Praktikum Wissenschaftliches Rechnen 7. Aufgabenblatt

Größe: px
Ab Seite anzeigen:

Download "Praktikum Wissenschaftliches Rechnen 7. Aufgabenblatt"

Transkript

1 Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dipl.-inform. Oliver Kayser-Herold Praktikum Wissenschaftliches Rechnen 7. Aufgabenblatt Die Lösung der Druckgleichung ist der zeitaufwigste Teil bei der Strömungssimulation. Daher wollen wir im folgen ein sehr effizientes Verfahren zur Lösung der auftreten linearen Gleichungssysteme betrachten und implementieren: das Mehrgitterverfahren (MG). 1 Mehrgitterverfahren Die Idee der Mehrgitterverfahren besteht darin, das Problem auf verschiedenen Ebenen zu betrachten. Dabei müssen Werte von einem feinen Gitter auf das nächst gröbere Gitter hinübergetragen werden, diesen Vorgang bezeichnet man als Restriktion. Andererseits müssen wir auf dem groben Gitter gewonnene Näherungen auf das feinere Gitter übertragen, wir sprechen dann von Prolongation. Auf einem festen Gitter werden außerdem Glättungsschritte durchgeführt, mit denen wir die hochfrequenten Anteile des Fehlers eliminieren wollen, d.h., wir wollen den Fehler glätten. Zur Übersicht listen wir noch einmal die Operatoren und Räume, auf denen sie definiert sind, auf: Restriktionsoperator: Rh 2h : Ω h Ω 2h, Glättungsoperator: G h : Ω h Ω h, Prolongationsoperator: P h 2h : Ω 2h Ω h. 1

2 Abbildung 1: Gitter Ω h und Ω 2h Da wir es in unserem Fall mit einem Zellschema und keinem Gitter zu tun haben, verwen wir folge Restriktion und Prolongation (vgl. Abbildung 2): Abbildung 2: Restriktion und Prolongation für die Druckzellen Für die Restriktion werden die Werte von je vier Zellen gemittelt und als Wert für die gröbere Zelle verwet. Analog werden bei der Prolongation die Werte einer großen Zelle auf die vier Tochterzellen übergeben. Die Grundform eines Mehrgitterschrittes zur Lösung von A h u h = f h sieht damit folgermaßen aus: Algorithmus MG: u h MG(u h, f h ) löse A 2h u 2h = f 2h In dem obigen Algorithmus bleibt unklar, wie die Näherung auf dem gröberen Gitter gewonnen werden soll. Eine Möglichkeit besteht darin, das lineare Gleichungssystem A 2h u 2h = f 2h direkt zu lösen. Das ist aber nur dann ratsam, wenn man schon auf einem 2

3 sehr groben Gitter angelangt ist, d.h., die Dimension des zu betrachten Gleichungssystems relativ klein ist. Ruft man stattdessen das Programm rekursiv auf, so erhält man schon eine erste Variante des Mehrgitterverfahrens, den V-Multigrid Zyklus: Algorithmus MV: u h MV (u h, f h ) u 2h = MV (0, f 2h ) Den V-Zyklus kann man sich folgermaßen veranschaulichen: Abbildung 3: V-Multigrid Zyklus Führt man den rekursiven Aufruf zweimal hintereinander aus, so wird dieses Verfahren auch als W-Multigrid Zyklus bezeichnet: 3

4 Algorithmus MW: u h MW (u h, f h ) u 2h = MW (0, f 2h ) u 2h = MW (u 2h, f 2h ) Zu dem W-Zyklus gehört die folge graphische Darstellung: Abbildung 4: W-Multigrid Zyklus Fangen wir schließlich statt auf dem feinsten gleich auf dem gröbsten Gitter an und führen dann V-Multigrid Zyklen durch, so spricht man auch von Full Multigrid bzw. Full Multigrid V-Zyklus. Der Algorithmus sieht dann so aus: Algorithmus FMV: u h F MV (u h, f h ) u 2h = F MV (0, f 2h ) u h = P h 2hu 2h u h = MV (u h, f h ) 4

5 Die Vorgehensweise beim Full Multigrid Zyklus läßt sich dann durch die folge Graphik veranschaulichen: Abbildung 5: Full Multigrid Zyklus Es gibt noch zahlreiche andere Varianten des Mehrgitterverfahrens, auf die wir hier im einzelnen nicht näher eingehen wollen (genauere Details in der Literatur). In allen Algorithmen können wir auf das Aufstellen der Iterationsmatrizen durchweg verzichten, wir benötigen nur die Wirkung der Operatoren auf die Gitterfunktionen, in unserem Fall den Druck. Auch die Restriktion und die Prolongation können wir ausführen, ohne die Matrizen explizit aufzustellen, die im zweidimensionalen Fall entscheid von der Numerierung der Unbekannten abhängen. Aufgabe 1 Ersetzen Sie die Funktionen SOR und PCG durch Multigrid mit V-Zyklus, Multigrid mit W-Zyklus, Full Multigrid. Dabei soll als Glätter wieder SOR verwet werden. Führen Sie bei den einzelnen Verfahren folge Untersuchungen durch: Konvergenzverhalten des Verfahrens (vgl. mit SOR und PCG), Zeitmessung zur Lösung des Gleichungssystems, Variation der Parameter: Relaxationsparameter, Anzahl der Glättungsschritte, etc. Wen Sie dann die Multigrid-Verfahren auf einige Strömungsprobleme an und vergleichen Sie die Ergebnisse mit den anderen eingesetzten Iterationsverfahren! Abgabe der Aufgaben:

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt

Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dipl.-inform. Oliver Kayser-Herold Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Wir

Mehr

6a. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter!

6a. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter! 6a. Iterative Verfahren: Nullstellen und Optima Besser, schneller, höher, weiter! Part-II - Reserve Page 1 of 15 Konjugierte Richtungen Anstelle der Residuen oder negativen Gradienten r (i) suchen wir

Mehr

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3

Mehr

Pflichtenheft Projekt Rollercoaster. Projektgruppe: Gruppenname Phasenverantwortlich: Müller-Langowski 15. April 2002

Pflichtenheft Projekt Rollercoaster. Projektgruppe: Gruppenname Phasenverantwortlich: Müller-Langowski 15. April 2002 Pflichtenheft Projekt Rollercoaster Projektgruppe: Gruppenname Phasenverantwortlich: Müller-Langowski 15. April 2002 1 Inhaltsverzeichnis 1 Auftragnehmer 1 2 Auftraggeber 1 3 Zielbestimmung 2 3.1 Mußkriterien.......................................

Mehr

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme Kapitel 6 Iterationsverfahren für lineare Gleichungssysteme Falls n sehr groß ist und falls die Matrix A dünn besetzt ist (sparse), dann wählt man zur Lösung von Ax = b im Allgemeinen iterative Verfahren.

Mehr

Teil XV. Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Teil XV. Mehrgitterverfahren zur Lösung linearer Gleichungssysteme Teil XV Mehrgitterverfahren zur Lösung linearer Gleichungssysteme T. Neckel Einführung in die wissenschaftliche Programmierung IN8008 Wintersemester 2017/2018 387 Konzept von Teil XV: Mehrgitterverfahren

Mehr

Glättung durch iterative Verfahren

Glättung durch iterative Verfahren Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der

Mehr

Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen

Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen Institut für Aerodynamik und Strömungstechnik DLR 10.11.2011 1 / 24 Übersicht Motivation DG-Verfahren Gleichungen p-mehrgitter Voraussetzungen

Mehr

TI-89. Gleichungssysteme

TI-89. Gleichungssysteme TI-89 Gleichungssysteme Hans Berger 005 Lineare Gleichungssysteme Der TI-89 kann beliebige Objekte in Variable speichern, auch ganze Gleichungen. Man kann somit beliebige Gleichungen z.b. in g1, g, g3,

