Propädeutikum Mathematik

Ähnliche Dokumente
Propädeutikum Mathematik

Propädeutikum Mathematik

Propädeutikum Mathematik

Propädeutikum Mathematik

Propädeutikum Mathematik

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Definitions- und Formelübersicht Mathematik

Übungsblatt 1 zum Propädeutikum

Brückenkurs Mathematik

Brückenkurs Mathematik

Übungsblatt 1 zum Propädeutikum

Zahlen und elementares Rechnen

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Brückenkurs Mathematik. Mittwoch Freitag

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Zahlen 25 = = 0.08

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Grundlagen Mathematik 7. Jahrgangsstufe

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

01. Zahlen und Ungleichungen

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Wirtschaftsmathematik: Mathematische Grundlagen

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

Ignaz-Taschner-Gymnasium Dachau Grundwissen Mathematik 8 (G8)

Brückenkurs Mathematik. Mittwoch Freitag

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Curriculum Mathematik

Zahlen und elementares Rechnen (Teil 1)

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Rechnen mit Quadratwurzeln

Mathematischer Vorkurs

Curriculum Mathematik

Mathematische Einführung

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen.

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Grundwissen. 5. Jahrgangsstufe. Mathematik

1. Funktionen. 1.3 Steigung von Funktionsgraphen

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Selbsteinschätzungstest Auswertung und Lösung

Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient)

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

Terme und Gleichungen

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Münchner Volkshochschule. Planung. Tag 02

Brückenkurs Mathematik

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Vorkurs: Mathematik für Informatiker

1 GRUNDLAGEN 1.4 Massvorsätze und Zehnerpotenzen

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

Inhaltsverzeichnis INHALTSVERZEICHNIS

Vorkurs: Mathematik für Informatiker

Direkte Proportionalität

Vorlesung Mathematik 1 für Ingenieure (A)

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

Vorkurs: Mathematik für Informatiker

Formelsammlung. Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. erstellt von Manfred Präsoll

Brückenkurs Mathematik für Studierende der Chemie

MATHEMATIK Grundkurs 11m3 2010

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19

Brüche, Polynome, Terme

1 Einleitung. 2 Sinus. Trigonometrie

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe

Funktionen einer Variablen

Minimalziele Mathematik

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Reelle Zahlen, Gleichungen und Ungleichungen

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vorkurs Mathematik. 1 Zahlenbereiche und Rechenoperationen. Akiko Kato. 21. August Zahlenbereiche

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Kapitel 3. Kapitel 3 Gleichungen

Direkte Proportionalität

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG

Grundwissen Abitur Geometrie 15. Juli 2012

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

sfg Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018

Übungen zu dem Mathe-Fit Kurs

Transkript:

Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1

Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg, Springer, 1995 Schäfer, W. et. Al.: Mathematikvorkurs, Teubner, Wiesbaden, 2002 Kemnitz, A.: Mathematik zum Studienbeginn, Vieweg, Wiesbaden, 2001 van de Craats, J. / Bosch, R.: Grundwissen Mathematik, Springer, 2009 Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 2

Literaturhinweise Ein großer Teil der Übungsaufgaben ist dem Buch von Karl Bosch: Brückenkurs Mathematik, Oldenbourg Verlag München entnommen. Dieses Buch deckt auch inhaltlich weitgehend (aber nicht vollständig!) den im Propädeutikum behandelten Stoff ab. Hilfen findet man auch im Internet, z.b. unter www.mathe-online.at Hier gibt es auch Links zu weiteren Internetseiten. Vorkurs Mathematik - Wintersemester 2016/2017 Seite 3

Inhalt 1. Mengen 2. Zahlbereiche 3. Rechenregeln für reelle Zahlen 4. Bruchrechnen 5. Summen und Produkte 6. Binomische Formeln 7. Potenzen und Wurzeln Vorkurs Mathematik - Wintersemester 2016/2017 Seite 4

Inhalt 8. Logarithmen 9. Gleichungen mit einer Unbekannten 10. Prozentrechnung, Dreisatz 11. Ungleichungen mit einer Unbekannten 12. Gleichungssysteme 13. Grundlagen der ebenen Geometrie 14. Trigonometrische Funktionen Vorkurs Mathematik - Wintersemester 2016/2017 Seite 5

1. Mengen Eine Menge ist eine Zusammenfassung von bestimmten unterscheidbaren Objekten zu einem Ganzen. Ein Objekt gehört entweder zu einer Menge oder nicht. Für jedes Objekt x gilt entweder x A oder x A. Die Objekte einer Menge heißen Elemente dieser Menge. Falls x Element der Menge A ist schreibt man: x A Falls x nicht Element von A ist schreibt man: x A Vorkurs Mathematik - Wintersemester 2016/2017 Seite 6

Zur Darstellung einer Menge A gibt es folgende Möglichkeiten: 1. Beschreibung der Elemente von A durch Angabe der charakterisierenden Eigenschaften A = {x x ist eine Grundfarbe } 2. Aufzählung der Elemente von A A = { rot, gelb, blau } 3. Zeichnen eines Mengendiagramms von A A blau rot gelb Grundmenge: Menge aller zulässigen Objekte (Universum) leere Menge: Menge, die kein Element enthält Schreibweisen für die leere Menge: oder { } Vorkurs Mathematik - Wintersemester 2016/2017 Seite 7

Zwei Mengen A und B sind gleich, in Zeichen A = B, wenn sie die gleichen Elemente besitzen. Eine Menge A heißt Teilmenge der Menge B, wenn jedes Element von A auch Element von B ist. Schreibweise: A B Mengenoperatoren: Schnittmenge, Vereinigungsmenge B A A B = { x x A und x B } A B A B = { x x A oder x B } A B Hierbei wird oder im nichtausschließenden Sinn verwendet, d.h. zu A B gehören auch diejenigen Elemente, die sowohl Element von A als auch Element von B sind. Vorkurs Mathematik - Wintersemester 2016/2017 Seite 8

2. Zahlbereiche Menge der natürlichen Zahlen IN N = { 1, 2, 3,... } Menge der ganzen Zahlen = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen (Bruchzahlen) = { x x, y, y 0 } y (Menge der periodischen Dezimalbrüche) Menge der reellen Zahlen R (Menge der unendlichen Dezimalbrüche) (Punkte auf der Zahlengeraden) ( und irrationale Zahlen) Beispiele für irrationale Zahlen: e = 2,718 ; π = 3,14 ; 2 ; 3 Für die Zahlbereiche gilt: N R Vorkurs Mathematik - Wintersemester 2016/2017 Seite 9

3. Rechenregeln für reelle Zahlen Für die Addition + und die Multiplikation von reellen Zahlen a, b, c gelten die Regeln: a + b = b + a; ab = ba; Kommutativgesetze (a + b) + c = a + (b + c); (ab)c = a(bc); Assoziativgesetze a + 0 = 0 + a = a; 0 ist neutrales Element der Addition 1 a = a 1 = a; 1 ist neutrales Element der Multiplikation a + (-a) = a - a = 0; -a ist inverses Element der Addition a (1/a) = 1, falls a 0; 1/a ist inverses El. der Multiplikation a(b + c) = ab + ac; (a+b)c = ac + bc; Distributivgesetze Vorkurs Mathematik - Wintersemester 2016/2017 Seite 10

3. Rechenregeln für reelle Zahlen (Fortsetzung) a 0 = 0 a = 0 a b = 0 gilt genau dann, wenn a = 0 oder b = 0. Terme sind sinnvolle Ausdrücke bestehend aus Konstanten (Zahlen), Variablen, Rechenoperationen und Klammern. Die Reihenfolge der Auswertung (Berechnung) eines Terms wird durch Klammersetzung bzw. Vorrangregeln verschiedener Rechenoperatoren bestimmt, z.b. Punktrechnung geht vor Strichrechnung Ü1 Vorkurs Mathematik - Wintersemester 2016/2017 Seite 11

4. Bruchrechnen Erweitern und Kürzen von Zähler und Nenner eines Bruches mit der gleichen Zahl c 0 ändert den Wert des Bruches nicht: a b = a c b c Zwei Brüche a/b und c/d sind gleich, wenn ad = bc gilt. Um zwei Brüche zu addieren, müssen die Nenner der Brüche gleich sein: a b + c b = a: c b: c = a + c b Vorkurs Mathematik - Wintersemester 2016/2017 Seite 12

Um zwei Brüche zu multiplizieren, rechnet man Zähler mal Zähler und Nenner mal Nenner : a b c d = a c b d Dividieren durch einen Bruch bedeutet multiplizieren mit dem Kehrwert des Bruches: a b : c d = a b d c = a d b c Vorkurs Mathematik - Wintersemester 2016/2017 Seite 13

5. Summen, Produkte, Binomialkoeffizienten Falls viele Summanden addiert werden, verwendet man oft folgende Schreibweise mit dem griechischen Buchstaben Sigma als sogenanntem Summenzeichen: n k=m a k = a m + a m+1 + a m+2 + + a n 2 + a n 1 + a n Analog verwendet man für das Produkt mehrerer Faktoren das Produktzeichen: n k=m a k = a m a m+1 a m+2 a n 2 a n 1 a n Vorkurs Mathematik - Wintersemester 2016/2017 Seite 14

Für eine natürliche Zahl n wird n! (sprich: n Fakultät) definiert als das Produkt der ersten n natürlichen Zahlen: n! = 1 2 3 4... (n-1) n Zusätzlich wird definiert 0! = 1. Für zwei natürliche Zahlen n und k mit k n wird der Binomialkoeffizient n k (sprich: n über k) definiert als: n k = n! k! n k! Vorkurs Mathematik - Wintersemester 2016/2017 Seite 15

6. Binomische Formeln (a + b) 2 (a b) 2 = a 2 + 2ab + b 2 = a 2 2ab + b 2 (a + b)(a b) = a 2 b 2 Allgemeiner Binomischer Lehrsatz für reelle Zahlen a und b und natürliche Zahl n: (a + b) n = k=n k=0 n k an k b k Ü2 Vorkurs Mathematik - Wintersemester Seite 16

Beispiele 3.3. (3) (a, b, n) (a + b) n (Binomische Formel) (a + b) 1 = a + b = a + b (a + b) 2 = a + b a + b = a 2 + 2ab + b 2 (a + b) 3 = a + b a + b a + b = a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 = a + b a + b a + b a + b = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 (a + b) n = a + b a + b a + b a + b = a n + na n 1 b + + n k an k b k + + b n (a + b) n = k=n k=0 n k an k b k n k = n! k! n k! a 0 = 1 Mathematik 1 Kapitel Seite 17 3

7. Potenzen und Wurzeln Für n IN und a IR ist a n die n-te Potenz der Zahl a, d.h. das n-fache Produkt der Zahl a mit sich selbst, also a n = a a a. a heißt Basis und n Exponent. Es gelten die Potenzgesetze: a n a m = a n+m (a n ) m = a n m a n b n = (a b) n Vorkurs Mathematik - Wintersemester Seite 18

Für a 0 definiert man a 0 = 1 und a 1 = 1 a n. Damit gelten die Potenzgesetze auch für beliebige ganzzahlige Exponenten und außerdem gilt a n = an m am n a, die n-te Wurzel aus a ist diejenige positive reelle Zahl, deren n-te Potenz gleich a ist. Weitere Definitionen: a 1 n = n a ; a m n = n a m ; a m n = 1 Vorkurs Mathematik - Wintersemester a n a m = a n+m (a n ) m = a n m a n b n = (a b) n a m n = 1 n a m Seite 19

8. Logarithmen Für a, b IR mit a 1 und b > 0 heißt die Lösung der Gleichung a x = b der Logarithmus von b zur Basis a, geschrieben: x = log a b log a b ist diejenige Zahl, mit der man a potenzieren muss, um b zu erhalten. Rechenregeln: Umformungsregel: log a (x y) = log a x + log a y log a (x/y) = log a x log a y log a (x c ) = c log a x log a 1 = 0; log a x = log b x log b a log a a = 1 Ü3 Vorkurs Mathematik - Wintersemester Seite 20

9. Gleichungen mit einer Unbekannten Für eine lineare Gleichung der Form a x = b gilt 1. Fall: falls a 0, ist x = b/a die einzige Lösung 2. Fall: falls a = 0 und b 0, gibt es keine Lösung 3. Fall: falls a = 0 und b = 0, ist jedes x IR Lösung. Vorkurs Mathematik - Wintersemester Seite 21

Eine quadratische Gleichung der Form x 2 + px + q = 0 hat, falls p 2 4q > 0 ist, die zwei Lösungen: x 1 = p 2 p 2 2 q ; x 2 = p 2 + p 2 2 q Falls p 2 4q = 0, gibt es die eindeutige Lösung p/2. Falls p 2 4q < 0, hat die quadratische Gleichung keine Lösung in der Grundmenge der reellen Zahlen. Faktorisierung von quadratischen Termen x 2 + px + q : Sind x 1 und x 2 die Lösungen der quadratischen Gleichung x 2 + px + q = 0, so gilt Vorkurs Mathematik - Wintersemester x 2 + px + q = (x x 1 )(x x 2 ) Ü4 Seite 22

10. Dreisatz und Prozentrechnung Einfacher Dreisatz: Zwei Größen A und B stehen in konstantem Verhältnis zueinander (sind proportional, je mehr von A, umso mehr von B ). Hat man a Einheiten von A und b Einheiten von B gegeben und sucht die Anzahl x Einheiten von A, die in demselben Verhältnis zu d Einheiten von B stehen, so gilt: x d = a b Umgekehrter Dreisatz: Zwei Größen A und B stehen in umgekehrt proportionalem Verhältnis zueinander ( je mehr von A, umso weniger von B ). Hat man a Einheiten von A und b Einheiten von B gegeben und sucht die Anzahl x Einheiten von A, die zu d Einheiten von B gehören, so gilt: x d = a b Vorkurs Mathematik - Wintersemester Seite 23

Prozent bedeutet von Hundert, d.h. p % sind p Hundertstel, also p/100. Hat man einen prozentualen Anteil p gegeben und sucht die zugehörige absolute Zahl, so multipliziert man die absolute Größe der Grundgesamtheit (den Grundwert) mit p/100 (entspricht dem einfachen Dreisatz). Zinssätze werden üblicherweise in Prozent angegeben. Bei der sogenannten Verzinsung mit Zinseszins lautet der fundamentale Zusammenhang zwischen Anfangskapital K 0, jährlichem Zinssatz i = p, Anlagezeitraum n in Jahren und 100 Endkapital K n : K n = K 0 1 + p 100 n = K 0 1 + i n Vorkurs Mathematik - Wintersemester Seite 24

11. Ungleichungen mit einer Unbekannten Für zwei beliebige reelle Zahlen a und b gilt genau eine der drei Beziehungen a < b a = b a ist kleiner als b, falls a auf dem Zahlenstrahl links von b liegt a a ist gleich b, falls a und b denselben Punkt auf dem Zahlenstrahl darstellen b a = b a > b a ist größer als b, falls a auf dem Zahlenstrahl rechts von b liegt. b a Vorkurs Mathematik - Wintersemester Seite 25

Lineare Ungleichungen mit einer Unbekannten löst man analog linearen Gleichungen durch Äquivalenzumformungen, wobei zu beachten ist, das bei Multiplikation bzw. Division der Ungleichung mit einer negativen Zahl das Ungleichheitszeichen umgekehrt wird. Vorkurs Mathematik - Wintersemester Seite 26

Zur Lösung quadratischer Ungleichungen kann man folgendermaßen vorgehen: 1. Schritt: Ungleichung in Normalform x 2 + px + q > 0 (bzw. < 0) bringen 2. Schritt: Faktorisierung in (x x 1 )(x x 2 ) > 0 (bzw. < 0) (siehe Kapitel 9) 3. Schritt: Ermittlung der Lösungsmenge durch Fallunterscheidung Im 3. Schritt verwendet man: Ein Produkt ist genau dann > 0, wenn beide Faktoren > 0 sind oder wenn beide Faktoren < 0 sind, bzw. ein Produkt ist genau dann < 0, wenn ein Faktor > 0 ist und ein Faktor < 0 ist. Vorkurs Mathematik - Wintersemester Seite 27

12. Gleichungssysteme Lineare Gleichungssysteme mit zwei Unbekannten kann man mit der Einsetzungsmethode (Substitutionsmethode) oder mit der Additionsmethode lösen. Die Einsetzungsmethode lässt sich folgendermaßen skizzieren: Vorkurs Mathematik - Wintersemester Seite 28

1. Auflösen einer der beiden Gleichungen nach einer Variablen. 2. Einsetzen des für diese Variable erhaltenen Ausdrucks in die andere Gleichung. 3. Auflösung dieser Gleichung nach der (verbliebenen) Variablen. 4. Einsetzen dieser Variablen in 1. Falls in 3. ein Widerspruch entsteht, hat das System keine Lösung. Falls in 3. eine Identität entsteht hat das System unendlich viele Lösungen, die durch die Gleichung in 1. beschrieben werden können. Vorkurs Mathematik - Wintersemester Seite 29

13. Grundlagen der ebenen Geometrie Jeder Punkt P in der Ebene lässt sich durch ein Paar (x P y P ) reeller Zahlen beschreiben, wobei x P die x-koordinate von P ist und y P die y-koordinate von P. Die Punktmenge einer Geraden g in der Ebene lässt sich durch eine lineare Gleichung y = mx + n beschreiben, g = { (x y) x IR, y IR, y = mx + n}. Hierbei ist m die Steigung von g und n der Schnittpunkt von g mit der y-achse des Koordinatensystems. m = tan(α) = y x = y 1 y 0 x 1 x 0 n = y 1 m x 1 Zwei Geraden g und h mit den Steigungen m 1 bzw. m 2 sind parallel, falls m 1 = m 2. Die Geraden stehen senkrecht zueinander, falls m 1 m 2 = 1. Die Schnittpunkte der Geraden bestimmt man durch Lösen des linearen Gleichungssystems (der Geradengleichungen). n y = m x + n Vorkurs Mathematik - Wintersemester Seite 30

