5 Verarbeitungsschaltungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5 Verarbeitungsschaltungen"

Transkript

1 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten lassen sich auf die Addition zurückführen. Daher ist der Addierer die Grundschaltung für alle arithmetischen Operationen Halbaddierer Addition zweier einstelliger Dualzahlen Summe (S) und gegebenenfalls Übertrag (Ü): A B S Ü Disjunktive Normalformen für S und Ü: S = A B + A B = A B Ü = A B

2 5 Verarbeitungsschaltungen Folie Volladdierer Addition zweier mehrstelliger Dualzahlen, das bedeutet, dass zusätzlich ein vermeintlicher Übertrag aus einer niederwertigen Stelle (Ü 1 ) berücksichtig werden muss. Summe (S) und gegebenenfalls Übertrag (Ü 2 ): A B Ü 1 S Ü A B Ü1 V A S Ü2 Dementsprechend ergibt sich die folgende Schaltung: Eine weitere Möglichkeit einen Volladdierer aufzubauen bietet die Verknüpfung zweier Halbaddierer.

3 5 Verarbeitungsschaltungen Folie Serien-/Parallel-Addierer Die Addition mehrstelliger Dualzahlen kann sowohl bit-seriell als auch bit-parallel erfolgen Serienaddierer Serienaddierer: schrittweise Addition der einzelnen Stellen unter Berücksichtigung des Übertrags aus der vorherigen Stelle zur Addition beliebig langer Datenworte mit nur einem Volladdierer. Volladdiererschaltnetz + Schieberegister zum Zwischenspeichern der Summanden, des Übertrages und der Ergebniszahl. Laden Lesen

4 5 Verarbeitungsschaltungen Folie Paralleladdierer Eine Verkürzung der Verarbeitungszeit lässt sich durch bitweises Parallelschalten von Addierern erreichen. Beim Paralleladdierer ist für die Verknüpfung jedes Summandenbits bzw. Ergebnisbits gesondert je ein Volladdierer bereitgestellt. Unter Verwendung des Akkumulatorprinzips ergibt sich folgende Schaltung:

5 5 Verarbeitungsschaltungen Folie 5 Ripple-Carry-Addierer A 3 Ü 2 A 2 Ü 1 A 1 Ü 0 A 0 VA VA VA HA Ü 3 S 3 B 3 S 2 B 2 S 1 B 1 S 0 B 0 Eine mögliche Lösung besteht in der Vorausberechnung des Übertrags durch Berechnung der Überträge in allen Stellen mit allen Eingangsgrößen (Carry-Lookahead-Addierer) gleichzeitig. Zweistellige Addition (ohne Ü 0 ) A 0 B 0 A 1 B 1 S 0 S 1 G 0 =Ü 1 G 1 +P 1 G Ü 2

6 5 Verarbeitungsschaltungen Folie Kombinierter Addierer / Subtrahierer

7 5 Verarbeitungsschaltungen Folie 7 Wiederholung: JK-FF n 1 J K Q + Funktion 0 0 n Q Speichern Rücksetzen Setzen 1 1 Kippen Q n + 1 n J K Q n 1 Q + Q n

8 5 Verarbeitungsschaltungen Folie Multiplizierer Multiplikation von Dualzahlen kann schaltungstechnisch sowohl seriell als auch parallel erfolgen Serienmultiplizierer Einfachste serielle Methode wäre: Multiplikation auf eine wiederholte Addition zurückzuführen. Dabei wird der Multiplikand so oft addiert, wie es der Multiplikator angibt => sehr zeitaufwendiges Verfahren. Daher wird die Multiplikation durch eine Addition und Verschiebung nach folgendem Algorithmus verwirklicht:

9 5 Verarbeitungsschaltungen Folie 9 B: , , , , , , , _ , V: 1 1 = 0 Ergebnis: ,010

