Höhere Mathematik I. Variante A

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik I. Variante A"

Transkript

1 Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern. Keine Fotokopien oder Ausdrucke. Taschenrechner sind nicht zugelassen. Das Konzeptpapier zur Bearbeitung der Aufgaben (Schmierblätter ist von den Studierenden zur Klausur mitzubringen. Bewertung: Bitte nutzen Sie zur Beantwortung aller Aufgaben die in der Klausur ausgeteilten Blätter! Es werden nur die Antworten gewertet, die auf dem Lösungsbogen stehen! Zur Bewertung der einzelnen Teile: I: (Aufgabe I.-I. Sie müssen unter expliziter Darstellung des Lösungsweges nachvollziehbar zu einer Lösung kommen. Ohne Lösungsweg gibt es keine Punkte. II: (Aufgabe II.-II.5 Sie müssen das richtige Ergebnis in die entsprechenden Kästchen des Antwortbogens eintragen. Darüberhinaus können Sie im Feld Lösungsskizze einen kurzen Rechenweg angeben, der in die Bewertung mit einbezogen wird, sollte Ihr Ergebnis falsch sein. III: (Aufgabe III.-III. Hier müssen Sie Aussagen Wahrheitswerte zuordnen. Sie erhalten nur dann Punkte, wenn Sie in einer Teilaufgabe alle Wahrheitswerte richtig und komplett zuordnen. Beispiel: Bestimmen Sie die Wahrheitswerte der folgenden zwei Aussagen: ( = 6 ( + =. ( Pkt. Antwort ( ( Punkte. W W. W F. F W 4. F F Antwort ( ( Punkte 5. F - 6. W F. - W Es gibt keine Minuspunkte. Bitte schreiben Sie keine Rechnungen oder Begründungen zu Teil III auf den Antwortbogen. Nutzen Sie dafür Ihr eigenes Konzeptpapier. Viel Erfolg!

2 Teil I Aufgabe I.: Beweisen Sie mit Hilfe der vollständigen Induktion, dass n a (4k = n + n für alle natürlichen Zahlen n gilt und k= b n für alle natürlichen Zahlen n durch 6 teilbar ist. (7+5 Pkt. Aufgabe I.: (+4+5 Pkt. a Es sei die Menge M gegeben durch M = {z C z z Re( z + 4 Im(z 4}. Bestimmen Sie alle Elemente der Menge und beschreiben Sie Form und Lage in Worten. b Es sei die Menge M gegeben durch M = { z C arg(z + i π 4 und z + z }. Dabei liegt das Argument im Bereich ( π, π], das heißt arg : C ( π, π]. Bestimmen Sie alle Elemente der Menge und beschreiben Sie Form und Lage in Worten. c Es sei die Menge M gegeben durch M = { z C \ {} z }. Bestimmen Sie alle Elemente der Menge und beschreiben Sie Form und Lage in Worten. Hinweis: Multiplizieren Sie die gegebene Ungleichung zunächst mit z. Aufgabe I.: (++ Pkt. a Bestimmen Sie den Grenzwert lim n ( n n 4. n b Berechnen Sie den Grenzwert der rekursiv definierten Folge (a n n N mit a =, a n+ = Sie dürfen annehmen, dass der Grenzwert existiert. ( an +. c Bestimmen Sie den Grenzwert lim n sin(n 4 +. n

3 Teil II Aufgabe II.: (4++ Pkt. a Bestimmen Sie die Eigenwerte der Matrix A =. b Die Matrix B = hat die Eigenwerte λ =, λ = und λ = (d.h. ist ein -facher Eigenwert. Berechnen Sie Basen der dazugehörigen Eigenräume. c Gegeben sei die Ebene E = y R y = s / 6 / 6 / 6 Bestimmen Sie die Orthogonal-Projektion von + t 4 / / / auf E., s, t R. Aufgabe II.: (++ Pkt. a Entscheiden Sie, welche der folgenden drei Abbildungen linear sind: x ( (i f : R R, y y + 7z, z z ( ( x x (ii g : R R x, y x y, ( ( x x (iii h : R R,. y 5y + 7 b Sei P n der Raum der Polynome vom Grad höchstens n mit Koeffizienten in R. Entscheiden Sie, welche der folgenden drei Abbildungen linear sind: p( (i f : P 4 R, p(x p(, p( (ii g : P P, p(x p(x + xp(x, (iii h : P P, p(x p(x.

4 c Entscheiden Sie, welche der folgenden drei Abbildungen linear sind: x x (i f : R R, y A y, A R, z z ( ( x x (ii g : R R, b +, b R y y, b, ( ( x x (iii h : R R, c y, c R y. Aufgabe II.: (++ Pkt. a Bestimmen Sie die Normalform der Kurve x + x + x x = 6 im R. b Bestimmen Sie den Typ der in Normalform gegebenen Kurve x 5x + 6 = im R. c Bestimmen Sie den Typ der in Normalform gegebenen Kurve x + x 9 = im R. Aufgabe II.4: (4+6 Pkt. a Geben Sie alle Vektoren a R an, die die folgenden Eigenschaften haben: a (e + e. Die Orthogonal-Projektion von a in die x, y-ebene hat die Länge. Die Orthogonal-Projektion von a in die x, y-ebene bildet mit a den Winkel π 4. b Geben Sie alle Vektoren a span gilt. 5, Hinweis: e, e, e sind die Einheitsvektoren der Standardbasis, also e = e =. an, für die a = 5 und (a, e = π 4, e = und

5 Aufgabe II.5: (+ Pkt. a Zeichnen Sie alle komplexen Lösungen der folgenden Gleichung in den Einheitskreis ein. z 4 = i. b Zeichnen Sie das Produkt z z aus den beiden im Einheitskreis eingezeichneten Zahlen z, z C ebenfalls in den Einheitskreis. Im i z Re z i Hinweis: Bitte zeichnen Sie die Lösungen in die Einheitskreise auf dem Antwortbogen.

6 Teil III Aufgabe III.: Ordnen Sie den folgenden Aussagen Wahrheitswerte zu. Hinweis: Beachten Sie die Faktoren vor den Matrizen. (++4+ Pkt. a Gegeben sei die Drehmatrix M = Für den Drehwinkel α von M gilt:. α = π. α = π 4. α = π 4. α = π 4 5. α = π 6 6. α = π 7. α = π. α = 5π 6 b Gegeben sei die Drehmatrix M = Eine Drehachse von M ist. d = 5. d =. d = 6. d =. d = 7. d = 4. d =. d = c Der Vektor v entsteht aus dem Vektor u = den Uhrzeigersinn dreht. Es gilt. v = 5. v =. v = 6. v =, indem man u um die z-achse um π 4 gegen. v = 7. v = 4. v =. v =

7 d Es sei Dann gilt. M = ( ( π π M = cos sin ( ( π π sin cos ( ( π π. M = cos sin ( ( π π sin cos ( ( ( ( π π π π cos sin. M = cos sin ( ( π π 4. M = ( ( π π sin cos sin cos. Aufgabe III.: Ordnen Sie den folgenden Aussagen Wahrheitswerte zu. Hinweis: E n bezeichnet die Standardbasis im R n. (++5 Pkt. a Sei A = {a, a, a } eine Basis des R. Ferner sei f : R R eine lineare Abbildung definiert durch f(a =, f(a = und f(a =. Beurteilen Sie den Wahrheitswert der folgenden Aussagen.. M(E, f, A =. M(E, f, A = 5. M(E, f, A =. M(E, f, A = 4. M(E, f, A = 6. M(E, f, A = 7. M(E, f, A läßt sich aus den angegebenen Daten nicht berechnen.

