a 11 a 21 a n1 a 12 a 22 a n2... a 1n a 2n a nn n a n i1 y i a i2 y i., x n a in y i y, x x 1 y, Ax a i1 y i +... + x n x i y, y, y 1 a ji y j j1 a 11 a 21 a n1 a 12 a 22 a n2 a in y i... a 1n a 2n a nn n a n i1 x i a i2 x i. n a in x i a 1i x i + y 2 x a 2i x i +... + y n x i (y 1 a 1i + y 2 a 2i +... + y n a ni ) x i n j1 y i a ji a ni x i Aufgabe 7 (1 Punkte) Bestimmen Sie die Fourier-Koeffizienten der Funktion g(x) x 2 auf [, ]. Wir haben a 1 π t 2 dt 1 π [1 3 t3 ] 1 3π ()3 8 3 π2. 7

Mit partieller Integration berechnen wir Analog 2 k 2 k t 2 cos(kt) dt [t 2 1 k sin(kt)] 2 k [ t 1 k cos(kt)] + 1 k ( ) 4π k k 2. cos(kt) dt t sin(kt) dt Damit ist ()2 k 4π2 k. a k 1 π b k 1 π t 2 sin(kt) dt [ t 2 1 k cos(kt)] + 2 k + 2 k [t 1 k sin(kt)] 1 k t cos(kt) dt sin(kt) dt t 2 cos(kt) dt 4, (k 1, 2,... ), k2 t 2 sin(kt) dt 4π, (k 1, 2,... ) k Aufgabe 8 (4+4 Punkte) Gegeben sei V der Vektorraum der n n-matrizen über R mit dem Skalarprodukt A, B : Spur(B A) (dabei sind A, B V ), und (siehe Aufgabe 5) Spur(A) : n a ii. Zeigen Sie, dass (V,, ) einen Prä-Hilbert-Raum bildet. Bestimmen Sie für n 2 eine Orthonormalbasis von V. Beweis: a) 8

zu zeigen: A, A > Sei A (a ij ). A, A Spur (A A) (a ji ) 2 > j1 falls A. zu zeigen: A, A A Wie im vorherigen Teil zu sehen ist A, A nur dann gleich Null, wenn A die Nullmatrix ist. zu zeigen: A, B B, A Anmerkung: Eine quadratische Matrix hat immer dieselbe Spur wie ihre Transponierte. zu zeigen: A, λb λ A, B A, B Spur (B A) Spur ((B A) ) Spur (A B) B, A A, λb Spur ((λb) A) Spur (λb A) λ Spur (B A) λ A, B zu zeigen: A, B + C A, B + A, C A, B + C Spur ((B + C) A) Spur ((B + C )A) Spur (B A + C A) Spur (B A) + Spur (C A) A, B + A, C Da V der Vektorraum der n n-matrizen über R versehen mit einem Skalarprodukt ist, ist V ein Prä-Hilbert-Raum. b) Zu bestimmen ist für n 2 eine Orthonormalbasis von V. 9

För den Fall n 2 ist die kanonische Basis von V gegeben durch die 4 Matrizen 1 1 A, B, C, D 1 1 Dies bleibt noch nachzurechnen: Orthogonalität A, B Spur B A Spur 1 A, C Spur C A Spur A, D Spur D A Spur B, C Spur C B Spur B, D Spur D B Spur C, D Spur D C Spur 1 Somit sind alle Matrizen orthogonal zueinander. Orthonormalität A, A Spur A 1 A Spur 1 B, B Spur B B Spur 1 1 C, C Spur C 1 C Spur 1 D, D Spur D D Spur 1 1 Da alle Matrizen orthogonal zueinander sind und ihr Betrag gleich Eins ist, bilden sie eine Orthonormalbasis. Aufgabe 9 (8 Punkte) Multiple Choice: In dieser Aufgabe werden 5 Aussagen gestellt, die entweder richtig oder falsch sind. Sie erhalten für die korrekte Feststellung, ob eine Aussage richtig oder falsch ist, jeweils einen Punkt und jeweils einen zusätzlichen Punkt, falls Sie ihre Entscheidung korrekt begründen können. 1

1. Die Menge der symmetrischen Matrizen ist eine multiplikative Untergruppe der GL(n, K). 2. Beschreibt man eine beliebige Funktion f mittels einer Fourierreihendarstellung, dann wird f besser approximiert, je mehr Fourierkoeffizienten in der Fourierreihe verwendet werden. 3. (Z, +, ) ist kein Körper. 4. Sind die Eigenwerte einer Matrix nicht alle paarweise verschieden, dann ist die Matrix nicht diagonalisierbar. 1. Falsch. Ein einfaches Gegenbeispiel reicht hier aus: ( 1 2 4 1 6 7 2 1 1 3 1 3 die ersten zwei Matrizen sind offensichtlich symmetrisch, das Matrizenprodukt jedoch nicht mehr, deshalb ist hier die Abgeschlossenheit der Untergruppe verletzt. 2. Die Aussage, die hier gemacht wird kann nur mit Hilfe einer zusätzlichen Annahme eindeutig beantwortet werden. Ist die Funktion f stetig differenzierbar in C, dann kann die Aussage als richtig beantwortet werden. Dann kann man aussagen, dass je mehr Koeffizienten verwendet werden, die Approximation durch die Fourierreihe besser wird. Falls diese zusätzliche Annahme nicht gemacht wird, dann kann die Antwort auch falsch sein, d.h. die Approximation kann sich sogar kurzfristig leicht verschlechtern. 3. Richtig: Es existiert für ein beliebiges Element a Z im Allgemeinen kein multiplikatives Inverses a 1. 4. Falsch: Es gibt Matrizen, die zwar keine paarweise verschiedenen Eigenwerte besitzen, aber dennoch diagonalisierbar sind. Ein Beispiel hierzu ist die Matrix ( 2 ) 2 ), 11