10 5 Verarbeitungsschaltungen Folie Parallelmultiplizierer Parallele Multiplizierer werden vorwiegend für sehr schnelle Multiplikationen verwandt. Meist Anwendung des Verfahrens der gleichzeitigen, bitweisen Multiplikation, bei dem jede Ziffer des Multiplikanden mit jeder Ziffer des Multiplikators multipliziert wird. Entstehende Einzelprodukte werden entsprechend ihrem Stellenwert einem Addierer zugeführt. Es werden jeweils immer nur zwei Bitstellen multipliziert. Das logische UND-Gatter entspricht in seiner Funktion einem 1*1 Bit Multiplizierer und kann daher zur Berechnung der Einzelprodukte herangezogen werden. Ein Parallelmultiplizierer besteht somit aus UND- Gattern und einem Paralleladdierer. Nachteilig ist, dass die Anzahl der Gatter quadratisch mit der Anzahl der Stellen steigt und dadurch das Addierwerk mit großer Stellenzahl sehr komplex wird. a 2 a 1 a 0 b 0 a i p i b 1 b i & ü i b 2 Σ ü i+1 p i+1 Übertragsverrechnung p 5 p 4 p 3 p 2 p 1 p 0

11 5 Verarbeitungsschaltungen Folie Vergleicher Vergleichsoperationen zur Verarbeitung der Rechenergebnisse und zur Steuerung des Programmablaufs. A B A>B X A=B Y A<B Z Daraus lassen sich die folgenden Schaltungen ableiten:

12 5 Verarbeitungsschaltungen Folie Serienvergleicher Voraussetzung: Vorliegen eines Codes mit monoton steigender Wichtung (z.b wie beim Dualcode), da dann das Vergleichsergebnis in jeder höheren Stelle auch über die niederwertigeren Stellen entscheidet. Algorithmus: 1. Bitweiser Vergleich (höchstwertige Stelle), 2. Falls A>B oder B>A => Speichern des Ergebnisses und ggf. Abbruch der Operation, 3. sonst: Schieben um 1 Bit und Wiederholen von 1. & 2. bis zur niederwertigsten Stelle, 4. dort endgültige Entscheidung. T R A B k Bit k Bit Q A Q A Q B Q B S R S R x y z A>B A=B A<B

13 5 Verarbeitungsschaltungen Folie Multiplexer Multiplexer bestehen aus 2 n Dateneingängen, n Steuereingängen und einem Ausgang. Sie werden eingesetzt, um z.b. parallel anliegende Daten seriell über eine einzige Leitung zu übertragen. S n... S 2 S 1 E 2... MUX n A E 2 n Durchschalten des Eingangs E i auf den Ausgang, wenn sich der Index i bei der Interpretation der Steuereingänge als Binärzahl ergibt.

14 5 Verarbeitungsschaltungen Folie 14 E0 E1 E2 E3 Mux Z S 1 S 2 Z 0 0 E E E E 3 S1 S2 MUX für n = 2 (2-MUX) E 0 E 1 E 2 E 3 S 1 S 2 Dreistufiges Netzwerk für 2-MUX

15 5 Verarbeitungsschaltungen Folie 15 E 0 E 1 S 1 1-Mux E 0 E 1 E 2 E 3 S 2 S 2 S 1 2-MUX aus drei 1-MUX

16 5 Verarbeitungsschaltungen Folie 16 Gegenstück zum Multiplexer ist der Demultiplexer. Seriell ankommende Daten können auf parallele Leitungen aufgeteilt werden. Er hat einen Dateneingang, n Steuereingänge und 2 n Ausgänge. S n... S 2 S 1 E DEMUXn A 1 A 2 E S 1 A 0 A 1 1-DeMux

17 5 Verarbeitungsschaltungen Folie 17 E S 1 S 2 A 0 A 1 A 2 A 3 2-DeMux Multiplexer und Demultiplexer dienen sowohl der Auswahl von Datenpfaden als auch zur Selektion von Funktionen oder Bausteinen.

18 5 Verarbeitungsschaltungen Folie Codierer Codierung und Decodierung gehören mit zu den häufigsten Teilaufgaben in der digitalen Datenverarbeitung. Binärcodierte Datenworte werden dabei in einen anderen Code umgeformt. Derartige Codeumformungen lassen sich als Schaltnetze entwerfen. E 1 E 2... ENCODE A 2 E n A m

19 5 Verarbeitungsschaltungen Folie 19 Das Schaltnetz eines Codierers zur Umsetzung des BCD- Codes in einen 7-Segment-Code sieht z.b. folgendermaßen aus:

20 5 Verarbeitungsschaltungen Folie 20 Der Decodierer ist die zum Codierer komplementäre Schaltung. Eine Codierer-Schaltung mit einer bestimmten Zuordnung zwischen Eingangs- und Ausgangsgrößen kann nicht als Decodierschaltung für den umgekehrten Übersetzungsprozess verwendet werden, da bei logischen Schaltungen die Richtung des Signalflusses nicht umkehrbar ist. E 1 E 2... DECODE A 1 A 2 E n A m

21 5 Verarbeitungsschaltungen Folie Logische Verknüpfungen Eine Möglichkeit zur Realisierung logischer Verknüpfungsglieder besteht in einer Anordnung von Gatterbänken aller Verknüpfungsarten, die über Multiplexer angewählt werden. Dies ist die schnellstmögliche Lösung bzgl. der Verarbeitungszeit, erfordert jedoch einen riesigen Gatter- und Verdrahtungsaufwand und ist daher nur sinnvoll bei wenigen unterschiedlichen Verknüpfungen. Eine kompaktere Lösung kann durch ein programmierbares Verknüpfungsnetz geschaffen werden. Im Folgenden wird als Beispiel ein Ausschnitt aus der Arithmetisch-Logischen Einheit (ALU) im logischen Mode vorgestellt. Für 2 Variable existieren: - 4 Belegungsmöglichkeiten und somit - 16 logische Verknüpfungen. Daher reichen ld 16 = 4 Programmierleitungen zur Selektion der Funktionen aus. S o S 1 S 2 S 3 U B X W A

22 5 Verarbeitungsschaltungen Folie 22 Beispiel für verschiedene Belegungen von (S 0 S 1 S 2 S 3 ) S 0 S 1 S 2 S B A U W X U W X U W X B A A A + B A B Versuche folgende Belegungen nachzuvollziehen S 0 S 1 S 2 S A A B "1" A B

23 5 Verarbeitungsschaltungen Folie Schieben und Rotieren Wiederholung: Ringschieber werden durch Schieberegister hergestellt, bei denen die Ausgänge des letzten Flipflops mit den Eingängen des ersten Flipflops verbunden werden. Ein Signal das durch das Schieberegister geführt wird, gelangt somit nach einmaligem Durchlauf wieder an den Anfang zurück. Solch ein Register kann auch als ein Ringzähler verwendet werden. In Rechenwerken wird oft ein bit-weises Schieben benötigt - wahlweise nach rechts oder links, - bei Bedarf höchstwertiger Übertrag in niederwertigstes Bit und umgekehrt (Rotation). Programmierbare Lösung für Richtungsumschaltung: L/R D i-1 D i-1 D i Stelle i

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug.

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. Aufgabe 1 Gegeben sei folgende Schaltfunktion: y = a / b / c / d. Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. d

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

Grundlagen der Digitaltechnik

Grundlagen der Digitaltechnik Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M 1 Übersicht Im Praktikum zur Vorlesung Computergestütztes Experimentieren I wird der Vorlesungsstoff geübt und vertieft. Ausserdem werden die speziellen

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch Schaltlogik Armin Burgmeier (1347488) Gruppe 15 6. Januar 2008 1 Gatter aus diskreten Bauelementen Es sollen logische Bausteine (Gatter) aus bekannten, elektrischen Bauteilen aufgebaut

Mehr

Informatik für Ingenieure

Informatik für Ingenieure Informatik für Ingenieure Eine Einführung Von Prof. Dr. rer. nat. Wolfgang Merzenich Universität-Gesamthochschule Siegen und Prof. Dr.-Ing. Hans Christoph Zeidler Universität der Bundeswehr Hamburg B.

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester 2008. Eberhard Zehendner. FSU Jena. Thema: Ripple-Carry- und Carry-Skip-Addierer

Rechnerarithmetik. Vorlesung im Sommersemester 2008. Eberhard Zehendner. FSU Jena. Thema: Ripple-Carry- und Carry-Skip-Addierer Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Ripple-Carry- und Carry-Skip-Addierer Eberhard Zehendner (FSU Jena) Rechnerarithmetik Ripple-Carry- und Carry-Skip-Addierer

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Versuch Nr. 8c Digitale Elektronik I

Versuch Nr. 8c Digitale Elektronik I Institut für ernphysik der Universität zu öln Praktikum M Versuch Nr. 8c Digitale Elektronik I Stand 14. Oktober 2010 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Einführung 2 1.1 Motivation....................................

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929)

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-64 Schaltlogik - Vorbereitung - Vorbemerkung In diesem Versuch geht es darum, die Grundlagen

Mehr

9 Multiplexer und Code-Umsetzer

9 Multiplexer und Code-Umsetzer 9 9 Multiplexer und Code-Umsetzer In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code- Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Beispiel

Mehr

Versuch P1-63, 64, 65. Schaltlogik VORBEREITUNG. Stefanie Falk

Versuch P1-63, 64, 65. Schaltlogik VORBEREITUNG. Stefanie Falk Versuch P1-63, 64, 65 Schaltlogik VORBEREITUNG Stefanie Falk 25.11.2006 - 1 - SCHALTLOGIK Die Schaltlogik, die Grundlage der modernen Datenverarbeitung ist, soll an Hand dieses Versuchs kennen gelernt

Mehr

Praktikum Grundlagen von Hardwaresystemen Sommersemester 2009. Versuch 2: Multiplexer, Carry-Ripple- und Carry-Lookahead-Addierer

Praktikum Grundlagen von Hardwaresystemen Sommersemester 2009. Versuch 2: Multiplexer, Carry-Ripple- und Carry-Lookahead-Addierer Praktikum Grundlagen von Hardwaresystemen Sommersemester 2009 Versuch 2: Multiplexer, Carry-Ripple- und Carry-Lookahead-Addierer 19. Februar 2009 Fachbereich 12: Informatik und Mathematik Institut für

Mehr

1. Übung aus Digitaltechnik 2. 1. Aufgabe. Die folgende CMOS-Anordnung weist einen Fehler auf:

1. Übung aus Digitaltechnik 2. 1. Aufgabe. Die folgende CMOS-Anordnung weist einen Fehler auf: Fachhochschule Regensburg Fachbereich Elektrotechnik 1. Übung aus Digitaltechnik 2 1. Aufgabe Die folgende CMOS-Anordnung weist einen Fehler auf: A B C p p p Y VDD a) Worin besteht der Fehler? b) Bei welcher

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12 FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. von Prof. Dipl.-Ing. Johannes Borgmeyer 2., verbesserte Auflage Mit

Mehr

Inhaltsverzeichnis. Teil I Aufgaben 1

Inhaltsverzeichnis. Teil I Aufgaben 1 iii Teil I Aufgaben 1 1 Grundlagen der Elektrotechnik 3 Aufgabe 1: Punktladungen............................ 3 Aufgabe 2: Elektronenstrahlröhre........................ 3 Aufgabe 3: Kapazität eines Koaxialkabels...................

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Digitale Elektronik, Schaltlogik

Digitale Elektronik, Schaltlogik Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-64 Digitale Elektronik, Schaltlogik - Vorbereitung - Die Grundlage unserer modernen Welt

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Skript. Schaltnetze / Schaltwerke

Skript. Schaltnetze / Schaltwerke Skript Schaltnetze / Schaltwerke Die didaktischen Ideen dieses Skripts sind im wesentlichen dem Buch von Karl-Heinz Loch: "Technische Informatik mit LOCAD" aus dem Pädagogik & Hochschulverlag entnommen.

Mehr

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754.

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. a) Stellen Sie die Zahl 7,625 in folgender Tabelle dar! b) Wie werden denormalisierte

Mehr

Technische Informatik. Der VON NEUMANN Computer

Technische Informatik. Der VON NEUMANN Computer Technische Informatik Der VON NEUMANN Computer Inhalt! Prinzipieller Aufbau! Schaltkreise! Schaltnetze und Schaltwerke! Rechenwerk! Arbeitsspeicher! Steuerwerk - Programmausführung! Periphere Geräte! Abstraktionsstufen

Mehr

5.0 Kombinatorische Schaltkreise, Schaltnetze

5.0 Kombinatorische Schaltkreise, Schaltnetze 5.0 Kombinatorische Schaltkreise, Schaltnetze Ziel des Kapitels ist es Kenntnisse über folgendes zu erwerben: Synthese von Schaltnetzen Analyse von Schaltnetzen - Logische Analyse - Laufzeiteffekte in

Mehr

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze Schltnetze Aufu von Schltnetzen nhnd wichtiger Beipiele Inhltericht Codierer, Decodierer und Codekonverter Additionchltnetze Hlddierer Vollddierer Mehrtellige Addierer Multiplexer und Demultiplexer Techniche

Mehr

Füllstandsregelung. Technische Informatik - Digitaltechnik II

Füllstandsregelung. Technische Informatik - Digitaltechnik II Füllstandsregelung Kursleiter : W. Zimmer 1/18 Zwei Feuchtigkeitsfühler (trocken F=0; feucht F=1) sollen zusammen mit einer geeigneten Elektronik dafür sorgen, dass das Wasser im Vorratsbehälter niemals

Mehr

.Universelles Demonstrationssystem für Grundlagen der Digitaltechnik /

.Universelles Demonstrationssystem für Grundlagen der Digitaltechnik / / Mikrocomputertechnik Eingabetastatur Hexadezimal Schalter Addierer 7Segment Anzeige 47 / 13 V.03 Technische Änderungen vorbehalten!.universelles Demonstrationssystem für Grundlagen der / Mikrocomputertechnik.Anzeigen

Mehr

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch "inkonsistentem" Verhalten!

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch inkonsistentem Verhalten! Schaltwerke Schaltwerke 22 Prof. Dr. Rainer Manthey Informatik II Schaltwerke: Übersicht generelles Problem grösserer Schaltnetze: Länge der Laufzeiten wird relevant Notwendigkeit der Zwischenspeicherung

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Kapitel 5 Schaltungen mit Delays. Kapitel 5: Schaltungen mit Delays Seite 1 / 68

Kapitel 5 Schaltungen mit Delays. Kapitel 5: Schaltungen mit Delays Seite 1 / 68 Kapitel 5 Schaltungen mit Delays Kapitel 5: Schaltungen mit Delays Seite 1 / 68 Schaltungen mit Delays Inhaltsverzeichnis 5.1 Addierwerke 5.2 Lineare Schaltkreise und Schieberegister (LSR) 5.3 Anwendungen

Mehr

Kombinatorische Schaltwerke

Kombinatorische Schaltwerke Informationstechnisches Gymnasium Leutkirch Kombinatorische Schaltwerke Informationstechnik (IT) Gemäß Bildungsplan für das berufliche Gymnasium der dreijährigen Aufbauform an der Geschwister-Scholl-Schule

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik von Dirk W. Hoffmann 1. Auflage Hanser München 2007 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 40691 9 Zu Leseprobe schnell und portofrei erhältlich

Mehr

UNIVERSITÄT LEIPZIG. Studentenmitteilung 3./4. Semester - WS 2006/ SS 2007. Aufgaben zum Elektronik Grundlagenpraktikum. 4.

UNIVERSITÄT LEIPZIG. Studentenmitteilung 3./4. Semester - WS 2006/ SS 2007. Aufgaben zum Elektronik Grundlagenpraktikum. 4. UNIVERSITÄT LEIPZIG Institut für Informatik Studentenmitteilung 3./4. Semester - WS 2006/ SS 2007 Abt. Technische Informatik Gerätebeauftragter Dr. rer.nat. Hans-oachim Lieske Tel.: [49]-0341-97 32213

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 28. November 2012 Rechnertechnologie III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

13 Programmierbare Speicher- und Logikbausteine

13 Programmierbare Speicher- und Logikbausteine 13 Programmierbare Speicher- und Logikbausteine Speicherung einer Tabelle (Programm) Read Only Memory (ROM) Festwertspeicher Nichtflüchtig Nichtlöschbar: ROM PROM bzw. OTP-ROM Anwender programmierbares

Mehr

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung... 1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L

<ruske.s@web.de> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L Elektronische Grundlagen Versuch E7, Grundelemente der Digitaltechnik Praktikumsgruppe IngIF, 04. Juni 2003 Stefan Schumacher Sandra Ruske Oliver Liebold

Mehr

Inhaltsverzeichnis Vorlesung VHDL, HW/SW-Codesign"

Inhaltsverzeichnis Vorlesung VHDL, HW/SW-Codesign Inhaltsverzeichnis Vorlesung VHDL, HW/SW-Codesign" 1 Einführung... 1-1 2 VHDL Grundlagen... 2-1 2.1 Allgemeines... 2-1 2.2 Aufbau eines VHDL-Modells...2-7 VHDL Design-Einheiten Überblick...2-10 Programmerstellung...

Mehr

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung...1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Binär Codierte Dezimalzahlen (BCD-Code)

Binär Codierte Dezimalzahlen (BCD-Code) http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll

Mehr

Versuchsvorbereitung: P1-63, 64, 65: Schaltlogik

Versuchsvorbereitung: P1-63, 64, 65: Schaltlogik raktikum lassische hysik I Versuchsvorbereitung: 1-63, 64, 65: Schaltlogik hristian untin Gruppe Mo-11 arlsruhe, 26. Oktober 2009 Ausgehend von einfachen Logikgattern wird die Funktionsweise von Addierern,

Mehr

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur

Mehr

Lehrbuch Digitaltechnik

Lehrbuch Digitaltechnik Lehrbuch Digitaltechnik Eine Einführung mit VHDL von Prof. Dr. Jürgen Reichardt, Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Einleitung 1 1.1 Die Hardwarebeschreibungssprache VHDL 3 1.2 Digitale

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Rechnenund. Systemtechnik

Rechnenund. Systemtechnik Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen

Mehr

ln halt E in leitu ng

ln halt E in leitu ng ln halt E in leitu ng 1 Kurze Einführung in die Grundlagen der digitalen Elektronik 1.1 Was versteht man unter analog und was unter digital? 7.2 Analoge Systeme 1.3 Digitale Systeme I.4 Binäres System

Mehr

Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie

Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie Programmierung in Assembler und C Schaltungen und Anwendungen von Günter Schmitt 5., völlig überarbeitete und erweiterte Auflage Oldenbourg

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen)

Übungsaufgaben für Grundlagen der Informationsverarbeitung (mit Lösungen) Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen). Erläutern Sie die Begriffe Bit, Byte und Wort bezogen auf einen 6 Bit Digitalrechner. Bit: Ein Bit ist die kleinste, atomare,

Mehr

Schaltwerke Schaltwerk

Schaltwerke Schaltwerk Schaltwerke Bisher habe wir uns nur mit Schaltnetzen befasst, also Schaltungen aus Gattern, die die Ausgaben als eine Funktion der Eingaben unmittelbar (durch Schaltvorgänge) berechnen. Diese Schaltnetze

Mehr

Elementare logische Operationen

Elementare logische Operationen RECHNERARCHITEKTUR 2 - ELEMENTARE LOGISCHE OPERATIONEN 1 Elementare logische Operationen Modifizieren, Testen,Vergleichen In diesem Abschnitt wollen wir zeigen, wie man mit den elementaren logischen Verknüpfungen

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

Schaltlogik Versuch P1-63,64,65

Schaltlogik Versuch P1-63,64,65 Vorbereitung Schaltlogik Versuch 1-63,64,65 Iris onradi Gruppe Mo-02 23. Oktober 2010 In diesem Versuch sollen die Grundlagen der digitalen Elektronik erarbeitet werden. Das der Schaltlogik zugrunde liegende

Mehr

Logik mit Gedächtnis : Sequentielle Logik

Logik mit Gedächtnis : Sequentielle Logik Logik mit Gedächtnis : Sequentielle Logik Schaltwerke Grundkomponenten zur Informationspeicherung: Flip-Flops Typische Schaltwerke Entwurf eines Schaltwerks Wintersemester 12/13 1 asynchrone und synchrone

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik dig Datum : 1.06.2009 A) Vorbereitungsaufgaben 1) Was unterscheidet sequentielle und kombinatorische Schaltungen? Kombinatorische ~ Sequentielle ~ Ausgänge sind nur vom Zustand der Eingangsgrößen abhängig

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

4 Binäres Zahlensystem

4 Binäres Zahlensystem Netzwerktechnik achen, den 08.05.03 Stephan Zielinski Dipl.Ing Elektrotechnik Horbacher Str. 116c 52072 achen Tel.: 0241 / 174173 zielinski@fh-aachen.de zielinski.isdrin.de 4 inäres Zahlensystem 4.1 Codieren

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Hans Delfs Helmut Knebl Christian Schiedermeier Grundlagen der Informatik nhtw Nürnberger Hochschulskripten für Technik und Wirtschaft Prof. Dr. Hans Delfs Prof. Dr. Helmut Knebl Prof. Dr. Christian Schiedermeier

Mehr

Technische Informatik

Technische Informatik Technische Informatik Eine einführende Darstellung von Prof. Dr. Bernd Becker Prof. Dr. Paul Molitor Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Was ist überhaupt ein Rechner?

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Speicherung von Signalen - Flipflops, Zähler, Schieberegister

Speicherung von Signalen - Flipflops, Zähler, Schieberegister Lehrbehelf für Prozessregelung und echnerverbund, 3. Klasse HTL Speicherung von Signalen - Flipflops, Zähler, Schieberegister S - Flipflop Sequentielle Schaltungen unterscheiden sich gegenüber den kombinatorischen

Mehr

Thema 2. Digtale Logik und wie der Computer rechnet

Thema 2. Digtale Logik und wie der Computer rechnet Thema 2 Digtale Logik und wie der Computer rechnet Motivation: Schaltnetz 74LS83 4 Bit Adder für Interessenten: die Anzeigen sind TIL-3 ...was dahinter steckt Grundlagen der Schaltalgebra Schaltalgebra

Mehr

Benutzte Quellen. Benutzte Bezeichnungen. Logik. Logik

Benutzte Quellen. Benutzte Bezeichnungen. Logik. Logik Benutzte uellen Benutzte Bezeichnungen Vorlesungen von r.-ing. Vogelmann, Universität Karlsruhe Vorlesungen von r.-ing. Klos, Universität Karlsruhe Vorlesungen von r.-ing. Crokol, Universität Karlsruhe

Mehr

Protokoll zu Grundelemente der Digitaltechnik

Protokoll zu Grundelemente der Digitaltechnik Protokoll zu Grundelemente der Digitaltechnik Ronn Harbich 22. uli 2005 Ronn Harbich Protokoll zu Grundelemente der Digitaltechnik 2 Vorwort Das hier vorliegende Protokoll wurde natürlich mit größter Sorgfalt

Mehr

Angewandte Physik II: Elektronik

Angewandte Physik II: Elektronik Elektronik für Physiker Prof. Brunner SS 26 Angewandte Physik II: Elektronik Prof. Karl Brunner: Raum E99, Tel. 5898, brunner@physik.uni-wuerzburg.de 7. Digitaltechnik. Logische Grundfunktionen 2. Realisierung

Mehr

BinärCode. Codealphabet: 0 ; 1 Codeworte : Dualzahlen

BinärCode. Codealphabet: 0 ; 1 Codeworte : Dualzahlen Codes Vorschrift für die eindeutige Zuordnung (= Codierung) der Zeichen eine Zeichenvorrats (Objektmenge) zu den Zeichen eines anderen Zeichenvorrats (Bildmenge). Zweck der Codierung: Anpassung der Nachricht

Mehr

a) Wie viele ROM-Bausteine benötigen Sie für den Aufbau des 64x16 ROMs? c) Wie viele Bytes Daten können im 64x16 ROM insgesamt gespeichert werden?

a) Wie viele ROM-Bausteine benötigen Sie für den Aufbau des 64x16 ROMs? c) Wie viele Bytes Daten können im 64x16 ROM insgesamt gespeichert werden? VU Technische Grundlagen der Informatik Übung 4: Schaltwerke 83.579, 24W Übungsgruppen: Mo., 24.. Mi., 26..24 Aufgabe : ROM-Erweiterung Ein 64x6 ROM soll aus mehreren 32x4 ROMs (vgl. Abbildung rechts:

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Grundlagen der Betriebssysteme

Grundlagen der Betriebssysteme Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Zahlendarstellungen

Mehr

die logischen Grundfunktionen NICHT, UND, ODER und die zusammengesetzten Funktionen NAND und NOR kennen und anwenden lernen,

die logischen Grundfunktionen NICHT, UND, ODER und die zusammengesetzten Funktionen NAND und NOR kennen und anwenden lernen, Einführung der logischen Funktionen und ihre Anwendung beim Steuern, Codieren, Addieren und Speichern Eine Unterrichtseinheit mit Übungen in EXCEL Die Schüler sollen: die logischen Grundfunktionen NICHT,

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Speicherung digitaler Signale

Speicherung digitaler Signale Speicherung digitaler Signale von Fabian K. Grundlagen Flipflops Bisher: Schaltungen ohne Speichermöglichkeit Jetzt: Speichermöglichkeit durch Flipflops Flipflops Grundlagen Flipflops Was sind Flipflops?

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

P1-63,64,65: Schaltlogik

P1-63,64,65: Schaltlogik Physikalisches Anfängerpraktikum (P1) P1-63,64,65: Schaltlogik Matthias Ernst (Gruppe Mo-24) Karlsruhe, 14.12.2009 Ziel des Versuchs ist ein erster Kontakt mit nichtprogrammierbaren Schaltungen, deren

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Von der Aussagenlogik zum Computer

Von der Aussagenlogik zum Computer Von der Aussagenlogik zum Computer Markus Koch Gymnasium in der Glemsaue Ditzingen Januar 2012 Inhaltsverzeichnis Einleitung...3 Der Computer...3 Grundlagen...4 Wahrheitstabellen...4 Aussagenlogik...4

Mehr

Inhaltsverzeichnis. Teil I. Grundlagen

Inhaltsverzeichnis. Teil I. Grundlagen Inhaltsverzeichnis Teil I. Grundlagen 1 Erklärung der verwendeten Größen 2 Passive RC- und LRC-Netzwerke 2.1 Der Tiefpaß 2.2 Der Hochpaß 2.3 Kompensierter Spannungsteiler.... 2.4 Passiver KC-Bandpaß 2.5

Mehr