8 b Sei A = {a, a, a } mit a =, a = und a = sei f : R R eine lineare Abbildung definiert durch f(a = f(a = 4 4. Beurteilen Sie den Wahrheitswert der folgenden Aussagen. eine Basis des R. Ferner, f(a = und. Dann bildet. Dann bilden. Dann bilden 4. Dann bilden 5. Dann bilden eine Basis des Bildes von f.,,,, eine Basis des Bildes von f. eine Basis des Bildes von f. und und Dann bilden a, a und a eine Basis des Bildes von f. eine Basis des Bildes von f. eine Basis des Bildes von f. 7. Eine Basis des Bildes von f läßt sich aus den angegebenen Daten nicht berechnen. c Seien B = {b, b, b } und A =, R eine lineare Abbildung definiert durch f = b + b, f, Beurteilen Sie den Wahrheitswert der folgenden Aussagen. Basen des R. Ferner sei f : R = 7 b und f = b + b.. M(B, f, A =. M(B, f, A = 5. M(B, f, E = 7. M(B, f, E = 7. M(B, f, A = 4. M(B, f, A = 6. M(B, f, E =. M(B, f, E =

9 Aufgabe III.: (+++++ Pkt. Ordnen Sie den folgenden Aussagen Wahrheitswerte zu. Hinweis: P n bezeichnet den Raum der Polynome vom Grad höchstens n. a Es gilt:. Die Vektoren,, bilden eine Basis des R. ( ( (. Die Vektoren,, bilden ein Erzeugendensystem des R. 4. Die Vektoren, 5 6, 6 können zu einer Basis des R4 ergänzt werden b Es gilt: x. bildet eine Basis des Vektorraums y R x + y + z =, x + y + z =. z. Die Vektoren x + x + x, x + x +, x +, x bilden eine Basis des P.. Die Menge der Vektoren {ax + bx + a, b R} bildet ein Erzeugendensystem des P. c Es gilt:. Die Vektoren,, bilden eine Orthonormalbasis des R.. Die Dimension des von,, 4 aufgespannten Raums ist.. Die Vektoren, lassen sich nur durch einen Vektor der Form, c R\{} c zu einer Basis des R ergänzen. d Es seien n beliebige Vektoren im R n gegeben. Dann gilt:. Diese Vektoren sind immer linear unabhängig.. Diese Vektoren sind immer linear abhängig.. Die lineare Abhängigkeit hängt von den gegebenen Vektoren ab. e Die Vektoren a, b, c R seien linear unabhängig. Dann gilt:. Sowohl a, b als auch b, c sind linear unabhängig.. a, b oder b, c oder a, c sind linear abhängig.. a, c sind linear unabhängig. f Es sei der Nullvektor eines Vektorraumes V und v, w V zwei weitere Vektoren. Dann gilt:. Die Vektoren, v, w sind immer linear unabhängig.. Die Vektoren, v, w sind immer linear abhängig.. Die lineare Abhängigkeit hängt von v und w ab.

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Prof Dr O Sander Höhere Mathematik I WiSe / 4 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder-

Mehr

Höhere Mathematik I. Variante D

Höhere Mathematik I. Variante D Lehrstuhl II für Mathematik Prof Dr E Triesch Prof Dr O Sander Höhere Mathematik I WiSe / 4 Variante D Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder-

Mehr

Höhere Mathematik I. Variante B

Höhere Mathematik I. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter (Vorder- und Rückseite beschriftet,

Mehr

Höhere Mathematik I. Variante A Musterlösung

Höhere Mathematik I. Variante A Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante A Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Mathematik II. Variante A

Mathematik II. Variante A Prof. Dr. E. Triesch Mathematik II SoSe 28 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

WS 2012/2013. Hinweise

WS 2012/2013. Hinweise Lehrstuhl C für Mathematik (Analysis Prof. Dr. Y. Guo Aachen, den.. Trainingsklausur zur Höheren Mathematik I WS / Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Prof. Dr. E. Triesch Höhere Mathematik II SoSe 6 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die

Mehr

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin: 5..8 Fachrichtung:..................

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Prof. Dr. E. Triesch Höhere Mathematik I SoSe 06 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Prof. Dr. E. Triesch Höhere Mathematik II WiSe 6/7 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur

Mehr

Höhere Mathematik II. Variante B

Höhere Mathematik II. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 202 Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal 0 DinA4-Blättern.

Mehr

Mathematik I. Variante A

Mathematik I. Variante A Prof. Dr. E. Triesch Prof. Dr. Y. Guo Mathematik I WiSe 07/08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin:..9 Fachrichtung:.................

Mehr

Höhere Mathematik II. Variante C

Höhere Mathematik II. Variante C Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 215 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Lehrstuhl II für Mathematik

Lehrstuhl II für Mathematik Matrikelnummer: RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin:

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Prof. Dr. E. Triesch Höhere Mathematik III WiSe 06/07 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur

Mehr

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I. Matrikelnummer:

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I. Matrikelnummer: Matrikelnummer: RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin:

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III WiSe 04/05 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter Vorder- und Rückseite

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Prof. Dr. E. Triesch Höhere Mathematik III SoSe 2017 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Klausur HM I F 2004 HM I : 1

Klausur HM I F 2004 HM I : 1 Klausur HM I F 004 HM I : Aufgabe (5 Punkte): Für welche n gilt die folgende Aussage? ( n ) det n! n 0 (n )! () Führen Sie den Beweis mit Hilfe der vollständigen Induktion. Lösung: Beweis per Induktion

Mehr

Klausur zur Mathematik III. Variante A

Klausur zur Mathematik III. Variante A Lehrstuhl C für Mathematik (Analysis) Prof. Dr. Oliver Schaudt Aachen, den 21.02.2018 Klausur zur Mathematik III WS 2017/18 Variante A Name Matrikelnr. Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel

Mehr

Klausur zur Mathematik III. Variante B

Klausur zur Mathematik III. Variante B Lehrstuhl C für Mathematik (Analysis) Prof. Dr. Oliver Schaudt Aachen, den 21.02.2018 Klausur zur Mathematik III WS 2017/18 Variante B Name Matrikelnr. Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:...

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:... RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II Prüfung: Klausur zur Höheren Mathematik II Prüfer: Prof. Dr. E. Triesch Termin: 24.02.2009

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Klausur zur Höheren Mathematik II/III Prof. Dr. E. Triesch Termin: Fachrichtung:... Diplom. Sonstige:... Matr.-Nr.:... Name:...

Klausur zur Höheren Mathematik II/III Prof. Dr. E. Triesch Termin: Fachrichtung:... Diplom. Sonstige:... Matr.-Nr.:... Name:... RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik II/III Prüfung: Klausur zur Höheren Mathematik II/III

Mehr

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform:

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform: 1. Aufgabe (9 Punkte) In dieser Aufgabe müssen Sie Ihre Antwort nicht begründen. Es zählt nur das Ergebnis. Tragen Sie nur das Ergebnis auf diesem Blatt im jeweiligen Feld ein. 0 1 3 a) Berechnen Sie die

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 16 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Name a a Note Vorname Leginummer Datum 18.8.17 1 3 4 Total 1P 1P 1P 1P 1P P

Mehr

Name, Vorname: Matrikelnummer:

Name, Vorname: Matrikelnummer: +//+ Aufgabe ( Punkte) Gegeben seien die komplexen Zahlen z = (+i ) und z = ( +i ). (a) Bestimmen Sie jeweils den Betrag und das Argument der Zahlen z und /z. Geben Sie dabei die Argumente als Zahlen im

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

, die Folge (T n (f,x,0)) n N konvergiert.

, die Folge (T n (f,x,0)) n N konvergiert. König.08.05 Klausur zur Höheren Mathematik / für el, kyb, mech, phys Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr

Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik

Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik 1 Fachhochschule München Fachbereich 03 FA WS 006/07 Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Arbeitszeit: Hilfsmittel: Aufgabensteller: 90 Minuten Formelsammlung, Skripten, Bücher,

Mehr

Lösungsvorschlag Klausur MA9801

Lösungsvorschlag Klausur MA9801 Lehrstuhl für Numerische Mathematik Garching, den 03.08.2012 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA9801 Aufgabe 1 [4 Punkte] Seien M, N Mengen und f : M N eine Abbildung.

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2013

Bericht zur Mathematischen Zulassungsprüfung im Mai 2013 Bericht zur Mathematischen Zulassungsprüfung im Mai 3 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am. Mai 3 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

Klausur zu Lineare Algebra I für Informatiker, SS 07

Klausur zu Lineare Algebra I für Informatiker, SS 07 17.07.007 (1. Termin Klausur zu Lineare Algebra I für Informatiker, SS 07 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) 2..27 Prof. Dr. Andreas Bley Dr. Anen Lakhal Name: Vorname: Matr.-Nr./Studiengang: Versuch-Nr.: Für jede Aufgabe gibt es Punkte.

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Klausur zu Lineare Algebra I für Informatiker, SS 07

Klausur zu Lineare Algebra I für Informatiker, SS 07 7.7.7 (. Termin Klausur zu Lineare Algebra I für Informatiker, SS 7 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen Name:

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil Prof. Dr. Guido Schneider Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen el, kyb, mecha, phys, tpel Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Wintersemester 2014/15 Klausur zur Mathematik I (Modul: Lineare Algebra I) 18.02.2015 Sie haben 60 Minuten Zeit zum

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Gesamt Bestanden

Gesamt Bestanden Henning Krause Lineare Algebra I Philipp Lampe WS 2011/12 Klausur 15.02.2012 Nils Mahrt 1 2 3 4 5 6 7 8 Gesamt Bestanden Zugelassene Hilfsmittel: Ein beidseitig beschriebenes DIN A4 Blatt sowie Schreibutensilien.

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel.9.08 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr

Klausur zu Lineare Algebra I für Informatiker, SS 07

Klausur zu Lineare Algebra I für Informatiker, SS 07 Deckblatt 9.9.7 (. Termin), Gruppe A Klausur zu Lineare Algebra I für Informatiker, SS 7 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik,

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, Februar 2018 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Name, Vorname: Matrikelnummer:

Name, Vorname: Matrikelnummer: +//+ Aufgabe ( Punkte) Sei α R ein reeller Parameter. Im Vektorraum Pol R der reellen Polynome vom Grad höchstens seien die Vektoren g α (X), h α (X) und k(x) wie folgt gegeben: g α (X) = X +X +α, h α

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006 Technische Universität Berlin Fakultät II Institut für Mathematik WS 5/6 Prof. Dr. Michael Scheutzow 2. Februar 26 Februar Klausur Lineare Algebra I Name:.............................. Vorname:..............................

Mehr

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/ Dr. P. Furlan Dr. J. Horst Fakultät Mathematik Technische Universität Dortmund Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 06/7 6.0.07 Es sind insgesamt 50 Punkte erreichbar. Bei mindestens

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 13/2 29.1.27 en zur Probeklausur Aufgabe 1 (ca. 6 Punkte) Sei

Mehr

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an.

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an. Repetitorium zur Ingenieur-Mathematik I, WS 00/ Aufgabe : Bestimmen Sie das quadratische Polynom, auf dessen Graph die Punkte (, 4), (0, ), (, 7) liegen. Aufgabe : a) Wann ist eine Folge konvergent (Definition)?

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 200 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Fachhochschule München Fachbereich 03 FA SS Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik

Fachhochschule München Fachbereich 03 FA SS Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Fachhochschule München Fachbereich 03 FA SS 007 Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Arbeitszeit: Hilfsmittel: Aufgabensteller: 90 Minuten Formelsammlung, Skripten, Bücher,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr