Einführung in die formale Demographie

Größe: px
Ab Seite anzeigen:

Download "Einführung in die formale Demographie"

Transkript

1 Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/ Dezember 2014 c Roland Rau Einführung in die formale Demographie 1 / 19

2 Vergangene Vorlesung Annahmen des stabile Bevölkerungsmodells: konstante, altersspezifische Fertilität (F(x, t) = F(x)). konstante, altersspezifische Mortalität (m(x, t) = m(x)). keine Migration, bzw. altersspezifische Nettomigrationsraten=0. Betrachtung nur eines Geschlechts c Roland Rau Einführung in die formale Demographie 2 / 19

3 Vergangene Vorlesung Wie füllen wir die Projektionsmatrix? 1) Die Subdiagonale 2) Die erste Zeile 0 0 F 3 F 4 F 5 0 L 2 L L 0 3 L A = L L L L L F x = n L 0 2l 0 ( L 5 0 nf x + n f x+n nl x+n nl x ) c Roland Rau Einführung in die formale Demographie 3 / 19

4 Vergangene Woche: Was passiert langfristig mit einer solchen stabilen Bevölkerung? speziell: wie verhält sich langfristig das Wachstum der Altersgruppen und der Gesamtbevölkerung? Bei gegebener Projektionsmatrix A: Lösung via dominantem Eigenvektor λ und dazugehörigem rechten Eigenvektor x charakteristische Gleichung des stabilen Bevölkerungsmodells (in diskreter Betrachtungsweise) det(a λi) = 0 c Roland Rau Einführung in die formale Demographie 4 / 19

5 Weiteres Beispiel A = ( 0.5 ) det det(a λi) = 0 (( ) ( )) ( ) λ λ 0.9 = det = λ λ = (0.5 λ)(0.1 λ) = λ 0.1λ + λ 2 = = λ 2 0.6λ 0.58 λ 1 = λ 1,2 = 0.6 ± ( 0.58) = ; λ 2 = Damit ist λ 1 = der dominante Eigenwert. = 0.6 ± = c Roland Rau Einführung in die formale Demographie 5 / 19

6 Weiteres Beispiel Damit ist λ 1 = der dominante Eigenwert. Ein möglicher dazugehöriger Eigenvektor wäre: (( ) ( )) ( ) ( ) ( ) ( x x1 0 = = x x 2 0) Wie bereits erwähnt lässt sich ein Element eine Eigenvektors frei festlegen (mit der Einschränkung x 0). Wir müssen bei der späteren Interpretation nur darauf achten, dass der Vektor richtig skaliert ist. Um es uns möglichst einfach zu machen, legen wir fest: x 2 = x x 2 = x = = x x 1 = = ( ) Damit wäre ein möglicher Eigenvektor 1 Skaliert, so dass n x i = 1: i=1 ( ) c Roland Rau Einführung in die formale Demographie 6 / 19

7 Weiteres Beispiel Am Computer: > A <- matrix(c(0.5, 0.9, 0.7, 0.1), byrow=true, ncol=2) > A [,1] [,2] [1,] [2,] > eigen(a) $values [1] $vectors [,1] [,2] [1,] [2,] > rechter.eigenvektor1 <- eigen(a)$vectors[,1] > rechter.eigenvektor1 / sum(rechter.eigenvektor1) [1] > > Graphischer Check: c Roland Rau Einführung in die formale Demographie 7 / 19

8 Exkurs: Eigenvektoren in den Sozialwissenschaften Beispiel: Soziale Mobilität von Vater zu Sohn Adaptiert von Bartholomew (1967, S. 17), basierend auf Kemeny and Snell (1960) Non-Manual Manual Farm Non-Manual Manual Farm w w c Roland Rau Einführung in die formale Demographie 8 / 19

9 Exkurs: Eigenvektoren im Alltag Brin and Page (1998) Quelle: Wikimedia c Roland Rau Einführung in die formale Demographie 9 / 19

10 Langfristige Entwicklung: 3 Theoreme: Perron-Frobenius Theorem das starke ergodische Theorem ( strong ergodic theorem ) das schwache ergodische Theorem ( weak ergodic theorem ) c Roland Rau Einführung in die formale Demographie 10 / 19

11 Langfristige Entwicklung: Unterscheidung von Matrizen nicht-negativ reduzierbar nicht-reduzierbar Nicht-reduzierbar: In einem Life-Cycle-Graph existiert ein Pfad von jeder Stufe ( jedem Alter) zu jeder anderen Stufe (Caswell, 2001, S. 81). primitiv imprimitiv Frage: Gehören Übergangsmatrizen von menschlichen Bevölkerungen zu den nicht-reduzierbaren Matrizen? Quelle: Caswell (2001, S. 80), Keyfitz and Caswell (2005, S. 156) c Roland Rau Einführung in die formale Demographie 11 / 19

12 Langfristige Entwicklung: Unterscheidung von Matrizen nicht-negativ Nicht-reduzierbar: In einem Life-Cycle-Graph existiert ein Pfad von jeder Stufe ( jedem Alter) zu jeder anderen Stufe (Caswell, 2001, S. 81). reduzierbar nicht-reduzierbar primitiv imprimitiv Quelle: Caswell (2001, S. 80), Keyfitz and Caswell (2005, S. 156) Primitiv: A sufficient condition for primitivity of an irreducible age-classified matrix is the existence of any two adjacent age classes with positive fertility. (Caswell, 2001, S. 81) Reproduktion muß von mindestens zwei unterschiedlichen Altersstufen aus möglich sein, wobei diese beiden Altersstufen keinen gemeinsamen Nenner grösser als Eins haben dürfen. (Dinkel, 1989, S. 108, Hervorhebung im Original). c Roland Rau Einführung in die formale Demographie 12 / 19

13 Langfristige Entwicklung: Perron-Frobenius Theorem Das Perron-Frobenius Theorem beschreibt die Eigenschaften von nicht-negativen Matrizen, d.h. in einer Matrix A sind alle Elemente a ij 0. Wir beschränken uns jedoch auf reduzierbare Matrizen, d.h. auf Projektionsmatrizen mit post-reproduktiven Altersstufen (typischerweise menschliche Bevölkerungen). (Das Perron-Frobenius Theorem beschreibt auch die Eigenschaften von nicht-reduzierbaren Matrizen, aber das ist nicht unser Thema.) c Roland Rau Einführung in die formale Demographie 13 / 19

14 Langfristige Entwicklung: Perron-Frobenius Theorem Das Perron-Frobenius Theorem für reduzierbare Matrizen besagt: Es gibt einen reellen Eigenwert λ 1 (mit den entsprechenden rechten und linken Eigenvektoren w 1 0 und v 1 0). Für diesen Eigenwert gilt: (Siehe Caswell, 2001, S. 84) λ 1 λ i, fuer i > 1 Unser bisher kennengelernten Eigenvektoren sind rechte Eigenvektoren. Zu den sogenannten linken Eigenvektoren kommen wir noch. c Roland Rau Einführung in die formale Demographie 14 / 19

15 Langfristige Entwicklung: Perron-Frobenius Theorem Beispiel (kein Beweis): > A [,1] [,2] [,3] [,4] [1,] [2,] [3,] [4,] > eigen(a)$values [1] i i [3] i i c Roland Rau Einführung in die formale Demographie 15 / 19

16 Vielen Dank für Ihre Aufmerksamkeit! c Roland Rau Einführung in die formale Demographie 16 / 19

17 Literatur Bartholomew, D. J. (1967). Stochastic Models for Social Processes. London, UK: John Wiley & Sons. Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems 30(1), Caswell, H. (2001). Matrix Population Models. Construction, Analysis, and Interpretation. Second Edition. Sunderland, MA: Sinauer. Dinkel, R. H. (1989). Demographie. Band 1: Bevölkerungsdynamik. München, D: Vahlen. Kemeny, J. G. and J. L. Snell (1960). Finite Markov Chains. Princeton, NJ: D. Van Nostrad. Keyfitz, N. and H. Caswell (2005). Applied Mathematical Demography. Third Edition. New York, NY: Springer. c Roland Rau Einführung in die formale Demographie 17 / 19

18 Lizenz This open-access work is published under the terms of the Creative Commons Attribution NonCommercial License 2.0 Germany, which permits use, reproduction & distribution in any medium for non-commercial purposes, provided the original author(s) and source are given credit. Für ausführlichere Informationen: (Deutsch) (English) c Roland Rau Einführung in die formale Demographie 18 / 19

19 Kontakt Universität Rostock Institut für Soziologie und Demographie Lehrstuhl für Demographie Ulmenstr Rostock Germany Tel.: Fax.: Sprechstunde im WS 2014/2015: Mittwochs, 09:00 10:00 (und nach Vereinbarung) c Roland Rau Einführung in die formale Demographie 19 / 19

Einführung in die formale Demographie

Einführung in die formale Demographie Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 08. Dezember 2014 c Roland Rau Einführung in die formale Demographie 1 / 27 Vergangene Vorlesung Berechnung

Mehr

Einführung in die formale Demographie

Einführung in die formale Demographie Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 26 Januar 2015 c Roland Rau Einführung in die formale Demographie 1 / 10 Wichtige Themen Übersicht I Bevölkerungsbilanzgleichung

Mehr

Demographie III ROLAND RAU. 06. Januar Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 20

Demographie III ROLAND RAU. 06. Januar Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 20 Demographie III ROLAND RAU Universität Rostock, Wintersemester 2013/2014 06. Januar 2014 c Roland Rau Demographie III 1 / 20 Vergangene Vorlesung Langfristige Dynamik im stabilen Modell dominanter Eigenwert

Mehr

Einführung in die formale Demographie

Einführung in die formale Demographie Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 17. November 2014 c Roland Rau Einführung in die formale Demographie 1 / 36 Vergangene Vorlesung: Abschluss:

Mehr

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juni c Roland Rau Demographie IV 1 / 20

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juni c Roland Rau Demographie IV 1 / 20 Demographie IV ROLAND RAU Universität Rostock, Sommersemester 2013 03. Juni 2013 c Roland Rau Demographie IV 1 / 20 Vergangene Veranstaltung Schätzung der Wachstumsrate r in der stetigen Betrachtungsweise

Mehr

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juli c Roland Rau Demographie IV 1/16

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juli c Roland Rau Demographie IV 1/16 Demographie IV ROLAND RAU Universität Rostock, Sommersemester 2013 8. Juli 2013 c Roland Rau Demographie IV 1/16 Erstellen von Übergangsmatrizen Leslie-Matrix Interpretation: dominanter Eigenwert (λ 1

Mehr

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Mai c Roland Rau Demographie IV 1 / 20

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Mai c Roland Rau Demographie IV 1 / 20 Demographie IV ROLAND RAU Universität Rostock, Sommersemester 2013 27. Mai 2013 c Roland Rau Demographie IV 1 / 20 Ankündigung Ehrenpromotion Karl Ulrich Mayer am 29. Mai 2013 um 14h Festveranstaltung

Mehr

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juni c Roland Rau Demographie IV 1 / 19

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juni c Roland Rau Demographie IV 1 / 19 Demographie IV ROLAND RAU Universität Rostock, Sommersemester 2013 10. Juni 2013 c Roland Rau Demographie IV 1 / 19 Vergangene Woche Dekomposition der rohen Sterbeziffer ( Crude Death Rate, CDR) zwischen

Mehr

Einführung in die formale Demographie

Einführung in die formale Demographie Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 19 Januar 2015 c Roland Rau Einführung in die formale Demographie 1 / 32 Vergangene Veranstaltung Durchschnittliches

Mehr

Demographie I ROLAND RAU, GABRIELE DOBLHAMMER. 19. Dezember Universität Rostock, Wintersemester 2012/2013. References

Demographie I ROLAND RAU, GABRIELE DOBLHAMMER. 19. Dezember Universität Rostock, Wintersemester 2012/2013. References Demographie I ROLAND RAU, GABRIELE DOBLHAMMER Universität Rostock, Wintersemester 2012/2013 19. Dezember 2012 Beginn der Vorlesung: Wiederholung der wichtigsten Aspekte der Vorlesung vom 12.12.2012. Heutiges

Mehr

Mortalitätsanalyse (ehemals: Allgemeine Demographie III)

Mortalitätsanalyse (ehemals: Allgemeine Demographie III) Mortalitätsanalyse (ehemals: Allgemeine Demographie III) ROLAND RAU Universität Rostock, Wintersemester 2013/2014 28. Januar 2014 Roland Rau Mortalitätsanalyse 1 / 9 Semesterübersicht, Mortalitätsanalyse

Mehr

Weiterführende formale Demographie

Weiterführende formale Demographie Weiterführende formale Demographie ROLAND RAU Universität Rostock, Sommersemester 2015 20. April 2015 c Roland Rau Weiterführende formale Demographie 1 / 21 Vergangene Woche Wiederholung wichtiger Konzepte

Mehr

Demographie III ROLAND RAU. 20. Januar Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 35

Demographie III ROLAND RAU. 20. Januar Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 35 Demographie III ROLAND RAU Universität Rostock, Wintersemester 2013/2014 20. Januar 2014 c Roland Rau Demographie III 1 / 35 Themen vergangene Vorlesung (13. Januar 2014): Berechnung des durchschnittlichen

Mehr

Forschungspraktikum: Krebssterblichkeit in den USA

Forschungspraktikum: Krebssterblichkeit in den USA Forschungspraktikum: Krebssterblichkeit in den USA ROLAND RAU Universität Rostock, Wintersemester 2014/2015 21. Oktober 2014 Roland Rau Forschungspraktikum: Krebssterblichkeit in den USA 1 / 18 Interessante,

Mehr

Einführung in die Survival-Analyse (Modul: Methoden II)

Einführung in die Survival-Analyse (Modul: Methoden II) Einführung in die Survival-Analyse (Modul: Methoden II) ROLAND RAU Universität Rostock, Sommersemester 2013 18. Juni 2013 c Roland Rau Survival-Analyse 10. Sitzung 1 / 15 Gruppeneinteilung Kurzvorstellung

Mehr

Demographie III ROLAND RAU. 14. Oktober Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 29

Demographie III ROLAND RAU. 14. Oktober Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 29 Demographie III ROLAND RAU Universität Rostock, Wintersemester 2013/2014 14. Oktober 2013 c Roland Rau Demographie III 1 / 29 Organisatorisches: Demographie III Demographie III Vorlesung: Montag 07:30

Mehr

Einführung in die Survival-Analyse (Modul: Methoden II)

Einführung in die Survival-Analyse (Modul: Methoden II) Einführung in die Survival-Analyse (Modul: Methoden II) ROLAND RAU Universität Rostock, Sommersemester 2013 04. Juni 2013 c Roland Rau Survival-Analyse 08. Sitzung 1 / 22 Vergangene Woche Testat Eintragen

Mehr

Anforderungen der demografischen Forschung an Daten zur Mortalität

Anforderungen der demografischen Forschung an Daten zur Mortalität Anforderungen der demografischen Forschung an Daten zur Mortalität ROLAND RAU 1,2 1 Universität Rostock, 2 Max-Planck-Institut für demografische Forschung 15. Februar 2017 c Roland Rau, Uni Rostock & MPIDR

Mehr

Mortalitätsanalyse (ehemals: Allgemeine Demographie III)

Mortalitätsanalyse (ehemals: Allgemeine Demographie III) Mortalitätsanalyse (ehemals: Allgemeine Demographie III) ROLAND RAU Universität Rostock, Wintersemester 2013/2014 12. November 2013 c Roland Rau Mortalitätsanalyse 1 / 21 Erinnerung: Paneldiscussion 19.

Mehr

Einführung in die formale Demographie

Einführung in die formale Demographie Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 13. Oktober 2014 c Roland Rau Einführung in die formale Demographie 1 / 37 Organisatorisches: Einführung in

Mehr

Survival Analysis (Modul: Lebensdaueranalyse)

Survival Analysis (Modul: Lebensdaueranalyse) Survival Analysis (Modul: Lebensdaueranalyse) ROLAND RAU Universität Rostock, Sommersemester 2015 05. Mai 2015 c Roland Rau Survival Analysis 1 / 18 Zensierung & Trunkierung: Nicht vollständig beobachtete

Mehr

Mortalitätsanalyse (ehemals: Allgemeine Demographie III)

Mortalitätsanalyse (ehemals: Allgemeine Demographie III) Mortalitätsanalyse (ehemals: Allgemeine Demographie III) ROLAND RAU Universität Rostock, Wintersemester 2013/2014 14. Januar 2014 Roland Rau Mortalitätsanalyse 1 / 24 Vergangene & Heutige Veranstaltung

Mehr

Einführung in die Survival-Analyse (Modul: Methoden II)

Einführung in die Survival-Analyse (Modul: Methoden II) Einführung in die Survival-Analyse (Modul: Methoden II) ROLAND RAU Universität Rostock, Sommersemester 2013 02. April 2013 c Roland Rau Survival-Analyse 01. Sitzung 1 / 21 Formalia & Übersicht Seminar:

Mehr

Survival Analysis (Modul: Lebensdaueranalyse)

Survival Analysis (Modul: Lebensdaueranalyse) Survival Analysis (Modul: Lebensdaueranalyse) ROLAND RAU Universität Rostock, Sommersemester 2014 06. Mai 2014 c Roland Rau Survival Analysis 1 / 23 Fehler in Folie 7 der ersten Veranstaltung Statistische

Mehr

Weiterführende formale Demographie

Weiterführende formale Demographie Weiterführende formale Demographie ROLAND RAU Universität Rostock, Sommersemester 2015 13. Juli 2015 c Roland Rau Weiterführende formale Demographie 1 / 24 Herzliche Einladung an alle Interessierten zum

Mehr

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juli c Roland Rau Demographie IV 1 / 27

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juli c Roland Rau Demographie IV 1 / 27 Demographie IV ROLAND RAU Universität Rostock, Sommersemester 2014 07. Juli 2014 c Roland Rau Demographie IV 1 / 27 Vergangene Woche: Sterblichkeit und a) Familienstand und b) SES Erklärungen für Sterblichkeit

Mehr

Einführung in die Survival-Analyse (Modul: Methoden II)

Einführung in die Survival-Analyse (Modul: Methoden II) Einführung in die Survival-Analyse (Modul: Methoden II) ROLAND RAU Universität Rostock, Sommersemester 2013 30. April 2013 c Roland Rau Survival-Analyse 03. Sitzung 1 / 32 Anwendungsbeispiel: Exponentialverteilung

Mehr

Survival Analysis (Modul: Lebensdaueranalyse)

Survival Analysis (Modul: Lebensdaueranalyse) Survival Analysis (Modul: Lebensdaueranalyse) ROLAND RAU Universität Rostock, Sommersemester 2014 01. April 2014 c Roland Rau Survival Analysis 1 / 20 Formalia & Übersicht Seminar: wöchentlich um 09:15

Mehr

Einführung in die Demographie

Einführung in die Demographie Einführung in die Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 28. Januar 2015 c Roland Rau Einführung in die Demographie 1 / 18 Hinweis: Die Tutorensprechstunde für die Vorlesung

Mehr

Einführung in die formale Demographie

Einführung in die formale Demographie Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 10. November 2014 c Roland Rau Einführung in die formale Demographie 1 / 29 Vergangene und heutige Vorlesung:

Mehr

Demographie I ROLAND RAU. 29. Januar Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie I 1 / 16

Demographie I ROLAND RAU. 29. Januar Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie I 1 / 16 Demographie I ROLAND RAU Universität Rostock, Wintersemester 2013/2014 29. Januar 2014 c Roland Rau Demographie I 1 / 16 Vorlesung: 16.10.2013 Was ist Demographie? Bevölkerungsbilanzgleichung Die drei

Mehr

Panorama der Mathematik und Informatik

Panorama der Mathematik und Informatik Panorama der Mathematik und Informatik 9: Algorithmen II: Google Dirk Frettlöh Technische Fakultät / Richtig Einsteigen 8.6.24 Gründe für den Erfolg von google: Kein Schnickschnack (schlichte Seiten, kluges

Mehr

Einführung in die Survival-Analyse (Modul: Methoden II)

Einführung in die Survival-Analyse (Modul: Methoden II) Einführung in die Survival-Analyse (Modul: Methoden II) ROLAND RAU Universität Rostock, Sommersemester 2013 14. Mai 2013 c Roland Rau Survival-Analyse 06. Sitzung 1 / 23 Hinweis: Interview mit Prof. Matthias

Mehr

Panorama der Mathematik und Informatik

Panorama der Mathematik und Informatik Panorama der Mathematik und Informatik 2: Algorithmen III: Google Dirk Frettlöh Technische Fakultät / Richtig Einsteigen 2: Algorithmen III: Google Panorama der Mathematik und Informatik Gründe für den

Mehr

Survival Analysis (Modul: Lebensdaueranalyse)

Survival Analysis (Modul: Lebensdaueranalyse) Survival Analysis (Modul: Lebensdaueranalyse) ROLAND RAU Universität Rostock, Sommersemester 2014 22. April 2014 c Roland Rau Survival Analysis 1 / 23 Erinnerung: Prüfungsmodalitäten Nr. Termine evtl.

Mehr

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij.

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij. 8 Markov-Ketten 8.1 Grundlegendes zu Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess, der in diskreten Zeitschritten abläuft. Dabei wird jeweils von einem Zustand in einen nächsten übergegangen.

Mehr

Forschungspraktikum: Krebssterblichkeit in den USA

Forschungspraktikum: Krebssterblichkeit in den USA Forschungspraktikum: Krebssterblichkeit in den USA ROLAND RAU Universität Rostock, Wintersemester 2014/2015 14. Oktober 2014 Roland Rau Forschungspraktikum: Krebssterblichkeit in den USA 1 / 19 Tutoren

Mehr

References. Demographie I ROLAND RAU. Universität Rostock, Wintersemester 2012/ Januar 2013

References. Demographie I ROLAND RAU. Universität Rostock, Wintersemester 2012/ Januar 2013 ROLAND RAU Universität Rostock, Wintersemester 2012/2013 30. Januar 2013 Heutige Veranstaltung = Letzte Veranstaltung Zusammenfassung! Vorlesung: 17.10.2012 Was ist Demographie? Bevölkerungsbilanzgleichung

Mehr

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juli c Roland Rau Demographie IV 1 / 23

References. Demographie IV ROLAND RAU. Universität Rostock, Sommersemester Juli c Roland Rau Demographie IV 1 / 23 Demographie IV ROLAND RAU Universität Rostock, Sommersemester 2013 01. Juli 2013 c Roland Rau Demographie IV 1 / 23 EINLADUNG Das Rektorat, die Fakultäten und die Gesellschaft der Förderer der Universität

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Diskrete Modellierung

Diskrete Modellierung Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten

Mehr

Über Konvergente Zerlegungen von Matrizen

Über Konvergente Zerlegungen von Matrizen Sonderdruck aus "Numerische Mathematik" 20, 32-36 (973) (Q by Springer- Verlag 973 Prinled in Germany Über Konvergente Zerlegungen von Matrizen G. ALE FELD Herrn Professor Dr. Johannes Weissinger zum 60.

Mehr

Demographie III ROLAND RAU. 04. November Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 34

Demographie III ROLAND RAU. 04. November Universität Rostock, Wintersemester 2013/2014. c Roland Rau Demographie III 1 / 34 Demographie III ROLAND RAU Universität Rostock, Wintersemester 2013/2014 04. November 2013 c Roland Rau Demographie III 1 / 34 Wichtige Konzepte der vergangenen Lehrveranstaltung(en): Bevölkerungen ohne

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Lineare Algebra I Kapitel 8 12. Juni 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Einführung in die formale Demographie

Einführung in die formale Demographie Einführung in die formale Demographie ROLAND RAU Universität Rostock, Wintersemester 2016/2017 17. Oktober 2016 c Roland Rau Einführung in die formale Demographie 1 / 26 Wichtige Konzepte der vergangenen

Mehr

Einführung in die Demographie

Einführung in die Demographie Einführung in die Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 29. Oktober 2014 c Roland Rau Einführung in die Demographie 1 / 42 Vergangene Veranstaltung: Sterberate Rohe Sterberate

Mehr

Survival Analysis (Modul: Lebensdaueranalyse)

Survival Analysis (Modul: Lebensdaueranalyse) Survival Analysis (Modul: Lebensdaueranalyse) ROLAND RAU Universität Rostock, Sommersemester 2015 12. Mai 2015 c Roland Rau Survival Analysis 1 / 24 Hausaufgabe 1 Schreiben Sie die Log-Likelihood Gleichung

Mehr

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Ralf Zimmer, LMU Institut für Informatik, Lehrstuhl für Praktische

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr. 14-16 und n.v. holtz@math.tu-berlin.de Sadegh Jokar MA 373 Sprechstunde, Do. 12-14 und n.v. jokar@math.tu-berlin.de

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013

Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013 Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013 Gegeben: Eine Sammlung von N Web-Seiten, die (teilweise) { untereinander verlinkt sind. 1 wenn Seite i auf Seite j verweist Sei L ij = 0 sonst

Mehr

Das characteristische Polynom und der Satz von Cayley-Hamilton

Das characteristische Polynom und der Satz von Cayley-Hamilton Das characteristische Polynom und der Satz von Cayley-Hamilton Lineare Algebra I Kapitel 8 11. Juni 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/ Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Serie 1: Eigenwerte & Eigenvektoren

Serie 1: Eigenwerte & Eigenvektoren D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Serie 1: Eigenwerte & Eigenvektoren 1. Beweisen oder widerlegen Sie, dass die folgenden Paare von Matrizen über dem angegebenen Körper zueinander ähnlich

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

die Relevanz von Webseiten bestimmt Alexander Pohl

die Relevanz von Webseiten bestimmt Alexander Pohl Wie die Relevanz von Webseiten bestimmt Alexander Pohl Gliederung 1. Einleitung 2. Das Web als Graph 3. Das Random Surfer Modell 4. Gleichgewicht im Random Surfer Modell (?) 5. Vervollständigung des Modells:

Mehr

The projectivity of the moduli space of stable curves. I: Preliminaries on "det"...

The projectivity of the moduli space of stable curves. I: Preliminaries on det... The projectivity of the moduli space of stable curves. I: Preliminaries on "det"... Knudsen, Finn; Mumford, David pp. 19-55 Terms and Conditions The Göttingen State and University Library provides access

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Globale Symmetrie von stochastischen Teilchenbewegungen mit lokal symmetrischer Interaktion

Globale Symmetrie von stochastischen Teilchenbewegungen mit lokal symmetrischer Interaktion Research Collection Doctoral Thesis Globale Symmetrie von stochastischen Teilchenbewegungen mit lokal symmetrischer Interaktion Author(s): Barner, Andreas Publication Date: 1983 Permanent Link: https://doi.org/10.3929/ethz-a-000294972

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

Universalität für Wigner Matrizen

Universalität für Wigner Matrizen Universalität für Wigner Matrizen Benjamin Schlein, Universität Zürich HSGYM Tag 29. Januar 2015 1 1. Einführung Zufallmatrizen: sind N N Matrizen dessen Einträge Zufallsvariablen mit gegebenen Verteilung

Mehr

Einführung in die Demographie

Einführung in die Demographie Einführung in die Demographie ROLAND RAU Universität Rostock, Wintersemester 2015/2016 27. Januar 2016 c Roland Rau Einführung in die Demographie 1 / 1 Hinweis: Die Tutorensprechstunde findet am 29.01.2016

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

III Das Symmetrische Eigenwertproblem (SEP)

III Das Symmetrische Eigenwertproblem (SEP) III Das Symmetrische Eigenwertproblem (SEP) III3 Algorithmen für symmetrische tridiagonale Eigenwertprobleme Sei im folgenden a b A = b a b b n a n b n b n a n R n n, zb nach Householder- oder Lanczos(im

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof Dr Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Determinanten: Vorüberlegung Permutationen und Inversionen

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Robert Denk Proseminar Analysis WS 2016/17

Robert Denk Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars 1 Robert Denk 21.07.2016 Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars Die Grundidee einer Fourierreihe besteht darin, eine Funktion als Überlagerung von Schwingungen,

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Demographie IV Übung

Demographie IV Übung Demographie IV Übung Roland Rau roland.rau@uni-rostock.de 0. Juni 014 In der heutigen Übung befassen wir uns mit Altersstandardisierung und Dekomposition. Dahinter steckt die Idee die rohe Sterbeziffer

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 6 Eigenwerte

Mehr

9 Lineare Differentialgleichungen erster und zweiter Ordnung mit konstanten Koeffizienten

9 Lineare Differentialgleichungen erster und zweiter Ordnung mit konstanten Koeffizienten 9 Lineare Differentialgleichungen erster und zweiter Ordnung mit konstanten Koeffizienten Jörn Loviscach Versionsstand: 28. März 2015, 21:40 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lineare Algebra - Übungen 7 WS 2017/18

Lineare Algebra - Übungen 7 WS 2017/18 Prof. Dr. A. Maas Institut für Physik N A W I G R A Z Lineare Algebra - Übungen 7 WS 017/18 Aufgabe P0: Paulimatrizen Präsenzaufgaben 14. Dezember 017 Berechnen Sie für die Paulimatrizen σ 1 = ( ) 0 1,

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Sätze PLUS Es gilt für A, B R n n : det(ab) = det A det B (Determinantenmultiplikationssatz)

Mehr

Einführung in die Demographie

Einführung in die Demographie Einführung in die Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 15. Oktober 2014 c Roland Rau Einführung in die Demographie 1 / 46 Gliederung 1 Formalia 2 Überblick zur demographischen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Einführung in die Demographie

Einführung in die Demographie Einführung in die Demographie ROLAND RAU Universität Rostock, Wintersemester 2014/2015 22. Oktober 2014 c Roland Rau Einführung in die Demographie 1 / 32 Vergangene Veranstaltung Kernfrage: P 1? P2 Die

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 40 Überblick Überblick Grundlegendes zu Markov-Ketten

Mehr

Reduced-Rank Least Squares Modelle

Reduced-Rank Least Squares Modelle 16.12.2008 Wiederholung Gegeben: Matrix A m n Paar Rechter Eigenvektor x, Eigenwert λ: A x = λ x mit x R n \ 0, λ N Paar Linker Eigenvektor y, Eigenwert λ: y T A = λ y T Singulärwertzerlegung (SVD): A

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr