Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0

Größe: px
Ab Seite anzeigen:

Download "Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0"

Transkript

1 Übungsblatt 1 Aufgabe 1: Pauli-Matrizen Die folgenden Matrizen sind die Pauli-Matrizen, gegeben in der Basis 0, 1. [ [ [ i 1 0 σ 1 = σ 1 0 = σ i 0 3 = Zeigen Sie, dass die Pauli-Matrizen hermitesch und unitär sind, ihr Quadrat die Identitätsmatrix ergibt und unterschiedliche Pauli-Matrizen antikommutieren (σ i σ j + σ j σ i = 0 für i j).. Schreiben Sie σ i, i {1,, 3} in Bra-Ket Notation in der Basis 0, Sei σ 0 = 1. Zeigen Sie, dass tr{σ i σ j } = δ ij gilt für alle i, j {1,, 3} (δ ij bezeichnet hier das Kronecker-Delta). 4. Finden Sie die Eigenvektoren und Eigenwerte der Pauli-Matrizen und geben Sie für diese ihre jeweilige Spektralzerlegung an. 1. Die Aussagen folgen durch explizites Nachrechnen.. σ 1 = σ = i( ) σ 3 = σ 1, σ und σ 3 sind offensichtlich spurfrei und tr{1} =. Weiterhin gilt σ i σ j +σ j σ i = δ ij 1. Da tr{σ i σ j } = 1/(tr{σ i σ j } + tr{σ j σ i }) aufgrund der Zyklizität der Spur, folgt die Behauptung. 4. Sei ± = 1/ ( 0 ± 1 ) und φ ± = 1/ ( 0 ± i 1 ). Dann ergibt sich σ 1 = + + σ = φ + φ + φ φ σ 3 = Die Eigenwerte sind damit für alle σ i {±1} und die Eigenvektoren lassen sich in obiger Darstellung gut ablesen. Aufgabe : Bloch-Kugel 1. Zeigen Sie, dass sich jeder reine Qubit-Zustand ψ = α 0 + β 1, α + β = 1 schreiben lässt als ψ = e iγ [ cos (θ/) 0 + e iφ sin (θ/) 1, (1) wobei 0 θ π und 0 φ < π gilt und e iγ ein irrelevanter globaler Phasenfaktor ist. Die Winkel θ und φ können als Kugelkoordinaten auf der sogenannten Bloch-Kugel interpretiert werden.. Bestimmen Sie die Winkel θ und φ für die Eigenzustände der Pauli-Matrizen und zeichnen Sie die entsprechenden Punkte auf der Bloch-Kugel ein. 1

2 3. Zeigen Sie, dass (1) ψ ψ = 1 (1 + v σ) impliziert mit v R 3 und v = 1. Hier ist v σ = 3 v iσ i mit σ i wie in Aufgabe 1. Der Vektor v ist die Bloch-Kugel Darstellung des Zustands ψ. 4. Zeigen Sie, dass für die Erwartungswerte bezüglich der Pauli-Operatoren für alle i {1,, 3} ψ σ i ψ = v i gilt. Hinweis: Nutzen Sie die Ergebnisse der ersten Aufgabe. 5. Zeigen Sie, dass für jeden Zustand ψ mit Bloch-Vektor v der zu ihm orthogonale Zustand φ (also φ ψ = 0, überzeugen Sie sich, dass dieser Zustand eindeutig bestimmt ist bis auf einen Phasenfaktor) gegeben ist durch den Bloch-Vektor v. 6. Beweisen Sie, dass jede hermitesche Matrix ρ mit tr{ρ} = 1 geschrieben werden kann als ρ = 1 (1 + r σ), wobei wiederum r R Zeigen Sie, dass ρ genau dann ein Dichteoperator (tr{ρ} = 1, ρ hermitesch und ρ 0) ist, wenn r 1 ist. 8. Zeigen Sie, dass ρ genau dann ein reiner Zustand ist, wenn r = 1 gilt. 9. Geben Sie die Bloch-Vektoren für die folgenden Zustände an und zeichnen Sie diese in die Bloch-Kugel ein: [ [ [ 1/ / 1/ ρ a = ρ 0 1/ b = ρ 0 0 c = 1/ 1/ 1. Wir können α, β in Polarform schreiben als α = r 1 e iϕ 1, β = r e iϕ, wobei r 1, r 0 und ϕ 1, ϕ ( π, π. Aus α + β = 1 folgt r 1 + r = 1. Aus der Parametrisierung r 1 = cos (θ/) folgt daher r = sin (θ/) mit θ [0, π. Also ist ψ = e iϕ 1 [ cos (θ/) 0 + e i(ϕ ϕ 1 ) sin (θ/) 1. Mit γ = ϕ 1 und φ = ϕ ϕ 1 folgt die Behauptung, da wir φ aufgrund der Periodizität von e iφ aus dem Intervall [0, π) wählen können.. + :(θ, φ) = (π/, 0) :(θ, φ) = (π/, π) φ + :(θ, φ) = (π/, π/) φ :(θ, φ) = (π/, 3π/) 0 :(θ, φ) = (0, [0, π)) 1 :(θ, φ) = (π, [0, π)) Die Zustände liegen auf den Koordinatenachsen auf der Oberfläche der Blochkugel.

3 3. ψ ψ = ( e iγ [ cos (θ/) 0 + e iφ sin (θ/) 1 ) ( e iγ [ cos (θ/) 0 + e iφ sin (θ/) 1 ) = cos (θ/) sin (θ/) sin (θ/) cos (θ/)e iφ sin (θ/) cos (θ/)e iφ 0 1 [ cos (θ/) sin (θ/) cos (θ/)e = iφ sin (θ/) cos (θ/)e iφ sin (θ/) = 1 [ 1 + cos (θ) sin (θ)(cos (φ) i sin (φ)) sin (θ)(cos (φ) + i sin (φ)) 1 cos (θ) = 1 [1 + sin (θ) cos (φ)σ 1 + sin (θ) sin (φ)σ + cos (θ)σ 3. Dies ist die gesuchte Form mit v = (sin (θ) cos (φ), sin (θ) sin (φ), cos (θ)). 4. Da tr{σ i σ j } = δ ij ist, folgt unmittelbar 5. ψ σ i ψ = tr{ ψ ψ σ i } = 1/ 0 = φ ψ = tr{ φ φ ψ ψ } 3 v j tr{σ j σ i } = v i. j=1 = 1 4 tr{(1 + v φ σ)(1 + v ψ σ)} = 1 4 tr{1 + v φ σ + v ψ σ + v φ v ψ 1} = 1 (1 + v φ v ψ ) Aus dieser Rechnung folgt v φ = v ψ, da es sich bei beiden um reelle Einheitsvektoren handelt. Wir haben benutzt, dass die Paulimatrizen sowie ihre paarweise verschiedenen Produkte spurfrei sind und ihr Quadrat die Identitätsmatrix ist. 6. Jede hermitesche Matrix ρ hat die Form [ a b ic ρ =, b + ic d da die Diagonaleinträge gleich ihren komplex konjugierten und daher reell sein müssen. Die Bedingung tr{ρ} = 1 impliziert weiterhin d = 1 a. Außerdem gilt 1 [1 + r σ = 1 [ 1 + r3 r 1 ir r 1 + ir 1 r 3 Ein Vergleich der beiden Ausdrücke liefert r 3 = a 1, r 1 = b und r = c.. () Ein alternativer Beweis ist möglich mit Hilfe der Spektralzerlegung und der Bloch-Kugel Darstellung für reine Zustände. 3

4 7. Aus der linearen Algebra ist bekannt, dass für eine hermitesche Matrix [ a b 0 a 0, c 0, ac b 0. b c Angewendet auf Gleichung () folgt daraus, dass ρ 0 genau dann, wenn r 3 1 und r 1. Die erste der beiden Aussagen folgt aus der zweiten und ist daher redundant. 8. In Aufgabenteil 3 haben wir bereits gesehen, dass die Hinrichtung der Implikation gilt. Sei also r = 1. Dann kann aber r in Kugelkoordinaten geschrieben werden als r = (sin (θ) cos (φ), sin (θ) sin (φ), cos (θ)). Damit zeigt aber Aufgabenteil 3 wiederum, dass das zu r gehörende ρ ein reiner Zustand ist. 9. r a = (0, 0, 0) (Mittelpunkt der Kugel), r b = (0, 0, 1) (auf der Kugeloberfläche), r c = (1, 0, 0) (auf der Kugeloberfläche). Aufgabe 3: Reine Zustände Sei ρ eine n n Dichtematrix. Zeigen Sie, dass tr{ρ } = 1 genau dann gilt, wenn ρ ein reiner Zustand ist (also ρ den Rang 1 hat). Sei ρ = λ i ρ i ρ i eine Spektralzerlegung von ρ. Dann gilt n λ i = 1. Für das Quadrat der Dichtematrix gilt damit tr { ρ } = λ i (max i λ i ) λ i = (max i λ i ). Also folgt aus tr{ρ } = 1, dass (max i λ i ) = 1 und damit ρ = ρ i ρ i für ein i {1,..., n}. Die Rückrichtung ist offensichtlich, da reine Zustände Projektionen sind. Aufgabe 4: Singulärwertzerlegung Wir bezeichnen mit M d die komplexen d d Matrizen. 1. Polarzerlegung: Beweisen Sie die folgende Aussage: Sei A M d, dann existiert eine positive Matrix J und eine unitäre Matrix U, so dass A = UJ ist. Hinweis: A A ist positiv. Benutzen Sie die Spektralzerlegung dieser Matrix und definieren Sie deren Wurzel darüber. Wählen Sie dann J = A A.. Singulärwertzerlegung: Beweisen Sie: Sei A M d, dann existieren unitäre Matrizen U, V und eine diagonale Matrix Σ mit positiven Einträgen, so dass A = UΣV gilt. Hinweis: Verwenden Sie die Polarzerlegung. 4

5 1. Da A A positiv ist, ist diese Matrix insbesondere diagonalisierbar. Sei also A A = d λ i e i e i eine Spektralzerlegung. Beachten Sie, dass die Menge { e i } d eine Orthonormalbasis ist. Aus Positivität folgt, dass λ i 0 für alle i {1,..., d}. Daher können wir die Wurzel als A A = d λi e i e i definieren und es gelten A A 0 und ( A A) = A A. Sei nun J = A A. Definiere ψ i = A e i. Aus der Definition folgt, dass ψ i ψ i = λ i. Sei I {1,..., d} die Menge aller Indizes, für die λ i > 0, und definiere Diese Vektoren sind orthonormal, da f i = 1 λi ψ i. f i f j = e i A A e j /( λ i λ j ) = δ ij, wobei wir die Spektralzerlegung von A A verwendet haben. Bislang haben wir zwar eine Menge orthonormaler Vektoren, aber noch keine Basis. Wir können aber durch das Gram-Schmidt Verfahren die Menge { f i } i I zu einer Orthonormalbasis { f i } d ergänzen. Sei d U = f i e i. Wie man einfach überprüfen kann, ist U unitär und weiterhin gilt für i I UJ e i = λ i f i = ψ i = A e i. Für i I folgt UJ e i = 0 = A e i. Da UJ und A also auf einer Orthonormalbasis übereinstimmen, sind die Operatoren gleich.. Aus der Polarzerlegung folgt A = W J für ein unitäres W und ein positives J. Eine Spektralzerlegung von J erlaubt es, J = V ΣV zu schreiben, wobei V eine unitäre Matrix ist und Σ diagonal mit positiven Einträgen (da J positiv). Die Behauptung folgt mit der Wahl U = W V. 5

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana.

Lineare Algebra. 13. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch January 2, 27 Erinnerung Berechnung von Eigenwerten und Eigenvektoren Gegeben: A E n n (falls F : V V lineare Abbildung gegeben ist,

Mehr

Nach der Drehung des Systems ist der neue Zustandsvektor

Nach der Drehung des Systems ist der neue Zustandsvektor Vorlesung 1 Die allgemeine Theorie des Drehimpulses Eine Drehung des Quantensystems beschreibt man mit Hilfe des Drehimpulsoperators. Um den Drehimpulsoperator zu konstruieren, betrachten wir einen Vektor

Mehr

Drehachse und Drehwinkel

Drehachse und Drehwinkel Drehachse und Drehwinkel Jede Drehung Q im R 3 besitzt eine Drehachse, d.h. lässt einen Einheitsvektor u invariant, und entspricht einer ebenen Drehung um einen Winkel ϕ in der zu u orthogonalen Ebene.

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 0 Tom Ilmanen Musterlösung 2. Falls b := (v,,v n ) eine Orthonormalbasis von V ist, dann lassen sich die Komponenten von einem Vektor v = n i= t i v i bezüglich

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

adjungiert, Adjunktion

adjungiert, Adjunktion A adjungiert, Adjunktion Ist A eine lineare Transformation des Hilbertraumes H mit Skalarprodukt, so gibt es eine (eindeutig bestimmte) lineare Transformation A von H mit der Eigenschaft (A x) y = x (Ay)

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Singulärwertzerlegung Achim Schädle Übungsleiter: Lennart Jansen Tutoren: Marina Fischer, Kerstin Ignatzy, Narin Konar Pascal Kuhn, Nils Sänger, Tran Dinh

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Singulärwert-Zerlegung

Singulärwert-Zerlegung Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder

Mehr

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen D-MATH Lineare Algebra II FS 7 Dr. Meike Akveld Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen. a) Wegen der Linearität im ersten Argument gilt sicherlich w S :, w =. Somit ist S und

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler. Musterlösung 8. i=1. w 2, w 2 w 2 =

D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler. Musterlösung 8. i=1. w 2, w 2 w 2 = D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler Musterlösung 8 1. Wir konstruieren eine Orthogonalbasis aus der Basis (v 1, v 2, v ) mit dem Gram- Schmidt-Verfahren. Wir wenden die Formel

Mehr

Übungsblatt

Übungsblatt Prof Dr Fabien Morel Lineare Algebra II Dr Anand Sawant Sommersemester 2018 Übungsblatt 11 20062018 Aufgabe 1 (2 Punkte) Berechnen Sie eine Jordan-Basis für die Matrix 3 1 1 M = 2 2 0 M 3 (R) 1 1 3 Wir

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 9. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching November, 07 Erinnerung Ein Skalarprodukt ist eine Abbildung, : E n E n E, (v, w) v, w n k v kw k so dass:

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

2.3 Operatoren und Eigensysteme. Gruppe Dirac. Projektarbeit

2.3 Operatoren und Eigensysteme. Gruppe Dirac. Projektarbeit Karl-Franzens Universität Graz Institut für Physik.3 Operatoren und Eigensysteme Gruppe Dirac Projektarbeit Markus Hopfer Therese Rieckh Patrick Tiefenbacher Arno Tripolt Andreas Windisch Graz, 17. Juni

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

T2 Quantenmechanik Lösungen 7

T2 Quantenmechanik Lösungen 7 T2 Quantenmechanik Lösungen 7 LMU München, WS 7/8 7.. Lineare Algebra Prof. D. Lüst / Dr. A. Schmidt-May version: 28.. Gegeben sei ein komplexer Hilbert-Raum H der Dimension d. Sei { n } mit n,..., d eine

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Erklärungen zur Vorlesung TC I

Erklärungen zur Vorlesung TC I Erklärungen zur Vorlesung TC I Sebastian Lenz Institut für Physikalische und Theoretische Chemie Goethe Universität 19. Mai 2011 Inhalt 1 Grundlagen 2 Operatoren in kartesischen Koordinaten 3 Operatoren

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Dienstag $Id: jordantex,v 8 9// 4:48:9 hk Exp $ $Id: quadrattex,v 9// 4:49: hk Exp $ Eigenwerte und die Jordansche Normalform Matrixgleichungen und Matrixfunktionen Eine

Mehr

VII.2. INNERE PRODUKTE 227

VII.2. INNERE PRODUKTE 227 VII.2. INNERE PRODUKTE 227 der Abstand von v zum Teilraum W genannt. Dabei bezeichnet p: V W die Orthogonalprojektion aus Satz VII.2.32 und b 1,...,b k ist eine beliebige Orthonormalbasis von W. Offensichtlich

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

6 Die Schursche Normalform und einige Klassen von Matrizen

6 Die Schursche Normalform und einige Klassen von Matrizen ME Lineare Algebra HT 28 111 6 Die Schursche Normalform und einige Klassen von Matrizen 61 Die Schur-Normalform und Hauptvektoren Für nichtdiagonalisierbare Matrizen gibt es andere Normalformen: Jordan-

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1,

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1, Aufgabe I1 (4 Punkte) Es seien (G, ) und (H, ) Gruppen a) Wann heißt eine Abbildung Φ : G H ein Gruppenhomomorphismus? b) Es seien Φ, Ψ : G H zwei Gruppenhomomorphismen Zeigen Sie, dass eine Untergruppe

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Klausur HM I F 2004 HM I : 1

Klausur HM I F 2004 HM I : 1 Klausur HM I F 004 HM I : Aufgabe (5 Punkte): Für welche n gilt die folgende Aussage? ( n ) det n! n 0 (n )! () Führen Sie den Beweis mit Hilfe der vollständigen Induktion. Lösung: Beweis per Induktion

Mehr

Lösung Lineare Algebra II Sommer 2018

Lösung Lineare Algebra II Sommer 2018 Lösung Lineare Algebra II Sommer 2018 1. (25 Punkte) Kreuzen Sie direkt auf dem Abgabeblatt an, ob die Behauptungen WAHR oder ALSCH sind. Sie müssen Ihre Antworten nicht begründen! Bewertung: 1 Punkt für

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil Dr. Christof Luchsinger Übungsblatt zur Vorlesung Statistische Methoden - freiwilliger Teil Rechnen mit Matrizen, Multivariate Normalverteilung Herausgabe des Übungsblattes: Woche 0, Abgabe der Lösungen:

Mehr