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Iterationsverfahren: Konvergenzanalyse und Anwendungen Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester 2007 U. Rüde,

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation ngewandte Strömungssimulation 8. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung uswertung Parameter und Kennzahlen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die

Mehr

Weiterführendes Programmieren Lineare Widerstandsnetzwerke mit Matrixassemblierung Aufgabenblatt 5

Weiterführendes Programmieren Lineare Widerstandsnetzwerke mit Matrixassemblierung Aufgabenblatt 5 Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dr. Elmar Zander Sommersemester 2010 14. November 2014 Weiterführendes Programmieren Lineare

Mehr

Mathematik für Ökonomen II

Mathematik für Ökonomen II RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen II 3..993 (WS 9/93) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt 9 Aufgaben; pro Aufgabe sind

Mehr

Numerische Mathematik I: Grundlagen

Numerische Mathematik I: Grundlagen Numerische Mathematik I: Grundlagen 09.10.2017 Inhalt der Lehrveranstaltung Inhaltlich sollen Sie in der Lehrveranstaltung Numerische Mathematik I insbesondere vertraut gemacht werden mit der Numerik linearer

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Linear nichtseparable Probleme

Linear nichtseparable Probleme Linear nichtseparable Probleme Mustererkennung und Klassifikation, Vorlesung No. 10 1 M. O. Franz 20.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 7. Vorlesung Stefan Hickel Druck-Geschwindigkeits-Kopplung Lösung der Navier-Stokes Gleichungen Kompressible NSG! Massenerhaltung! Impulserhaltung ρu t! Energieerhaltung

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke, Universität Augsburg 15.10.2013 Alexander Lytchak 1 / 14 Organisation Alle wichtigen organisatorischen Information

Mehr

Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 2013/2014. Klausur Numerisches Rechnen ( ) (Musterlösung)

Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 2013/2014. Klausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 03/0 Prof. Dr. Martin Grepl Dipl.-Math. Jens Berger Dr. Jochen Schütz Klausur

Mehr

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.) 5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate 1. Phase: Methode der kleinsten Quadrate Einführung Im Vortrag über das CT-Verfahren hat Herr Köckler schon auf die Methode der kleinsten Quadrate hingewiesen. Diese Lösungsmethode, welche bei überbestimmten

Mehr

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen www.dlr.de Folie 1 > STAB Workshop, 12.11.2013 > Marcel Wallraff, Tobias Leicht 12.11.2013 Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias

Mehr

Modellbildung und Simulation SS2011 Lineare Iterationsverfahren

Modellbildung und Simulation SS2011 Lineare Iterationsverfahren restart; with(plots): with(linearalgebra): Modellbildung und Simulation SS2 Lineare Iterationsverfahren Hilfsfunktionen: Bilder malen bild malt einen Vektor als stueckweise lineare Funktion ueber dem Einheitsintervall.

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen Lineare Algebra 03.2.994 (WS 94/95) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt 9 Aufgaben;

Mehr

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten 1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten Inhaltsverzeichnis 1 Lineare Gleichungen mit 2 Unbekannten 2 1.1 Was ist eine lineare Gleichung mit 2 Unbekannten?..................... 2 1.2

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 16.10.2012 Bernhard Hanke 1 / 13 Ablauf der Lehrveranstaltung Vorlesungen (B. Hanke): Dienstag 10:30-11:30 und Mittwoch 8:15-9:45 in 1001/T.

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Einführung I Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 007 (Stand: 007, 4:9 Uhr) Wie viel Kilogramm Salzsäure der Konzentration % muss

Mehr

$Id: lgs.tex,v /11/26 08:24:56 hk Exp hk $ Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen

$Id: lgs.tex,v /11/26 08:24:56 hk Exp hk $ Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen $Id: lgs.tex,v 1.2 2008/11/26 08:24:56 hk Exp hk $ II. Lineare Algebra 5 Lineare Gleichungssysteme Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen a 11 x 1 + a 12 x 2 +

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Kurseinheit 2»Dualität und weiterführende Methoden«

Kurseinheit 2»Dualität und weiterführende Methoden« Inhaltsübersicht 1 Gliederung Kurseinheit 1»Simpleverfahren«1. Einleitung 1.1. Einordnung und Übersicht des Stoffes 1.2. Einführendes Beispiel und Grundlagen 2. Lineare Gleichungssysteme 2.1. Die allgemeine

Mehr

Einführung in die objektorientierte Programmierung mit C++

Einführung in die objektorientierte Programmierung mit C++ Prof. Dr. Thomas Klinker FB Elektrotechnik und Informatik 08. 03. 2007 Projekt im 4. Semester Elektrotechnik: Einführung in die objektorientierte Programmierung mit C++ Aufgabe 1: Schreiben Sie ein Programm,

Mehr

hue05 November 25, 2016

hue05 November 25, 2016 hue05 November 25, 2016 1 Abgabehinweise Beachten Sie unbedingt diese Hinweise, sonst erhalten Sie keine Punkte aus dieser Abgabe! Für Details siehe z.b. Folien der nullten Zentralübung 1.1 Namen und Matrikelnummern

Mehr

Teil XV. Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Teil XV. Mehrgitterverfahren zur Lösung linearer Gleichungssysteme Teil XV Mehrgitterverfahren zur Lösung linearer Gleichungssysteme IN8008, Wintersemester 2014/2015 376 Wiederholung: Relaxationsverfahren Direkte Lösung des LGS ist viel zu teuer; Daher wird versucht,

Mehr

A = α α 0 2α α

A = α α 0 2α α Aufgabe 8. Berechnen Sie abhängig von α R die Dimension dim(f(r 4 )) und die Dimension dim(kern(f)) sowie je eine Basis von f(r 4 ) und Kern(f) der linearen Abbildung f : R 4 R 4, x Ax mit der Matrix A

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen L i n e a r e A l g e b r a 15.5.1998 (SS 1998) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

Abschnitt 7: Komplexität von imperativen Programmen

Abschnitt 7: Komplexität von imperativen Programmen Abschnitt 7: Komplexität von imperativen Programmen 7. Komplexität von imperativen Programmen 7 Komplexität von imperativen Programmen Einf. Progr. (WS 08/09) 399 Ressourcenbedarf von Algorithmen Algorithmen

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 4 Abgabe: Montag, 13.05.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes Gruppenmitglieds

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Lineare Gleichungssysteme Kapitel 5 aus meinem Lehrgang ALGEBRA

Lineare Gleichungssysteme Kapitel 5 aus meinem Lehrgang ALGEBRA Lineare Gleichungssysteme Kapitel 5 aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 19. Oktober 2009 Überblick über die bisherigen

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Beispiellösung Serie 7

Beispiellösung Serie 7 D-MAVT FS 2014 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 7 1. a) Exakt: 0.005 1 1 1 0.005 1 ( 1 0 200-199 L = 200 1 Rückwärts einsetzen Lz = b : z 1 = 0.5, z 2 = 1 100 = 99 Rx =

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Bildverarbeitung: Kontinuierliche Energieminimierung D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Idee Statt zu sagen, wie die Lösung geändert werden muss (explizite Algorithmus, Diffusion),

Mehr

Schriftlicher Test zu C++ (90 Minuten) VU Einführung ins Programmieren für TM. 22. Juni 2012

Schriftlicher Test zu C++ (90 Minuten) VU Einführung ins Programmieren für TM. 22. Juni 2012 Familienname: Vorname: Matrikelnummer: Aufgabe 1 (4 Punkte): Aufgabe 2 (1 Punkte): Aufgabe 3 (1 Punkte): Aufgabe 4 (3 Punkte): Aufgabe 5 (4 Punkte): Aufgabe 6 (5 Punkte): Aufgabe 7 (2 Punkte): Aufgabe

Mehr

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme ALGEBRA Kapitel 5 SprachProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 14. März 2011 Überblick über die bisherigen ALGEBRA - Themen: 1 Mengenlehre

Mehr

Einführung in das rechnergestützte Arbeiten

Einführung in das rechnergestützte Arbeiten Karlsruher Institut für Technologie WS / Institut für theoretische Festkörperphysik Dr. Andreas Poenicke und Dipl.-Phys. Patrick Mack.. http://comp.physik.uni-karlsruhe.de/lehre/era/ era@physik.uni-karlsruhe.de

Mehr

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen ERCOFTAC-Technologietag, Stuttgart 2005 p. 1 Ein für aeroakustische Simulationen bei kleinen Machzahlen Achim Gordner und Prof. Gabriel Wittum Technische Simulation Universiät Heidelberg ERCOFTAC-Technologietag,

Mehr

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x Aufgabe Injektiv und Surjektiv) a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv?. f : Z N; x x 2. 2. f : R R; x x x.. f : R [, ]; x sin x. 4. f : C C; z z 4. b) Zeigen

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester Aufgabe 5

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester Aufgabe 5 Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester 01 Prof. Dr. Wolfgang Dahmen Yuanjun Zhang, M.Sc., Dipl.-Math.

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2011 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dr. Slobodan Ilic Numerisches Programmieren, Übungen 4. Übungsblatt: Gauß-Elimination,

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Mehrgitterverfahren. Bachelorarbeit. Fakultät für Mathematik Ruhr-Universität Bochum

Mehrgitterverfahren. Bachelorarbeit. Fakultät für Mathematik Ruhr-Universität Bochum Mehrgitterverfahren Bachelorarbeit Fakultät für Mathematik Ruhr-Universität Bochum Hrik Flaskühler Bochum, September 202 Inhaltsverzeichnis Einleitung 2 Numerische Behandlung partieller Differentialgleichungen

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. März 2016 Nichtlineare Gleichungen, Fixpunkt-Iterationen 1 Wiederholung Aufgabentypen

Mehr

Prüfungsteil 2, Aufgabe 6 Lineare Algebra

Prüfungsteil 2, Aufgabe 6 Lineare Algebra Abitur Mathematik: Prüfungsteil 2, Aufgabe 6 Lineare Algebra Nordrhein-Westfalen 2012 LK Aufgabe a 1. SCHRITT: ÜBERGANGSDIAGRAMM ZEICHNEN 2. SCHRITT: ÜBERGANGSMATRIX ERSTELLEN von: nach: 0,75 0,2 0,57

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

Wirtschaftsmathematik - Übungen SS 2019

Wirtschaftsmathematik - Übungen SS 2019 Wirtschaftsmathematik - Übungen SS 9 Blatt : Lineare Algebra. Gegeben ist eine eine 3 3 Matrix C = (c ij ) mit und eine Matrix B = ( a) Schreiben Sie die Matrix C an! j i für i < j c ij = () i j für i

Mehr

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Inhaltsverzeichnis Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Kapitel I Einführung 1 1. Beispiele und Typeneinteilung... 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte Probleme

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Parallele und verteilte Programmierung

Parallele und verteilte Programmierung Thomas Rauber Gudula Rünger Parallele und verteilte Programmierung Mit 165 Abbildungen und 17 Tabellen Jp Springer Inhaltsverzeichnis 1. Einleitung 1 Teil I. Architektur 2. Architektur von Parallelrechnern

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand PCG Verfahren Zur Verbesserung des Konvergenzverhaltens des CG-Verfahrens, wird in der Praxis oft ein geeigneter Vorkonditionierer konstruiert. Vorraussetzungen an einen Vorkonditionierer B sind: B ist

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr