1.2 Technische Herausforderungen

Größe: px
Ab Seite anzeigen:

Download "1.2 Technische Herausforderungen"

Transkript

1 . Technische Herausforderungen Mehrwegeausbreitung (Forts.) Dispersion (Delay Spread) Intersymbolinterferenz (ISI) x 0 3 Mittenfrequenz.4 GHz, Sichtverbindung (LOS).8.6 Impulsantwort g(t) in /s Zeit in ns Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 9. Rauschbegrenzte Systeme Empfindlichkeitsgrenze bei thermischen Rauschen ( ) P min,dbm = 0 log Rb N 0 η min 0 mw dbm der mininale Wert für das SNR η richtet sich nach der geforderten BER p b und dem Modulationsverfahren mit N 0 = k B T, k B = Ws/K, T = 300 K folgt ( ) Rb P min,dbm = log 0 (η min ) + 0 log 0 dbm bit/s dieser Wert enhält weder die noise figure des Verstärkers noch eine Reserve Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 0

2 . Rauschbegrenzte Systeme Zusammenhang zwischen p b und η für -PSK/QPSK 0 0 PSK 0 pb db log 0 (η) db Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung. Rauschbegrenzte Systeme Zusammenhang zwischen p b und P min,dbm für -PSK/QPSK Empfindlichkeit Pmin,dB dbm PSK, R b = Mbit/s geforderte BER p b Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung

3 . Rauschbegrenzte Systeme Energie- und Bandbreiteeffizienz verschieder Mod.-verfahren (Referenz ist -PSK) Rb/Breq ASK, unipolar 4 ASK, bipolar PSK QAM lg(k E ) [db] 4 FSK Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 3 Drahtlose Übertragungskanäle Messbeispiel (Indoor): Schwankung der Dämpfung über der Rx-Position für 3 benachbarte Frequenzen im.4 GHz Bereich log 0 G(f ) db G(f=.4 GHz) G(f=.45 GHz) G(f=.35 GHz) Rx-Position x in cm Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 4

4 Drahtlose Übertragungskanäle Messbeispiel (Indoor): Schwankung der Dämpfung über der Rx-Position für 3 benachbarte Frequenzen im 0 GHz Bereich log 0 G(f ) db G(f=0 GHz) G(f=0.05 GHz) G(f=9.95 GHz) Rx-Position x in cm Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 5 Drahtlose Übertragungskanäle Messbeispiel 3 (Indoor): Schwankung der Dämpfung über der Frequenz (.0-.6 GHz) für benachbarte Positionen log 0 G(f ) db x=x ref x=x ref +3 cm Frequenz f in GHz Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 6

5 Drahtlose Übertragungskanäle Messbeispiel 4 (Indoor): Schwankung der Dämpfung über der Frequenz (9-9.6 GHz) für benachbarte Positionen log 0 G(f ) db x=x ref x=x ref +3 cm Frequenz f in GHz Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 7. Free Space Loss Annahme: ideale, isotrope Antennen, keine atmosphärische Dämpfung Friis-Formel (Dämpfung in db): ( ) 4π a 0,iso = 0 log 0 c d tx,rx f T db ( ) ( ) dtx,rx ft = log log m 0 GHz db unter Berücksichtigung des Antennengewinns: (Gewinn in db, bezogen auf isotrope Antennen) a 0 = a 0,iso G tx,db G rx,db db Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 8

6 . Statistische Beschreibung für Schmalbandsignale Definition Schmalbandsignal: B /t max (t max ist die zeitliche Spreizung der Kanalimpulsantwort) Ziel: Statistik des Leistungsübertragungsfaktors G(f ) bzw. des Amplitudenübertragungsfaktors G(f ) über dem Ort (des Senders oder Empfängers) bzw. über der Frequenz f erfassen Annahme: der Kanal soll sich nur langsam über der Zeit ändern; anstelle der Änderung über der Zeit wird die Änderung der Übertragungsfunktion über dem Ort statistisch erfasst Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 9. Statistische Beschreibung für Schmalbandsignale.. Einfaches physikalisches Ausbreitungsmodell G(f ) = N n=0 α n e jπft n = N n=0 α n e jθ n N: Anzahl der idealen Ausbreitungspfade α n (reell): n-ter Transmissionsfaktor bzgl. der Amplitude jedes α n sei unabhängig von f jedes α n sei im Small-Scale-Ortbereich konstant t n (reell, > 0): n-te Ausbreitungszeit θ n = jπft n die Phasen θ n schwanken stark über dem Small-Scale-Ortbereich sowie über der Frequenz f und können als Zufallsvariablen betrachtet werden Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 0