b C γ A a c Drei Punkte A, B und C, die nicht auf einer gemeinsamen Geraden liegen, bilden ein Dreieck. Die den Punkten gegenüberliegenden Seiten (und ihre Längen) werden mit a, b und c bezeichnet, die Winkel mit,,. Für die Summe der Winkel im Dreieck gilt + + = 180 o. Für die Seitenlängen gelten die Dreiecksungleichungen a < b + c; b < a + c; c < a + b. Ist h c die zur Seite c gehörige Höhe des Dreiecks, so gilt für den Flächeninhalt F des Dreiecks: F = 1 2 c h c. (Entsprechende Formeln gelten für die Seiten a und b). B Vorkurs Mathematik - Wintersemester Seite 31

C Gegenkathete zu Ankathete zu b = 90 Gegenkathete zu Ankathete zu a h c A Hypotenuse c B Sind a und b die Katheten eines rechtwinkligen Dreiecks mit Hypotenuse c (also = 90 o ), so gilt der Satz des Pythagoras: a 2 + b 2 = c 2. Vorkurs Mathematik - Wintersemester Seite 32

Ein Viereck mit vier rechten Winkeln heißt Rechteck. Gegenüberliegende Seiten sind gleichlang und parallel. Sind a und b die Seitenlängen des Rechtecks, so berechnet sich sein Flächeninhalt F nach der Formel Für den Umfang U gilt F = a b. U = 2a + 2b. Ein Rechteck mit vier gleichen Seitenlängen heißt Quadrat. Vorkurs Mathematik - Wintersemester Seite 33

d M r Die Menge aller Punkte der Ebene, die zu einem Punkt M den gleichen Abstand r haben, bilden einen Kreis. Der Punkt M ist dann der Mittelpunkt des Kreises, der Abstand r ist der Radius des Kreises. Der doppelte Radius d heißt Durchmesser des Kreises. Für den Flächeninhalt F und den Umfang U eines Kreises mit Radius r gelten folgende Formeln: F = π r 2 U = 2π r Vorkurs Mathematik - Wintersemester Seite 34

14. Trigonometrische Funktionen Im rechtwinkligen Dreiecken mit = 90 o gilt: Gegenkathete zu Ankathete zu b C = 90 Gegenkathete zu Ankathete zu a A h c Hypotenuse c B sin α = a c = Gegenkathete Hypothenuse cos α = b c = Ankathete Hypothenuse tan α = a b = Gegenkathete Ankathete Winkelmessungen lassen sich im Kreis in Grad (eine volle Umdrehung entspricht 360 o ) oder in Bogenmaß (eine volle Umdrehung entspricht dem Kreisumfang 2 r) durchführen. Ein Winkel entspricht der r b Kreisbogenlänge b = 2πr α 360 Vorkurs Mathematik - Wintersemester Seite 35

Der Einheitskreis hat Radius r = 1 und Mittelpunkt im Nullpunkt des Koordinatensystems. sin t cos t Ein Kreisbogen der Länge t definiert einen Punkt auf dem Einheitskreis, dessen Koordinaten mit cos t und sin t definiert werden. Dies erweitert die Definition der trigonometrischen Funktionen sinus und cosinus im rechtwinkligen Dreieck auf beliebige reelle Zahlen t. Vorkurs Mathematik - Wintersemester Seite 36

Gemäß Definition sind diese Funktionen periodisch mit Periode 2, d.h. es gilt: sin(x + 2 ) = sin x und cos(x + 2 ) = cos x für alle reellen Zahlen x. Aus dem Satz des Pythagoras ergibt sich direkt die Gleichung sin 2 x + cos 2 x = 1 für alle reellen Zahlen x. Weitere nützliche Beziehungen zwischen den trigonometrischen Funktionen sind tan x = sin x cos x und cos x = sin x + π 2 Vorkurs Mathematik - Wintersemester Seite 37

Übungsblatt 1 zurück Seite 38

Übungsblatt 1 zurück Seite 39

Übungsblatt 2 zurück Seite 40

Übungsblatt 2 zurück Seite 41

Übungsblatt 3 zurück Seite 42

Übungsblatt 3 zurück Seite 43

Übungsblatt 4 zurück Seite 44