Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011

Ähnliche Dokumente
Massenträgheitsmomente homogener Körper

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Musterlösung 2. Klausur Physik für Maschinenbauer

Wiederholung Physik I - Mechanik

Probeklausur zur T1 (Klassische Mechanik)

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Physik I Musterlösung 2

Physik I Mechanik und Thermodynamik

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Probeklausur zur Vorlesung Physik I (WS 09/10)

Experimentalphysik für ET. Aufgabensammlung

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Rotierende Bezugssysteme

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Rotationskurve einer Spiralgalaxie

Die Entwicklung des Erde-Mond-Systems

Experimentalphysik für Naturwissenschaftler 2 Universität Erlangen Nürnberg SS 2009 Klausur ( )

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Übungen zu Experimentalphysik 1 für MSE

Prüfungsklausur - Lösung

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 62

Klausur, Sommer 2007, Physik 1+2

Die Aufgaben sind nicht nach Schwierigkeitsgrad, sondern thematisch geordnet. Setzen Sie Zahlen, sofern verlangt, nur am Ende einer Herleitung ein.

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Thermodynamische Hauptsätze, Kreisprozesse Übung

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Fallender Stein auf rotierender Erde

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

2. Klausur zur Theoretischen Physik I (Mechanik)

Versuch: Sieden durch Abkühlen

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

Übungen zur Experimentalphysik I (SS11)

6 Mechanik des Starren Körpers

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

O. Sternal, V. Hankele. 5. Thermodynamik

1. Probe - Klausur zur Vorlesung E1: Mechanik

Beachten sie bitte die Punkteverteilung

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

Physik I Übung 10 - Lösungshinweise

9 Teilchensysteme. 9.1 Schwerpunkt

Aufgabe 1: (6 Punkte)

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Probeklausur STATISTISCHE PHYSIK PLUS

Physikalisches Praktikum M 7 Kreisel

Orientierungshilfen für die Zugangsprüfung Physik

Übungsblatt 2 ( )

Theoretische Physik: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Repetitorium D: Starrer Körper

Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

2. Translation und Rotation

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre

Rechenübungen zur Physik 1 im WS 2011/2012

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

Dynamik der Atmosphäre. Einige Phänomene

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Theoretische Physik: Mechanik

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

1 Trägheitstensor (Fortsetzung)

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002

Klausur zur Statistischen Physik SS 2013

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 1. Einleitende Fragen

+m 2. r 2. v 2. = p 1

Thermodynamik 1 Klausur 08. September 2016

Heissluftmotor ******

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Lösungen zu den Aufgaben zur Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Physik I (Mechanik) WS 2006/07 2. Klausur; Orientierungsprüfung Fr , 15:30-17:30 Uhr, Gerthsen Hörsaal / Gaede Hörsaal

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

Abschlussprüfung an Fachoberschulen im Schuljahr 2005/2006

Nachholklausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS)

Elektromagnetische Felder und Wellen

Besprechung am

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Die Schallgeschwindigkeit in Luft ist temperaturabhängig, sie ist gegeben durch

5.2 Drehimpuls, Drehmoment und Trägheitstensor

Transkript:

Integrierter Kurs I 2. Klausur, WiSe 2010/2011 03. März 2011 Name: Gruppenleiter: Aufgabe Punkte 1 / 5 2 /16 3 /10 4 /13 5 /10 6 /12 7 / 8 8 / 6 insgesamt (max. 80)

1. Gravitationskraft (5 Punkte) Im Jahr 1964 wurde der Asteroid Toro entdeckt, dessen Radius ungefähr 6.4 km beträgt. a) Berechnen Sie die Gravitationsbeschleunigung auf Toros Oberfäche unter der Annahme, dass seine Massendichte die gleiche wie bei der Erde sei. b) Ein Stein wird auf eine kreisformige Umlaufbahn knapp über Toros Oberfläche gesetzt. Berechnen Sie die Geschwindigkeit und die Umlaufdauer des Steins. Hinweis: Radius der Erde R E 6400 km, Gravitationsbeschleunigung auf der Erdoberfläche g 10 m/s 2.

2. Erhaltungssätze (16 Punkte) Ein UFO in der typischen Gestalt einer homogenen (dünnen) Scheibe ω mit Masse M und Radius R rotiert, bekanntermaßen aus Stabili- b v m tätsgründen, während seiner Fortbewegung mit konstanter Winkelgeschwindigkeit ω um seine Achse. Das M entsprechende Trägheitsmoment der Scheibe beträgt I S = 1 2 MR2. Zum Zeitpunkt t = 0 trifft es mit relativer Geschwindigkeit v auf einen (punktförmigen) Meteoriten der Masse m, der am Rand der Scheibe stecken bleibt (siehe Skizze). a) Welche Erhaltungssätze bezüglich Impuls, Drehimpuls und Energie sind im Stoßprozess erhalten? b) Berechnen Sie die Winkelgeschwindigkeit und die Geschwindigkeit des UFOs nach dem Zusammenstoß als Funktion des sogenannten Stoßparameters b R. Hinweis: Das Drehimpuls eines starren Körpers bezüglich eines Punktes P besteht aus Drehimpuls bezüglich seines Schwerpunktes plus Drehimpuls des Schwerpunktes bezüglich P. Hinweis: Wählen Sie das Schwerpunktssystem.

3. Starrer Körper (10 Punkte) Ein senkrecht stehender Baum wird in idealisierter Form durch einen Zylinder der Höhe h mit Radius R und der homogenen Dichte ρ beschrieben. Der Baum wird von einem Holzfäller abgesägt und fällt unter dem Einfluss der Schwerkraft zu Boden. Dabei soll der Fußpunkt des Baumes fest bleiben und nicht wegrutschen. a) Zeigen Sie, dass das Trägheitsmoment des Baumes bezüglich einer Drehachse, die senkrecht zum Baumstamm liegt und durch den Fußpunkt geht, ( ) R 2 I = m 4 + h2 3 beträgt, wobei m = ρ π R 2 h die Masse des Baumes ist. b) Geben Sie die Gesamtenergie des fallenden Baumes an. c) Berechnen Sie die Geschwindigkeit der Baumspitze beim Auftreffen auf den Boden.

4. Rotierendes Koordinatensystem (13 Punkte) Ein Flugzeug bewegt sich in der Höhe h entlang eines Meridians mit konstanter Geschwindigkeit v in Richtung Norden. Beim Breitengrad θ wird vom Flugzeug aus eine Kugel losgelassen, die frei bis zum Boden fällt. Die Bewegung der Kugel wird von einem Beobachter betrachtet, der sich zusammen mit der Erde mit Winkelgeschwindigkeit ω = 2π 24h bewegt und der sich beim Loslassen der Kugel direkt unter dem Flugzeug befindet. Beim Fall der Kugel können die Luftreibung und die Änderung der Gravitationsbeschleunigung mit der Höhe vernachlässigt werden. a) Geben Sie die Bewegungsgleichungen der Kugel, vom Beobachter aus gesehen, bis einschießlich zur Ordnung ω an. Rechtfertigen Sie diese Näherung. Hinweis Setzen Sie die x-achse des gewählten Koordinatensystems nach Norden, die y-achse nach Westen, die z-achse nach oben und den Ursprung beim Beobachter. Vernachlässigen Sie dabei die Krümmung der Erde. b) Lösen Sie die Bewegungsgleichungen unter der Annahme, dass y(t) ω ist. Ist eine solche Näherung mit der gefundenen Lösung konsistent? c) Bestimmen Sie die Ost-West-Ablenkung für den Fall, dass h = 8000 m, v = 900 km/h und θ = ±45.

5. Wetterballon (10 Punkte) Bei konstanter Temperatur T 0 lautet die barometrische Höhenformel für den Druck p in der Höhe h p(h) = p 0 e α(t 0) h, wobei der Druck am Boden p 0 beträgt und α(t 0 ) eine temperaturabängige Konstante ist. Ein Ballon der Masse M hat eine Hülle, deren maximales Volumen V M beträgt und die unten eine Öffnung hat. Sie wird mit ν Molen H 2 gefüllt, so dass die Gesamtmasse des Gases m = m H2 ν beträgt, wobei m H2 die molare Masse des Wasserstoffs ist. Die Öffnung erlaubt dem Gas auszutreten, sobald bei der Expansion des Ballons das Volumen V M erreicht wird. Die molare Masse der Luft ist durch m L gegeben. a) Geben Sie an, wie die Luftdichte ρ L (h) von der Höhe h abhängt. b) Wie groß ist die Auftriebskraft beim Start? c) In welcher Höhe h P ist der Ballon prall gefüllt? d) Wie groß ist die Auftriebskraft in Höhe h P? e) Wie groß ist die maximale Steighöhe h M > h P? Hinweis: Die Auftriebskraft, die auf einen Körper des Volumens V in einer Flüssigkeit der Dichte ρ wirkt, beträgt F = ρ V g.

6. Heizkörper (12 Punkte) Eine Einzimmerwohnung des Volumens V enthält Luft, hier als ideales Gas zu betrachten, die sich anfänglich bei der Außentemperatur T A und auf Außendruck p A befindet. Die Wohnung wird duch einen Heizkörper auf die Temperatur T E erwärmt. Der Heizkörper bleibt während des gesamten Prozesses auf konstanter Temperatur T E. Fenster und Türen sind gut genug isoliert, so dass der Wärmeaustausch mit der Außenwelt durch thermischen Kontakt vernachlässigt werden kann. 1. Nehmen Sie vorerst an, dass die Wohnung während des Aufheizens luftdicht abgeschlossen ist. a) Wie groß ist die Druckzunahme in der Wohnung? b) Berechnen Sie die Änderung der Energie der Luft in der Wohnung. c) Berechnen Sie die Wärme Q 1, die der Heizkörper abgegeben hat. d) Geben Sie die Entropieänderung des Heizkörpers an. e) Geben Sie die Entropieänderung der Luft an. f) Ist der Prozess reversibel? Begründen Sie Ihre Antwort! Hinweis: ln x < x 1 x 1. 2. Nehmen Sie jetzt an, dass die Wohnung nicht luftdicht abgeschlossen ist. g) Berechnen Sie die Änderung der Energie der Luft in der Wohnung. h) Berechnen Sie die Wärme Q 2, die der Heizkörper abgegeben hat. Hinweis: Berücksichtigen Sie die Luft, die unter Umständen aus der Wohnung austritt. i) Wurde jetzt mehr oder weniger Energie zum Aufheizen der Wohnung verbraucht? Hinweis: ln x < x 1 x 1.

7. Kreisprozess (8 Punkte) Zwischen zwei Wärmereservoirs der Temperaturen T 1 = 400 K und T 2 = 300 K wird folgender reversibler Kreisprozess geführt: adiabatische Expansion 1 2; isotherme Kompression 2 3; isochore Erwärmung 3 1. Als Arbeitskörper wird ein ideales Gas eingesetzt. p 1 p 3 p 2 p 3 1 2 a) Berechnen Sie den Wirkungsgrad η dieses Kreisprozesses. V1 V2 V b) Wie groß wäre η C für eine Carnotmaschine, die zwischen T 1 und T 2 betrieben wird? Zeigen Sie explizit, dass η C > η. Hinweis: ln x < x 1 x 1.

8. Kalorimeter (6 Punkte) Ein Kupferblock mit der Temperatur T K und der Wärmekapazität C K wird in ein Wasserbad mit der Temperatur T W und der Wärmekapazität C W eingebracht. Dabei kommt es ausschließlich zu thermischer Wechselwirkung. Volumenänderungen sollen vernachlässigt werden. Außerdem nehmen wir an, dass die Wärmekapazitäten C K und C W temperaturunabhängig sind. Nach einiger Zeit stellt sich eine Gleichgewichtstemperatur T ein. a) Berechnen Sie die Gleichgewichtstemperatur T. b) Berechnen Sie die Entropieänderung S. c) Zeigen Sie, dass die Entropieänderung S > 0 ist. Hinweis: ln x < x 1 x 1.