7 . Statistische Beschreibung für Schmalbandsignale..3 Statistische Beschreibung im Small-Scale Bereich Fall a): keine dominierenden Pfade, d.h., α k N n=0 α n k es sei G(f ) = G (f ) + jg (f ) Annahmen: die Phasen θ n seien im Small-Scale Bereich gleichverteilt uncorrelated Scatterers, d.h., E SSA {θ n θ k } = 0 für k n Konsequenzen laut zentralem Grenzwertsatz sind G (f ) und G (f ) für große N gaußverteilt dabei gilt: E SSA {G (f )} = E SSA {G (f )} = 0 E SSA {G (f ) G (f )} = 0 E SSA G(f ) = P N n=0 α n = k P k P wollen wir als mittleren Leistungsübertragungsfaktor ( mean channel gain ) bezeichnen Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung. Statistische Beschreibung für Schmalbandsignale..3 Statistische Beschreibung im Small-Scale Bereich weiter Fall a): keine dominierenden Pfade damit setzt sich die ZV G(f ) = G (f ) + G (f ) aus der Summe zweier unabhängiger quadrierter ZV zusammen, die jeweils mittelwertfrei normalverteilt sind mit dem -ten Moment k P / G(f ) ist damit (zentral) Chi-Quadrat-verteilt mit dem Freiheitsgrad { f G(f ) (x) = k P e x k P für x 0 0 sonst Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung

8 . Statistische Beschreibung für Schmalbandsignale..3 Statistische Beschreibung im Small-Scale Bereich weiter Fall a): keine dominierenden Pfade für die Verteilungsfunktion F G(f ) (x) folgt F G(f ) (x) = { G(f ) ist Rayleigh-verteilt gemäß f G(f ) (x) = Rayleigh -Fading { e x k P für x 0 0 sonst k P x e x k P für x 0 0 sonst Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 3. Statistische Beschreibung für Schmalbandsignale Messbeispiel 5 (Indoor,NLOS): Verteilungsdichte von G(f ) bei Small-Scale-Mittelung (feste Frequenz, 5 cm 5 cm) 6 x 06 5 f G(f ) (x) 4 3 Theorie Messung (f=6 GHz, SSA) norm. Leistungsübertragungsfaktor x/k P Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 4

9 . Statistische Beschreibung für Schmalbandsignale Verteilungsfunktion von G(f ) bei Rayleigh-Fading 0 0 F G(f ) (x) 0 Theorie log 0 (x/k P ) db Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 5. Statistische Beschreibung für Schmalbandsignale Messbeispiel 6 (Indoor/NLOS): Verteilungsdichte von G(f ) bei Small-Scale-Mittelung (feste Frequenz, 5 cm 5 cm) f G(f ) (x) Theorie Messung (f=6 GHz, SSA) norm. Amplitudenübertragungsfaktor x/ k P Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 6

10 . Statistische Beschreibung für Schmalbandsignale Fall b): dominierender Pfad, d.h., α 0 = C Rice N n= α n C Rice = α 0 P N n= α n = α 0 σ sc ist der Rice-Faktor; Annahmen: wie im Fall a), nur dass diesmal eine starke (determinierte) Komponente zu den Streukomponenten hinzukommt zur Vereinfachung kann θ 0 = 0 angenommen werden Konsequenz: für große N sind G (f ) und G (f ) immer noch gaußverteilt, allerdings gilt (E SSA {G (f )}) + (E SSA {G (f )}) = α 0 für die Varianzen von G (f ) und G (f ) gilt jeweils σ sc Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 7. Statistische Beschreibung für Schmalbandsignale weiter Fall b): dominierender Pfad n = 0 G(f ) ist damit nicht-zentral Chi-Quadrat-verteilt mit dem Freiheitsgrad «( f G(f ) (x) = e x σ +C Rice 4CRice ) σsc sc x I 0 x 0 σsc 0 sonst G(f ) ist Rice-verteilt ( Rice-Fading ), es gilt «x f G(f ) (x) = e x σ +C Rice ) σsc sc I 0 ( x CRice x 0 σsc 0 sonst I 0 () ist eine modifizierte Besselfunktion. Art 0. Ordnung Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 8

11 . Statistische Beschreibung für Schmalbandsignale Verteilungsdichtefunktion von G(f ) bei Rice-Fading.5 C=0.5 C= C= C=5 f G(f ) (x) x/ k P Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 9

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode Blockschaltbild eines OOK-Empfängers rauschfreier opt. Verstärker s(t) g(t) w(t) Photodiode 2 R y k n(t) optisches Filter incl. Polfilter das Verhalten wird im äquivalenten Tiefpass-Bereich analysiert

Mehr

4.3 OFDM (Variante mit Cyclic Prefix) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 65

4.3 OFDM (Variante mit Cyclic Prefix) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 65 (Variante mit Cyclic Prefix) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Drahtlose Nachrichtenübertragung 65 (Variante mit Cyclic Prefix) zeitkontinuierliches Sendesignal ohne CP Bitrate: R b (Bitrate

Mehr

Bestimmung von MIMO-Kanalkapazitäten für unterschiedliche Antennenarchitekturen auf der Basis von breitbandigen Ausbreitungsmessungen

Bestimmung von MIMO-Kanalkapazitäten für unterschiedliche Antennenarchitekturen auf der Basis von breitbandigen Ausbreitungsmessungen Bestimmung von MIMO-Kanalkapazitäten für unterschiedliche Antennenarchitekturen auf der Basis von breitbandigen Ausbreitungsmessungen Dirk Hampicke, Markus Landmann, Andreas Richter, Christian Schneider,

Mehr

Simulationen zur Kanalkapazität ultrabreitbandiger Mobilfunkkanäle

Simulationen zur Kanalkapazität ultrabreitbandiger Mobilfunkkanäle Simulationen zur Kanalkapazität ultrabreitbandiger Mobilfunkkanäle Oliver Bredtmann Universität Duisburg-Essen VDE / ITG Diskussionssitzung UWB Übersicht Fluktuationen in der Kanalkapazität in Abhängigkeit

Mehr

Übung 5: MIMO und Diversity

Übung 5: MIMO und Diversity ZHAW WCOM2, Rumc, 1/6 Übung 5: MIMO und Diversity Aufgabe 1: SIMO-System bzw. Empfangsdiversität. In einem Empfänger mit 3 Antennen wird Selection Diversity eingesetzt. a) Bestimmen Sie die Verbesserung

Mehr

Einführung in die Nachrichtenübertragung

Einführung in die Nachrichtenübertragung Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

NTM1-Modul Zwischenprüfung

NTM1-Modul Zwischenprüfung ZHAW, ASV, HS2008, 1 NTM1-Modul Zwischenprüfung Name: 5 + 5 + 5 + 5 + 5 + 5 = 30 Punkte Vorname: 1: 2: 3: 4: 5: 6. Punkte: Note: Teilaufgaben sind möglichst unabhängig gehalten. Benutzen sie immer die

Mehr

Nachrichtenübertragung

Nachrichtenübertragung Nachrichtenübertragung (Vorlesung I + II und Rechenübung I + II) - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:...........................

Mehr

d 1 P N G A L S2 d 2

d 1 P N G A L S2 d 2 Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Übertragungsverfahren der Nachrichtentechnik 2 Ex Beispiele zum 1. Übungstest

Übertragungsverfahren der Nachrichtentechnik 2 Ex Beispiele zum 1. Übungstest Ex Beispiele zum 1. Übungstest 1 PAM Grundlagen Aufgabe 1.1 Zur Übertragung eines einzelnen binären Symbols über einen verzerrungsfreien Kanal mit additivem weißem Gaußschem Rauschen (Leistungsdichtespektrum

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Quasi-kontinuierliche Auswahl der spektralen Effizienz durch mehrdimensionale Codierung

Quasi-kontinuierliche Auswahl der spektralen Effizienz durch mehrdimensionale Codierung Quasi-kontinuierliche Auswahl der spektralen Effizienz durch mehrdimensionale Codierung Jochen Leibrich jol@tf.uni-kiel.de Christian-Albrechts-Universität zu Kiel ITG-Workshop Nürnberg 5./6. Juli 2012

Mehr

NTM1-Modul Schlussprüfung

NTM1-Modul Schlussprüfung ZHAW, NTM1, HS, 1 NTM1-Modul Schlussprüfung Name: 5 + 5 + 5 + 5 + 5 + 5 = 30 Punkte Vorname: 1: 2: 3: 4: 5: 6. Punkte: Note: Teilaufgaben sind möglichst unabhängig gehalten. Benutzen sie immer die Vorgaben!

Mehr

Grundlagen der Statistischen Nachrichtentheorie

Grundlagen der Statistischen Nachrichtentheorie Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

TEIL 1: Drahtlose optische Übertragung

TEIL 1: Drahtlose optische Übertragung TEIL 1: Drahtlose optische Übertragung Version vom 14. Oktober 2014 Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Optische Telekommunikationstechnik II 1 Literatur: [1] J. G. Proakis and M. Salehi, Grundlagen

Mehr

Lösungen 4.1 Analoge Übertragung mit PCM

Lösungen 4.1 Analoge Übertragung mit PCM J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-

Mehr

Linearer und quadratischer Mittelwert

Linearer und quadratischer Mittelwert Linearer und quadratischer ittelwert Erwartungswerte (auch Schar- oder Ensemblemittelwerte) betrachtet wird zunächst eine große Anzahl von Zufallssignalen; dabei ist x k (t) die k-te von insgesamt Realisierungen

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Musterlösung zur Prüfung Einführung in die Nachrichtentechnik 03. August 2015

Musterlösung zur Prüfung Einführung in die Nachrichtentechnik 03. August 2015 Musterlösung zur Prüfung Einführung in die Nachrichtentechnik 3. August 5 Aufgabe : Pegelrechnung und LTI-Systeme (a) (a) ( 3 6 ) mw L T = log mw = 75 dbm (a) L A = 4 db+3log(5) db = 4 db+3 ( log(3)+log(5)+log(

Mehr

Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer

Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Übung 4 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 09.05.2016 / 10.05.2016 1/12

Mehr

Was sind Dezibel (db)?

Was sind Dezibel (db)? Was sind Dezibel (db)? Jürgen Stuber 2013-05-01 Jürgen Stuber () Was sind Dezibel (db)? 2013-05-01 1 / 13 Dezibel Logarithmische Skala zur Angabe von Leistung oder Intensität (Leistung pro Fläche) Jürgen

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Statistische Signaldegradation durch PMD und Rauschen

Statistische Signaldegradation durch PMD und Rauschen Statistische Signaldegradation durch PMD und Rauschen Dr.-Ing. Jens Kissing Prof.-Dr. Ing. E. Voges Übersicht Statistik der effektiven Pulsverbreiterung erster und zweiter Ordnung PMD (Einzelpuls) Statistik

Mehr

Übung zu Drahtlose Kommunikation. 4. Übung

Übung zu Drahtlose Kommunikation. 4. Übung Übung zu Drahtlose Kommunikation 4. Übung 12.11.2012 Aufgabe 1 Erläutern Sie die Begriffe Nah- und Fernfeld! Nahfeld und Fernfeld beschreiben die elektrischen und magnetischen Felder und deren Wechselwirkungen

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

ZHW, NTM, 2005/06, Rur 1. Übung 6: Funkkanal

ZHW, NTM, 2005/06, Rur 1. Übung 6: Funkkanal ZHW, NTM, 2005/06, Rur 1 Aufgabe 1: Strahlungsdiagramme. Übung 6: Funkkanal Gegeben sind die Strahlungsdiagramme des (λ/2-) Dipols und des (λ/4-) Monopols (Stabantenne auf einer Grundfläche). Welche Antenne

Mehr

Breitbandige Vermessung zeitvarianter Indoor-Funkkanäle mit bewegten Streuern Ralf Kattenbach, Henning Früchting und Dieter Weitzel

Breitbandige Vermessung zeitvarianter Indoor-Funkkanäle mit bewegten Streuern Ralf Kattenbach, Henning Früchting und Dieter Weitzel Breitbandige Vermessung zeitvarianter Indoor-Funkkanäle mit bewegten n Ral Kattenbach, Henning Früchting und Dieter Weitzel Universität Kassel Hochrequenztechnik / Kommunikationssysteme Übersicht Breitbandiges

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Übertragungstechnik IST-2/Ü

Übertragungstechnik IST-2/Ü Übertragungstechnik IST-2/Ü Werner Henkel werner.henkel@ieee.org Übersicht über die Themen Übertragungskanäle Digitale Modulationsverfahren (PAM, QAM, CAP, OFDM/DMT, Spread Spectrum) Systeme (xdsl, Cable

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1 Leitungscodierung bit Slide 1 Spektren leitungscodierter Signale bit Slide 2 Übertragungsfunktion des Cosinus- Rolloff Filters -f g f g Im Fall von NRZ ist: f g 1 2 T bit Slide 3 Augendiagramm Die nachstehenden

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Einfluss der Polarisationsmodendispersion (PMD) auf die Pulsausbreitung in Einmodenfasern

Einfluss der Polarisationsmodendispersion (PMD) auf die Pulsausbreitung in Einmodenfasern Einfluss der Polarisationsmodendispersion (PMD) auf die Pulsausbreitung in Einmodenfasern Dipl.-Phys. Ansgar Steinkamp Dipl.-Ing. Jens Kissing Prof. Dr. Ing. E. Voges Übersicht Ursache der PMD / die Fasereigenschaft

Mehr

Bisher haben wir nur das Problem der Dämpfung und der sich überlagernden Wellen betrachtet

Bisher haben wir nur das Problem der Dämpfung und der sich überlagernden Wellen betrachtet Zwischenbilanz Bisher haben wir nur das Problem der Dämpfung und der sich überlagernden Wellen betrachtet Mehrwegeausbreitung führt auch noch zu einem weiteren Problem LOS pulses multipath pulses signal

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Grundlagen der Statistischen Nachrichtentheorie

Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der Veröffentlichung des Klausurergebnisses unter meiner

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Verwendung von Fourier-Koeffizienten zum Testen auf Gleichverteilung

Verwendung von Fourier-Koeffizienten zum Testen auf Gleichverteilung Verwendung von Fourier-Koeffizienten zum Testen auf Gleichverteilung Jan Behrens. Juni 008 Ziel soll es sein, zu einer Stichprobe von Zufallszahlen den eindeutig definierten Wert g(h) zwischen 0 und zu

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Digitale Bandpass Übertragung. Roland Küng, 2009

Digitale Bandpass Übertragung. Roland Küng, 2009 Digitale Bandpass Übertragung Roland Küng, 2009 1 Intro: Bandpass System ADSL2 (2-256-QAM) ISDN Pulsformung 2B1Q ADSL Upstream OFDM Downstream OFDM 1 MB/s 8 MB/s 2 Basisband RF Was ändert sich? Sender

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin Sc ioinformatik Wintersemester 013/014 Nachklausur zur Statistik I Freie Universität erlin 4. pril 014 Matrikelnummer Nachname Vorname Unterschrift ufgabe 1 (4 Punkte): Zu einem Wahrscheinlichkeitsraum

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren!

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren! Aufgabe T- Gegeben seien zwei normalverteilte Zufallsvariablen X N(µ, σ) 2 und X 2 N(µ 2, σ2) 2 mit pdf p (x) bzw. p 2 (x). Bestimmen Sie x (als Funktion der µ i, σ i, sodass x p (x )dx = + x p 2 (x )dx,

Mehr

Musterlösung: 23. Oktober 2014, 16:42

Musterlösung: 23. Oktober 2014, 16:42 Audiotechnik II Digitale Audiotechnik:. Übung Prof. Dr. Stefan Weinzierl 3..4 Musterlösung: 3. Oktober 4, 6:4 Amplitudenstatistik analoger Signale a) Ein Signal (t) hat die durch die Abbildung gegebene

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Abschlussprüfung Nachrichtentechnik 03. August 2015

Abschlussprüfung Nachrichtentechnik 03. August 2015 Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. K.D. Kammeyer Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: Zeit: Ort: Umfang: 05. April 2005,

Mehr

Spezifische innere Volumina

Spezifische innere Volumina Spezifische innere Volumina Stochastische Geometrie und ihre en - Zufallsfelder Regina Poltnigg und Henrik Haßfeld Universität Ulm 13. Januar 2009 1 Regina Poltnigg und Henrik Haßfeld 1 2 Berechnung von

Mehr

Statistische Methoden

Statistische Methoden Modeling of Data / Maximum Likelyhood methods Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität zu Kiel 22.05.2006 Datenmodellierung Messung vs Modell Optimierungsproblem:

Mehr

Vortrag der Diplomarbeit

Vortrag der Diplomarbeit Vortrag der Diplomarbeit Entwicklung eines Continuous-Time Delta- Sigma Modulators für den Einsatz in der Positronen-Emissions-Tomographie von 07.09.2009 Überblick und Gliedergung: Teil 1: CT ΔΣ Modulator

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Kapitel 8: Zeitdiskrete Zufallssignale

Kapitel 8: Zeitdiskrete Zufallssignale ZHAW, DSV2, 2007, Rumc, 8-1 Kapitel 8: Zeitdiskrete Zufallssignale Inhaltsverzeichnis 1. STOCHASTISCHER PROZESS...1 2. STATISTISCHE EIGENSCHAFTEN EINER ZUFALLSVARIABLEN...2 3. STATISTISCHE EIGENSCHAFTEN

Mehr

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen

Mehr

Kompensation von PMD. Fasernichtlinearitäten

Kompensation von PMD. Fasernichtlinearitäten Kompensation von PMD mit Hilfe von Fasernichtlinearitäten Ansgar Steinkamp, Jens Kissing, Tobias Gravemann, Edgar Voges Übersicht PMD (in linearen Fasern) Solitonen (in Fasern ohne PMD) Deterministische

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Definition: Erneuerungsprozess Sei {T n, n N} eine Folge unabhängiger, nichtnegativer Zufallsvariablen mit Verteilungsfunktion F, mit F () < 1. Dann heißt

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Zusammengefasst: Log-Distance-Pfadverlustmodell

Zusammengefasst: Log-Distance-Pfadverlustmodell Zusammengefasst: Log-Distance-Pfadverlustmodell Hinzu kommt noch Abschattung und Atmosphärische Dämpfung Ein durch theoretische Überlegungen (z.b. Two-Ray-Ground-Überlegung) und empirische Belege (siehe

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Fachprüfung. Mobile Communication

Fachprüfung. Mobile Communication Fachprüfung Mobile Communication 5. September 005 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: Stunden Hilfsmittel: Nichtprogrammierbarer Taschenrechner Name:... Matr.-Nr.:... Unterschrift:... Punkte

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Dr. Stan Lai und Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer

Mehr

Mit welchen Verteilungen lassen sich Lebensdauern modellieren?

Mit welchen Verteilungen lassen sich Lebensdauern modellieren? 5. Übung Aufgabe 1 Ein Prozess zur Herstellung von Flachglas im Durchschnitt 1 Verunreinigung je 5 dm 2 Glasfläche. Welche Verteilung weist die Zahl der Verunreinigungen auf einer 0,5m x 1,0 m großen Fensterscheibe

Mehr

SWISS-ARTG. Antennenbetrachtungen im Mikrowellenbereich

SWISS-ARTG. Antennenbetrachtungen im Mikrowellenbereich SWISS-ARTG Fachtagung 10. Nov. 2018 Antennenbetrachtungen im Mikrowellenbereich Willi, Nov. 2018 Inhalt Antennen Grundlagen Der Begriff Antenne, technische Bedeutung Isotroper Strahler Grafische Darstellung

Mehr

Statistik 1 Beispiele zum Üben

Statistik 1 Beispiele zum Üben Statistik 1 Beispiele zum Üben 1. Ein Kühlschrank beinhaltet 10 Eier, 4 davon sind faul. Wir nehmen 3 Eier aus dem Kühlschrank heraus. (a Bezeichne die Zufallsvariable X die Anzahl der frischen herausgenommenen

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Übung zu Drahtlose Kommunikation. 6. Übung

Übung zu Drahtlose Kommunikation. 6. Übung Übung zu Drahtlose Kommunikation 6. Übung 26.11.2012 Aufgabe 1 (Multiplexverfahren) Erläutern Sie mit wenigen Worten die einzelnen Multiplexverfahren und nennen Sie jeweils ein Einsatzgebiet/-möglichkeit,

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, 2. Juli 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Konjugierte Prior Konjugierte Prior

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Nonreturn to Zero (NRZ)

Nonreturn to Zero (NRZ) Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem

Mehr

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 2D Graphik: Bildverbesserung Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 Themen heute Rauschen, Entropie Bildverbesserung Punktbasiert Flächenbasiert Kantenbasiert Was ist

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer Musterlösung

Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer Musterlösung Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer 014 Musterlösung 1. 8 Punkte) a) 1 Pt)Für das Komplement gilt PR A) = 1 PR c A) = 0.968. b) 1 Pt)Nach Definition der bedingten Wahrscheinlichkeit

Mehr