Übungen zur Quantentheorie der Viel-Teilchen-Systeme

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Quantentheorie der Viel-Teilchen-Systeme"

Transkript

1 Übungen ur Quantentheorie der Viel-Teilchen-Systeme Frank ssenberger, Andreas Linscheid, Kai Schmit 5. Juni 2008 Aufgabe 2 a Wir betrachten ein System von lektronen in einem Band. Die nergie des System ist gegeben durch: ɛ (k n kσ T i a iσ a σ i k,σ und eine Wechselwirkung der lektronen mit an den Orten R i lokalisierten Spins S gegeben durch: J σ (i S i i Hier sieht man, dass dies ein gutes Modell für f Orbitale ist die stark lokalisierte lektronen am Kern haben. Bevor die endlosen Kommutator Orgien losgehen können, müssen wir Operatoren umschreiben. σ i S i S i,x σ ( + S i,y σ (2 + S i, σ (3 ( ( ( ( 0 0 i 0 S S i,x + S 0 i,y + S i 0 i, i, 0 S i,x + S i,y i S i,x S i,y i S i, ( S i S i S + i Si. Nun erseten wir diese Matrix mit den Operatoren aus Aufgabe 8: ( S σ S i S i S + i Si. Nun gehen wir in die weite Quantisierung mit der Vorschrift: α Ô β a αa β, wobei α, β, seien können und aus der σ (3 Matrix klar ist, dass die Vektoren: ( ( 0 0 sind. Somit ergibt sich: σ i S i S i (n i n i + S i a i a i + S + i a i a i b ret Nun soll die inteilen Greenfunktion G iσ ( a iσ, a σ bestimmt werden: [ ] ret G iσ ( a iσ, a σ + [a iσ, H], a σ. ɛ

2 Unser Hamiltonian ist: H iσ T i a iσ a σ J i ( Si (n i n i + S i a i a i + S + i a i a i Wir beginnen mit dem ersten Term: [ a iσ, ] T k a kσ a lσ [ ] a iσ, a kσ a lσ ( [ ] T kl a iσ, a kσ a lσ + a kσ [a iσ, a lσ ] klσ klσ klσ ] T kl [a iσ, a kσ a lσ 2a kσ a + iσ a lσ + a kσ [a iσ, a lσ ] + 2a kσ klσ 0 a lσ a iσ a iσa lσ l T il a lσ Nun die nächsten beiden des Hamiltonian der S Operator wohin in einem Gan anderen Hilbertraum, deshalb folgt: S [a iσ, n ] δ σ a iσ Si Und der nächste Term: [ ] a iσ, a a S S [a iσ, n ] δ σ a iσ Si S (a iσ a a a a a iσ S (a iσ a a + a a iσa S (a iσ a a a iσ a a + δ σ δ i a S i δ σa i S i δ σa iσ. Und der lette Term ist das gleiche wie der lette nur up und down vertauscht so ergibt sich: [ ] a iσ, a i a i S + i δ σ a i S + i δ σa iσ S Wir sammeln alles ein und schreiben die Bewegungsgleichung auf (ɛ : G iσ ( δ i + T il a lσ J (Si (δ σ δ σ a iσ J ( S i δ σ + S + i δ σ aiσ, a σ l ret rfreulich ist, dass wir einige inteilchen Greenfunktion gleich wiederfinden und so vereinfacht sich schon mal einiges. Wir haben ausgenutt, dass... d (t t e (tt Θ (t t A (t, B (t also alles linear, deshalb darf man die summe erlegen und Vorfaktoren raus iehen. G iσ ( T il G lσ ( δ i J (Si (δ σ δ σ a iσ + J ( ret S i δ σ + S + i δ σ aiσ, a σ. l Die Greenfunktion höherer Ordnung können wir nicht weiter auswerten. c Die Näherung des völlig in -Richtung magnetisierten Systems. D. h. Si + für alle Gitterpläte i und die Proektionen also S x und S y sind Null (damit auch S + und S. G iσ ( ret T il G lσ ( δ i J (δ σ δ σ a iσ, a σ. ( l 2

3 Des weiteren betrachten wir als erstes σ und ein Band in dem nur ein lektron mit diesem Spin ist. Somit ist T il T 0 δ ik wobei kder Ort des einen lektrons ist. ret G i ( T 0 G k ( δ i Ja i, a ( + J G i ( T 0 G k δ i Die Wahl des i war völlig beliebig, also nehmen wir mal k und finden so: Wir transformieren in den Impulsraum: ( + J T 0 G i ( δ i G k G i ( e ik (RiR N N es gibt genau N Terme bei denen i ist. und so erhalten wir: i G k N ( + J T 0. für down wäre es das gleiche nur mit einem Minus für J durch Gl. (. Aufgabe 22 i δ i e ik (RiR ( + J T 0 Wir bestimmen die Zeitentwicklung des :Grundustandes, des ww freien lektronengases. k > k f und k < k f. ψ(t a kσ (ta k σ(t 0 e i H0t a kσ a k σe i Hot 0 e i H0t a kσ a k σe i ot 0. Wir iehen die c Zahl e i ot gan nach rechts und erhalten: ψ(t e i ot e i H0t a kσ a k σ 0. (2 Wir berechnen nun um u erkennen u welchen nergieeigenwert der ket a kσ a k σ 0 folgendes aus: [ ] H 0 (a kσ a k σ 0 a kσ a k σh H 0, a kσ a k σ 0. Also den Kommutator: [ ] k H 0, a kσ a f k σ ( n σ, a kσ a k σ σ k f σ k f σ k f σ ( [ ] ( n σ, a kσ a k σ + a kσ [n σ, a k σ] ( δ k δ σσ n σ, a 0 da k>k f ( [ ] ( n, σ a kσ a k σ + a kσ [n σ, a k σ] kσa k σ a kσ a k σδ k δ σσ (k a kσ a k σ Damit haben wir: ( H 0 (a kσ a k σ 0 ( 0 + (k a kσ a k σ 0, und finden mit Gl. (2 sofort: ψ(t e i ot e i 0+(k t a kσ a k σ 0 e i (k t ψ(t 0 3

4 Für den Zustand t gilt analog: ψ(t ψ(t 0 e i (k t und das Betragsquadrat: ψ(t ψ(t 2 ψ(t 0 e i (k t e i (k t ψ(t 0 2 ψ(0 ψ(0 Also ein stationärer Zustand. Aufgabe 23 Die retardierte Greenfunktion ist: G kσ ( ret + µ 2ɛ (k + (+µ2 ɛ(k + iγ + µ. (3 mit den reellen Größen µ, und γ > 0. Für diese Funktion gilt auch: G kσ ( ret Wir stellen nach der Selbstenergie um: und seten Gl. (3 einfach ein und erhalten: + µ ɛ (k + Σ kσ (. Σ kσ ( ret µ + ɛ (k G kσ ( Σ kσ ( + µ 2ɛ (k + ɛ (k + ( + µ2 ɛ (k ( + µ2 ɛ (k + iγ + µ µ + ɛ (k 2. + iγ + µ. (4 Die Quasiteilchen nergien (auch negative möglich sind gegeben über die Nullstellen der Funktion: 0 ɛ (k + R (Σ kσ ( ɛ (k ɛ (k + 0 ( + µ2 ɛ (k (2µ + ɛ (k +µ 2 ( + κ 2 κ 2 + µ 2 2κ ± κ ± κ 2 µ 2 Für die Lebensdauern benötigt man die Spektralen Gewichte: α ±σk R (Σ kσ (. ± Wir erhalten durch ableiten von Gl. (4: α ±σk Und schließlich die Quasiteilchenlebensdauern: τ ±σk ɛ (k ɛ (k 2 ( ± + µ. ( + µ2 ɛ (k α ±σk I (Σ kσ ( α ±σk γ ± + µ γ α ±σk ± + µ. ± 4

5 Aufgabe 24 Die Anahl der lektronen ist: N e kσ n kσ kσ ds kσ ( µ f (, wobei f ( die Fermifunktion ist. Andererseits ist die Anahl auch gegeben durch: N e dρ σ f (, σ mit der Zustandsdichte ρ σ. Durch den Vergleich der beiden Gleichungen ist sofort klar: S kσ ( µ ρ σ. k Aus den periodischen Randbedingung T N R T N2 R 2 T N3 R 3 φ (r φ (rfolgt, dass es N N 2 N 3 : N mögliche k Vektoren gibt, also ist die Anahl aller Zustände (kann man mit k labeln: dρ σ N Dies wir normieren noch mit N und erhalten so die relevante Gleichung. N S kσ ( µ ρ σ( k In unserem Fall ist die Selbstenergie rein reell und wir finden mit der bekannten Formel: ( S kσ ( µ δ ( ɛ (k R (Σ σ ( δ ɛ (k a σ ( b σ, c σ und erhalten Vergleich mit der wechselwirkungsfreinen Zustandsdichte: das gilt: Nun soll für ρ 0 des weiteren gelten: ρ 0 ( δ ( ɛ (k, ρ σ( ρ 0 ( R (Σ σ ( ρ 0 (Ē. ρ 0 ( für [0, w] w 0 sonst. Damit ergibt sich für die Quasiteilchenustandsdichte: ρ σ ( für Ē [0, w] w 0 sonst. Nun macht man sich einfach ein kleines Bildchen um die Bereiche u erkennen in denen bw. Ē außerhalb des Intervalls [0, w] liegen und die eweilige Zustandsdichte dementsprechend verschwindet. 5

6 Abbildung : Durch die Singularität in der Selbstenergie entsteht eine Bandlücke. a σ c σ 2b σ und w 2 gewählt. 6

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

Nach der Drehung des Systems ist der neue Zustandsvektor

Nach der Drehung des Systems ist der neue Zustandsvektor Vorlesung 1 Die allgemeine Theorie des Drehimpulses Eine Drehung des Quantensystems beschreibt man mit Hilfe des Drehimpulsoperators. Um den Drehimpulsoperator zu konstruieren, betrachten wir einen Vektor

Mehr

e ik n x j e +ik n x j f(kn ).

e ik n x j e +ik n x j f(kn ). Impulsraum Kinetische Energie im Impulsraum diagonal Diskrete Fouriertransformation: Gegeben sei eine (periodische) Funktion f auf N Punkten im Abstand a: f(x j ), x j = a j, j mod N = 0,, 2,...,N Dann

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Vorlesung 17. Quantisierung des elektromagnetischen Feldes

Vorlesung 17. Quantisierung des elektromagnetischen Feldes Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen

Mehr

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3)

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3) Vorlesung Drehimpulsaddition Wir betrachten ein mechanisches System, das aus zwei unabhängigen Systemen besteht. Jedes der zwei Subsysteme besitzt einen Drehimpuls. Der Drehimpuls des ganzen Systems ist

Mehr

Tunneleekt und Tunnelhamiltonian. Lukas Ogrodowski. Institut für Physik Albert-Ludwigs-Universität Freiburg. Quantendynamik in mesoskopischen Systemen

Tunneleekt und Tunnelhamiltonian. Lukas Ogrodowski. Institut für Physik Albert-Ludwigs-Universität Freiburg. Quantendynamik in mesoskopischen Systemen Tunneleekt und Tunnelhamiltonian Lukas Ogrodowski Institut für Physik Albert-Ludwigs-Universität Freiburg Quantendynamik in mesoskopischen Systemen Gliederung 1 Motivation 2 Tunneleekt 3 Tunnelhamiltonian

Mehr

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0 Übungsblatt 1 Aufgabe 1: Pauli-Matrizen Die folgenden Matrizen sind die Pauli-Matrizen, gegeben in der Basis 0, 1. [ [ [ 0 1 0 i 1 0 σ 1 = σ 1 0 = σ i 0 3 = 0 1 1. Zeigen Sie, dass die Pauli-Matrizen hermitesch

Mehr

Die Dichtematrix. Sebastian Bröker. 2.November 2011

Die Dichtematrix. Sebastian Bröker. 2.November 2011 Die Dichtematrix Sebastian Bröker 2.November 2011 Westfälische Wilhelms-Universität Münster BSc Physik Seminar zur Theorie der Atome, Kerne und kondensierter Materie Die Dichtematrix Bröker 2 Inhaltsverzeichnis

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung Vorlesung 8 Spontane Abstrahlung, Multipolentwiclung Wir betrachten das Wasserstoffatom im P -Zustand. Falls wir ein Wasserstoffatom in Isolation betrachten, ist der P -Zustand stabil. Wie wir aber schon

Mehr

Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten

Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten 1 / 20 Lineares Gleichungssystem Ax = f, n A[i, j]x j = f i j=1 für i = 1,..., n Voraussetzungen Matrix A sei symmetrisch: A[i, j] =

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Einleitung nichtrel. Wasserstoatom (spinlos) rel. Wasserstoatom (für spin 1 2 -Teilchen) Orbitale des (rel.) Wasserstoatoms Ausblick und oene Fragen

Einleitung nichtrel. Wasserstoatom (spinlos) rel. Wasserstoatom (für spin 1 2 -Teilchen) Orbitale des (rel.) Wasserstoatoms Ausblick und oene Fragen Florian Wodlei Seminar aus höherer QM Überblick 1 Einleitung Motivation Was ist ein Orbital? Überblick 1 Einleitung Motivation Was ist ein Orbital? 2 Überblick 1 Einleitung Motivation Was ist ein Orbital?

Mehr

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 4 Prof. Dr. Jörg Schmalian Blatt Dr. Peter Orth and Dr. Una Karahasanovic Besprechung.7.4

Mehr

III.3 Lösung der freien Dirac-Gleichung

III.3 Lösung der freien Dirac-Gleichung III.3 Lösung der freien Dirac-Gleichung Dieser Abschnitt geht auf die Lösungen der Gleichung III.6 und einige deren Eigenschaften ein, beginnend mit ebenen Wellen Abschn. III.3.. Dann wird die zweite Quantisierung

Mehr

Das Jaynes-Cummings-Modell

Das Jaynes-Cummings-Modell Das Jaynes-Cummings-Modell Brem Samuel Hauer Jasper Lachmann Tim Taher Halgurd Wächtler Christopher Projekt in Quantenmechanik II - WS 2014/15 12. Februar 2015 Brem, Hauer, Lachmann, Taher, Wächtler Das

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November 009 Musterlösungen 6. Sei B r := { C < r} und f : C C durch 3 + definiert. Welches ist der grösste Wert von r so dass f Br injektiv

Mehr

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0 Vorlesung 11 Streuung bei nieigen Energien Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen darstellen können σ = 4π k l + 1 sin δ l. 1 l= Allerdings hat diese Reihe

Mehr

9 Translationen und Rotationen

9 Translationen und Rotationen 9 Translationen und Rotationen Übungen, die nach Richtigkeit korrigiert werden: Aufgabe 91: Drehungen Der quantenmechanische Rotationsoperator ˆR η,e dreht einen Zustand ψ um den Winkel η um die Achse

Mehr

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012 Theorie der kondensierten Materie Fraktionaler Quanten-Hall-Effekt Seite 2 Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

1. Emission und Absorption von Quanten (Licht etc.),

1. Emission und Absorption von Quanten (Licht etc.), Kapitel 4 Störungstheorie zeitabhängiger Prozesse Die meisten physikalischen Übergänge sind nicht stationär, sondern laufen in einem endlichen Zeitintervall ab, d.h. man muß die zeitabhängige Schrödinger

Mehr

Matrixelemente von Tensoroperatoren und die Auswahlregeln

Matrixelemente von Tensoroperatoren und die Auswahlregeln Vorlesung 3 Matrixelemente von Tensoroperatoren und die Auswahlregeln In der Quantenmechanik müssen wir ab und zu die Matrixelemente von verschiedenen Operatoren berechnen. Von spezieller Bedeutung sind

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Grundlagen und Formalismus

Grundlagen und Formalismus Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Grundlagen und Formalismus Aufgabe 1 (*) Betrachte

Mehr

5 Die Liealgebra einer Liegruppe

5 Die Liealgebra einer Liegruppe $Id: liealg.tex,v 1.5 2010/09/03 07:51:34 hk Exp hk $ 5 Die Liealgebra einer Liegruppe Wir sind noch immer mit der Konstruktion der Liealgebra zu einer Liegruppe G beschäftigt. In der letzten Sitzung hatten

Mehr

Seminarvortrag. Spinoren der Lorentzgruppe

Seminarvortrag. Spinoren der Lorentzgruppe Seminarvortrag Spinoren der Lorentzgruppe Juli 2003 Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Tensoren und Spinoren........................ 3 1.2 Lorentzgruppe............................ 3 2 Spinoren 4

Mehr

2.3 Operatoren und Eigensysteme. Gruppe Dirac. Projektarbeit

2.3 Operatoren und Eigensysteme. Gruppe Dirac. Projektarbeit Karl-Franzens Universität Graz Institut für Physik.3 Operatoren und Eigensysteme Gruppe Dirac Projektarbeit Markus Hopfer Therese Rieckh Patrick Tiefenbacher Arno Tripolt Andreas Windisch Graz, 17. Juni

Mehr

ÜBUNGEN UR THEORETISCHEN PHYSIK C Bewertungsschema für Bachelor Punkte Note < 6 5. 6-7.5 4.7 8-9.5 4. -.5 3.7-3.5 3.3 4-5.5 3. 6-7.5.7 8-9.5.3 3-3.5. 3-33.5.7 34-35.5.3 36-4. nicht bestanden bestanden

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Musterlösungen Blatt Theoretische Physik IV: Statistische Physik

Musterlösungen Blatt Theoretische Physik IV: Statistische Physik Musterlösungen Blatt 4.7.004 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay Eindimensionales Ising-Modell. Das eindimensionale Ising-Modell für N Spins mit Wechselwirkung zwischen

Mehr

Theoretische Physik C Elektrodynamik

Theoretische Physik C Elektrodynamik Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Klausur Nr 2 Name/Matrikelnummer/Übungsgruppe: 2 3 4 Σ Aufgabe : Vergütungsschicht 4] Die

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 2009 Grundlagen der Quantenmechanik Vorlesungsskript für den 3. August 2009 Christoph Schnarr Inhaltsverzeichnis 1 Axiome der Quantenmechanik 2 2 Mathematische Struktur 2 2.1

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Übungen zur Vorlesung Fahrdynamik

Übungen zur Vorlesung Fahrdynamik Seite 1 Aufgabe 1 : Der skizzierte Manipulator mit den Hebeln r 1,2 und r 2,3 besitzt zwei Drehgelenke (Drehachsen u 1, u 2 u 1 ). Gegeben seien die Drehwinkel Θ 1 und Θ 2 sowie die Winkelgeschwindigkeiten

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 4..6 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 7: Dichtematrix, Variationsprinzip Aufgabe (5 Punkte) Betrachten Sie ein Gas

Mehr

IX.2 Multipolentwicklung

IX.2 Multipolentwicklung IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Landau-Theorie Seminar zur statistischen Physik Martin Kiemes

Landau-Theorie Seminar zur statistischen Physik Martin Kiemes Landau-Theorie Seminar zur statistischen Physik Martin Kiemes 5. Dezember 2002 1 Phasenübergänge: Definition: Unter einem Phasenübergang versteht man eine sprunghafte (unstetige) Änderung einer oder mehrer

Mehr

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 25. August 2006 Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P9: Man betrachte n Münzwürfe, wobei man mit Null Wappen und mit Eins Zahl codiere. Man erhält

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

7. DETERMINANTEN 111. y 1. ; x, y R 2 definieren wir die Determinante. x1 y := x 2 y 2. x 1 y 1 := x 1y 2 x 2 y 1. x 2 λx 1 x 2 λx 2 x 1 = 0.

7. DETERMINANTEN 111. y 1. ; x, y R 2 definieren wir die Determinante. x1 y := x 2 y 2. x 1 y 1 := x 1y 2 x 2 y 1. x 2 λx 1 x 2 λx 2 x 1 = 0. 7 DETERMINANTEN 7 Determinanten Vorbereitungen Für zwei Vektoren x provisorisch als ( x x 2 ), y ( y y 2 ) ; x, y R 2 definieren wir die Determinante ( ) x y det(x, y) : det : x 2 y 2 x y x 2 y 2 : x y

Mehr

Theorie der Kondensierten Materie I WS 2018/ Hartree-Fock Näherung als Variationsproblem: (50 Punkte)

Theorie der Kondensierten Materie I WS 2018/ Hartree-Fock Näherung als Variationsproblem: (50 Punkte) Karlsruhe Institute for Technology Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 8/9 Prof Dr A Shnirman Blatt 9 PD Dr B Narozhny, MSc T Ludwig Lösungsvorschlag Hartree-Fock

Mehr

Theoretische Physik 4 - Blatt 2

Theoretische Physik 4 - Blatt 2 Theoretische Physik 4 - Blatt Christopher Bronner, Frank Essenerger FU Berlin 9.Oktoer 6 Aufgae 3 a) Neenrechnung dye y In den Aufgaen wird immer wieder das Integral auftauchen. Hier dye y wird es erechnet:

Mehr

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 004 Zentrum Mathematik 3.5.004 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 4 Implizite Funktionen Die Funktion f : R R, fx, y := e sinxy

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warel Ma Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 8 (.2.29) Zentralübung 37. Gane Funktionen Eine auf

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Übungen zur Feldtheorie

Übungen zur Feldtheorie Übungen zur Feldtheorie (wird fortgesetzt) Klaus Morawetz, Zi 564, klaus.morawetz@physik.tu-chemnitz.de, www.mpipks-dresden.mpg.de/ morawetz I. Relativistische Kinematik und Kovarianz 1. Leiten Sie das

Mehr

8.5 Symmetrische Polynome, Diskriminate und Resultante

8.5 Symmetrische Polynome, Diskriminate und Resultante 332 85 Symmetrische Polynome, Diskriminate und Resultante Ein weiteres Verfahren zur Feststellung, ob mehrfache Wurzeln vorliegen, ist die Betrachtung der Diskriminante, deren Einführung jetzt vorbereitet

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

4 Störungstheorie und Feynman-Graphen

4 Störungstheorie und Feynman-Graphen 55 4 Störungstheorie und Feynman-Graphen Im folgenden Kapitel soll die Störungstheorie für thermodynamische Greensche Funktionen für den Fall von Elektronen mit einer 2-Teilchen-Wechselwirkung durchgeführt

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

7 Diracs Bracket-Notation

7 Diracs Bracket-Notation 7 Diracs Bracket-Notation 71 Entwicklungen nach Eigenfunktionen 711 Oszillator-Eigenfunktionen Die Oszillator-Eigenfunktionen Φ n (x), Φ n (x) = N n H ( x) n e x 2 /2a 2, N n = a 1 2 n n! πa (n = 0, 1,

Mehr

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind Im Folgenden finden Sie den Text der am 28.7.2010 geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind unter Umständen nicht vollständig oder perfekt, und sie

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 010 Übungsblatt Nr. 06 Bearbeitung bis 10.06.010 Aufgabe 1: Das β-spektrum und Fermis Goldene Regel Die Form des β-spektrum ist gegeben durch d N dt

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

Übungen zur Linearen Algebra I

Übungen zur Linearen Algebra I Blatt 1 Aufgabe 1. Wie lautet die Definition der Diskriminante für quadratische Polynome? Aufgabe 2. Sei X 2 + bx + c ein quadratisches Polynom, dessen Diskriminante ein Quadrat ist, und seien λ = ( b

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen:

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen: 23 23 Lineare Systeme Wir wollen Systeme von linearen Differentialgleichungen Ordnung über einem offenen Intervall I R untersuchen: y = y A(t + b(t, mit stetigen Abbildungen A : I M n,n (R und b : I R

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten

Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten Transformation der Koordinaten: Die Transformation von kartesischen in Kugelkoordinaten ist gegeben durch

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Die Hartree-Fock-Methode

Die Hartree-Fock-Methode February 11, 2016 1 Herleitung der Hartree-Fock-Gleichung 2 Das Heliumatom Gauß sche s-basis Roothaan-Hall-Gleichung Moleküle Herleitung der Hartree-Fock-Gleichung Betrachten wir zunächst das H 2 -Molekül:

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Das von Neumannsche Theorem. von Martin Fiedler

Das von Neumannsche Theorem. von Martin Fiedler Das von eumannsche Theorem von Martin Fiedler Einleitung In der Mitte des letzten Jahrhunderts beschäftigten sich viele Physiker mit der Frage nach der Vollständigkeit der Quantentheorie. Einige Physiker,

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen jetzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale) Gleichungen für die magnetische lussdichte,

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,

Mehr

Quantenfeldtheorie. Vorlesung WS 2007/08 H. Spiesberger. Projekt 1. Berechnung des Wirkungsquerschnitts für die Bhabha 1 -Streuung, e + e e + e

Quantenfeldtheorie. Vorlesung WS 2007/08 H. Spiesberger. Projekt 1. Berechnung des Wirkungsquerschnitts für die Bhabha 1 -Streuung, e + e e + e Quantenfeldtheorie Vorlesung WS 2007/08 H. Spiesberger Projekt 1 Berechnung des Wirkungsquerschnitts für die Bhabha 1 -Streuung, e + e e + e Die Bhabha-Streuung kann als Streuung von Positronen an freien

Mehr

in Matrixnotation geschrieben wird, dann ist es leichter, physikalische Inhalte herauszufinden. Der HAMILTONoperator nimmt folgende Gestalt an

in Matrixnotation geschrieben wird, dann ist es leichter, physikalische Inhalte herauszufinden. Der HAMILTONoperator nimmt folgende Gestalt an 4a Die Pauligleichung Wenn der formelle DIRACoperator siehe 3 Abschnitt 3 unter Berücksichtigung der elektromagnetischen Potentiale V und A H D = c α p e A/c + β m c 2 + ev. in Matrixnotation geschrieben

Mehr

Hydrodynamische Wechselwirkung und Stokes Reibung

Hydrodynamische Wechselwirkung und Stokes Reibung Hydrodynamische Wechselwirkung und Stokes Reibung 9. Februar 2008 Problemstellung Kolloidsuspension aus Teilchen und Lösungsmittel Teilchen bewegen sich aufgrund von externen Kräften Schwerkraft Äußere

Mehr

3 Satz von Fisher Tippett

3 Satz von Fisher Tippett Theorem 3.1 (Satz von Fisher Tippett; extremal types theorem). Eine Verteilung G ist eine Extremwertverteilung genau dann, wenn es c > 0, d R und γ R gibt mit G(t) = G γ (ct + d). { } Dabei ist G γ eine

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Frühjahr 010 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Perle auf rotierendem, kreisförmigem Draht Eine Perle der Masse m kann sich reibungsfrei auf einem kreisförmigen Draht bewegen.

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011.

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011. Skript ur 19. Vorlesung Quantenmechanik, Freitag den 4. Juni, 011. 13.5 Weitere Eigenschaften des Spin 1/ 1. Die Zustände und sind war Eigenustände der -Komponente ŝ des Spin- Operators s, sie stellen

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben Aufgabe 74. Untersuchen Sie die folgenden Abbildungen auf Linearität. 1. f : R 2 R 2 mit (x, y) f(x, y) := (3x + 2y, x) 2. f : R R mit x f(x) := ϑx + ζ für feste ϑ, ζ R 3. f : Q 2 R mit (x, y) f(x, y)

Mehr

Rotationsgruppen und Drehimpulsoperatoreigenwerte

Rotationsgruppen und Drehimpulsoperatoreigenwerte Rotationsgruppen und Drehimpulsoperatoreigenwerte Philipp Stephani. Juni 008 Inhaltsverzeichnis Rotationsgruppen. Definition: Gruppe............................... Rotationen im dreidimensionalen Raum

Mehr

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017 Numerik gewöhnlicher Differentialgleichungen (MA234) Modulprüfung F. Bornemann, C. Ludwig 4. August 27 Aufgabe ( min) (a) Implementiere in Julia mit den Eingaben a, b, f und n die summatorische Trapez-Regel

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Übungsblatt 11: Lösungen

Übungsblatt 11: Lösungen Übungsblatt 11: Lösungen February 1, 212 35 Zusammensetsungen von Lorentz-Transformationen a Ein Lorentz-Boost entlang der x 1 -Achse ist mit der Rabidität gegeben durch cosh sinh L 1 sinh cosh 1 1 wobei

Mehr