Grundlagen und Verfahren der starken Kryptographie

Größe: px
Ab Seite anzeigen:

Download "Grundlagen und Verfahren der starken Kryptographie"

Transkript

1 Grundlagen und Verfahren der starken Kryptographie Seminararbeit im Seminar Neue Technologien in Internet und WWW Wintersemester 2003/04 Universität Jena vorgelegt von Eike Kettner Januar 2004

2

3 Abstract Diese Arbeit beschäftigt sich mit Verfahren starker Kryptographie und welche Anforderungen durch verschiedene Verfahren erfüllt werden. Nach einem kurzen geschichtlichen Beispiel folgt eine Erklärung wichtiger Begriffe. Es wird erläutert auf welchen Prinzipien verschiedene Kryptographische Verfahren beruhen und ein Überblick über die unterschiedlichen Klassen von Verfahren gegeben. Es geht von einfachen klassischen Algorithmen wie die Caesar-Chiffre über Public Key Verfahren bis hin zur Quantenkryptographie, die sogar komplett abhörsichere Verbindungen schafft. Zusätzlich werden zwei symmetrische Verfahren, DES und IDEA, näher betrachtet sowie das berühmte asymmetrische Chiffrierverfahren RSA. Mit dieser Arbeit wird ein Einblick in die Kryptographie gegeben und versucht einige Verfahren und Protokolle näher zu erläutern. 1

4 Inhaltsverzeichnis 1 Einleitung 5 2 Grundlagen Konfusion, Diffusion und Schmetterlingseffekt Einteilung der Verfahren Anforderungen Symmetrische Verschlüsselung Grundlagen Stromchiffren Blockverschlüsselung DES IDEA Schlüsselaustauschproblem Überblick symmetrischer Verfahren Asymmetrische Verschlüsselung Grundlagen RSA Hybride Kryptosysteme Probleme Überblick asymmetrischer Verfahren Hashfunktionen und Digitale Signatur 24 6 Zertifikate 28 2

5 7 Quantenkryptographie Grundlagen Schlüsselaustausch mit BB Quanten als Zufallsgenerator Zusammenfassung und Ausblick 34 A Glossar 35 Sachregister 39 Abbildungsverzeichnis 1 Das Chiffrierverfahren Skytale vor 2500 Jahren Die Caesar Chiffre Schema der Ver und Entschlüsselung Schema: Symmetrische Verschlüsselung Stromchiffrierung Eine Runde von DES: Teil Eine Runde von DES: Teil Eine Runde von DES: Teil Triple DES Eine Runde von IDEA: Teil Eine Runde von IDEA: Teil Schema: Asymmetrische Verschlüsselung Man in the middle Angriff Digitale Signatur mittels asymmetrischer Verfahren Digitale Signatur mit Hashfunktion Alice erhält ein Zertifikat

6 17 Alice möchte mit Bob kommunizieren Superposition verschränkter Teilchen. Nach der Messung wird ein Zustand angenommen Schlüsselaustauschprotokoll BB84. Quelle: [6] Fernwirkung verschränkter Quanten Tabellenverzeichnis 1 Überblick symmetrischer Algorithmen Überblick asymmetrischer Algorithmen Verschiedene Hashalgorithmen

7 1 Einleitung Die Kryptographie ist die Kunst, Nachrichten unbefugten Dritten unzugänglich zu machen. Die Kryptographie ist ein Teilgebiet der Kryptologie, die außerdem noch die Kryptanalyse umfaßt. Die Kryptanalyse beschäftigt sich im Gegensatz zur Kryptographie mit dem Aufbrechen des Schlüsseltextes. Kryptoanalytiker versuchen also die geheime Nachricht wieder lesbar zu machen. Kryptographie wird schon seit Menschengedenken in Regierungskreisen eingesetzt. Vor etwa 2500 Jahren hatte sich die Regierung von Sparta ein Verschlüsselungsverfahren namens Skytale ausgedacht. Skytale war ein Zylinderstab mit einem bestimmten Radius. Sender und Empfänger mußten einen Stab mit gleichem Radius besitzen. Dann wurde ein Papierstreifen auf den Stab aufgewickelt und die Nachricht senkrecht zur Papierstreifenrichtung aufgeschrieben. Hier M O R G E N D E R E N I A MNCODHREEGREENIA C H E Abbildung 1: Das Chiffrierverfahren Skytale vor 2500 Jahren. wird die Nachricht also in eine Tabelle geschrieben und die Spalten werden als Schlüsseltext weitergegeben. Der Schlüsseltext enthält die gleichen Zeichen wie der Klartext, sie sind nur vertauscht. Dieses Vorgehen nennt man Transposition. Auch Caesar benutzte ein Chiffrierverfahren, um geheime Briefe auszutauschen. Er versetzte jeden Buchstaben im Klartext um eine bestimmte Anzahl von Stellen im Alphabet. So wurde in Bild 2 aus A ein W und alle übrigen Buchstaben im Klartext werden mit dem korrespondierenden Geheimtextbuchstaben ersetzt. Da der Schlüsseltext durch Ersetzen der Zeichen im Klartext entstan-... J... W A B N X C Y M I Z D L H A G E K F B E DC F J I H G DELFIN ZAHBEJ Abbildung 2: Die Caesar Chiffre. den ist, nennt man dieses Vorgehen Substitution. Obwohl diese Verfahren heute problemlos aufgebrochen werden können, sind diese Prinzipien immer noch die Grundlage der heutigen starken kryptographischen Verfahren. Zur starken Kryptographie gehören die Verfahren, die mit heutigen Mitteln 5

8 nicht in vertretbarer Zeit aufgebrochen werden können. Da die Computer immer leistungsfähiger werden und sich auch die Theorie weiterentwickelt ist dies allerdings eine schwimmende Grenze. Kryptographie ist heutzutage auch ein wichtiger Aspekt, wenn es um die Sicherheit in Internetanwendungen geht. Das Internet ist ein offenes Netz, so kann jeder eine Verbindung aufbauen, Nachrichten senden und empfangen. Außerdem werden alle Nachrichten im Klartext übertragen. Es ist also möglich eine Nachricht zu empfangen und zu lesen. Weiterhin kann man diese Nachricht abändern und an den ursprünglichen Empfänger weiterleiten. Somit besteht eine große Gefahr im Internet, wenn es um sensible Daten geht, wie z.b. bei Kontodaten. Dort kommt Kryptographie zum Einsatz. Das zu übermittelnde Dokument wird erst mittels kryptographischer Verfahren verschlüsselt und dann versendet. 6

9 2 Grundlagen Eine Nachricht, die für jeden lesbar ist, ist der Klartext. Das Verfahren, das diesen Klartext in einen unverständliche Zeichenfolge verwandelt, nennt man Verschlüsselung oder Chiffrieren. Der Klartext wird hier mit P (eng. plaintext) oder M (eng. message) benannt. Der durch das Verschlüsseln entstandene Text wird als Chiffrat oder Schlüsseltext bezeichnet und mit C (eng. ciphertext) abgekürzt. Der Umkehrvorgang zum Verschlüsseln ist die Entschlüsselung (Dechiffrierung), welche den Schlüsseltext wieder zurück in den Klartext verwandelt. Hängt die Sicherheit eines Verfahrens davon ab, dass seine Funktionsweise geheim ist, handelt es sich um einen eingeschränkten Algorithmus. Solche Algorithmen sind heute nicht mehr interessant, da sie den heutigen Sicherheitstandards in keinster Weise gerecht werden. Ein eingeschränkter Algorithmus ist nur sicher, solange er geheim ist. Benutzt nun eine Gruppe von Menschen einen eingeschränkten Algorithmus, müssen sie ein anderes Verfahren wählen, sobald ein Mitglied diese Gruppe verläßt. Denn gibt jemand das Verfahren preis, ist es um die Sicherheit geschehen. Auch können keine Hardwareprodukte eingesetzt werden, die einen eingeschränkten Algorithmus benutzen. Wird ein solches Gerät innerhalb einer Gruppe benutzt, braucht sich ein Eindringlung nur das gleiche Gerät besorgen, um die vertraulichen Nachrichten der Gruppe zu lesen. Daher nutzen die Verfahren einen weiteren Parameter den Schlüssel. Der Schlüssel ist die geheime Information, die benötigt wird, um den Klartext in den Schlüsseltext zu transformieren. Mit Hilfe dieses Schlüssels ist es dann möglich aus dem Schlüsseltext effizient wieder den Klartext zu erzeugen. Besitzt man den Schlüssel nicht, ist es nicht möglich (jedenfalls nicht in sinnvoller Zeit) den Schlüsseltext zu lesen. Der Schlüssel wird hier mit K oder k bezeichnet. Die Sicherheit dieser Verfahren basiert nun alleinig auf dem Schlüssel. Der Algorithmus kann nun veröffentlicht, auf Fehler überprüft werden und auch in Massenprodukten eingesetzt werden, denn ohne Kenntnis des Schlüssels können die Nachrichten nicht entschlüsselt werden. Die Verschlüsselung ist also ein Algo- Klartext Verschlüsselung Chiffretext Entschlüsselung Klartext Abbildung 3: Schema der Ver und Entschlüsselung rithmus, der den Klartext mit Hilfe eines Schlüssels in ein Chiffrat umwandelt. Der Entschlüsselungsalgorithmus erzeugt wieder mit Hilfe des Schlüssels den Klartext. Ein Kryptosystem ist die Gesamtheit von Algorithmus, Menge aller möglichen Klartexte, Chiffretexte und Schlüssel. 7

10 2.1 Konfusion, Diffusion und Schmetterlingseffekt Um erforlgreiche Verschlüsselungsverfahren zu entwickeln müssen einige Prinzipien beachtet werden: Diffusion: Es soll jedes Zeichen im Chiffrat von möglichst vielen Zeichen des Klartextes und des gesamten Schlüssels abhängen. Wenn ein Angreifer einen kleinen Teil des abgefangenen Chiffrats ändert, wirkt es sich auf die ganze Nachricht aus. Der Empfänger erhält beim Dechiffrieren eine komplett entstellte Nachricht und kann sie verwerfen. Somit wird die Datenintegrität gesichert. Konfusion: Das Chiffrat soll möglichst zufällig aussehen. Der Zusammenhang zwischen Klartext und Chiffrat (und auch Schlüssel) soll möglichst komplex sein. Schmetterlingseffekt/Lawineneffekt: Jedes Eingabebit (Schlüssel und Klartext) soll sich auf möglichst viele Chiffratbits auswirken. 2.2 Einteilung der Verfahren Aufgrund der Anwendung ihrer Schlüssel teilt man die Algorithmen in zwei verschiedene Klassen ein: Symmetrische Verfahren: Diese Verfahren benutzen zum Entschlüsseln den gleichen Schlüssel, der auch zum Verschlüsseln benutzt wurden. Empfänger und Sender müssen sich auf einen gemeinsamen Schlüssel festlegen, den sie zur Kommunikation nutzen. Asymmetrische Verfahren: Bei diesen Verfahren existieren zwei Schlüssel. Einer wird zum Verschlüsseln verwendet und ein anderer zum Entschlüsseln. Asymmetrische Verfahren werden auch Public-Key Verfahren genannt. Innerhalb der symmetrischen Verfahren gibt es noch eine Unterteilung wegen der Anwendung der Chiffren auf den Klartext: Blockchiffren: Diese Verfahren lesen den Klartext in Blöcken fester Länge ein und verschlüsseln diesen Block. Die Aneinanderreihung der verschlüsselten Blöcke ergibt dann die verschlüsselte Nachricht. Stromchiffren: Stromchiffren verschlüsseln jedes Zeichen der Nachricht einzeln. Ist die Nachricht z.b. binär gespeichert, verarbeiten Stromchiffren den Text bitweise. 8

11 2.3 Anforderungen Längst ist die Geheimhaltung nicht mehr der einzige Anspruch den die Kryptographie erfüllen soll. Daneben sollen noch: Authentifizierung Integrität und Verbindlichkeit gewährleistet werden. Durch Authentifizierung wird die Herkunft einer Nachricht gesichert. Ein Kommunikationspartner sollte sich nicht als ein anderer ausgeben können. Die Integrität sichert die Unverfälschtheit einer Nachricht. Es soll also gewährleistet werden, dass die Nachricht auch genauso wie sie abgesendet wurde beim Empfänger angekommt, und nicht etwa jemand die Nachricht abgefangen und abgeändert hat. Verbindlichkeit bedeutet, dass ein Sender nicht leugnen kann eine Nachricht abgesendet zu haben. 9

12 3 Symmetrische Verschlüsselung 3.1 Grundlagen Bei symmetrischen Kryptosystemen ist der Chiffrierschlüssel gleich dem Dechiffrierschlüssel. Die in der Einleitung genannten geschichtlichen Verschlüsselungsverfahren Skytale und die Caesar-Chiffre sind Beispiele für symmetrische Verschlüsselung. Bei Skytale wird zum Chiffrieren wie zum Dechiffrieren der gleiche Radius verwendet und bei Caesar muss man die Anzahl der Verschiebung der Klartextbuchstaben wissen, um den Text zu entschlüsseln. Die gleiche Anzahl, die auch zum Verschlüsseln der Nachricht benutzt wurde. Diese Ver- k Sender Klartext Verschlüsselung k = k k Empfänger Klartext Entschlüsselung Schlüsseltext Übertragung Schlüsseltext Abbildung 4: Schema: Symmetrische Verschlüsselung. fahren stellen heute kein Hindernis mehr dar, aber die Prinzipien Transposition und Substitution werden auch heute noch verwendet. Die Art der Anwendung dieser Prinzipien unterscheidet sie zu den heutigen Algorithmen. Transposition und Substitution werden zusammen in einem Algorithmus verwendet und sie werden gleich mehrfach auf einen Klartext angwendet. Dadurch erhöht sich die Sicherheit der Algorithmen. 3.2 Stromchiffren Klartext Generator für Schlüsselstrom Verschlüsseln Chiffretext Generator für Schlüsselstrom Klartext Entschlüsseln Abbildung 5: Stromchiffrierung Stromchiffren behandeln den Klartext zeichenweise. Ist die Nachricht auf einen Zettel geschrieben, ist ein Zeichen gleich einem Buchstaben. Handelt es sich um digitale Daten, wird die Stromchiffre jedes Bit einzeln behandeln. Stromchiffren brauchen zur Verschlüsselung einen Schlüsselstrom, mit dem die 10

13 Nachricht verschlüsselt wird. Es wird ein Zeichen des Schlüsselstroms verwendet, um ein Zeichen des Klartextstroms in ein Chiffrezeichen zu verwandeln. Sei n die Anzahl der Zeichen eines Alphabets, dann gilt für ein Zeichen des Schlüsselstroms c i : c i = p i + k i mod n wobei p i ein Zeichen des Klartextes ist und k i ein Zeichen des Schlüsselstroms. Zur Entschlüsselung wird das gleiche Verfahren verwendet, also Bei binären Daten gilt dann: p i = c i + k i mod n c i = p i k i = p i + k i mod 2 die Zeichen werden xor verknüpft. Das Bild 5 zeigt schematisch die Arbeitsweise der Stromchiffrierung. Bestehen die Zeichen nicht aus Zahlen, muss eben jedem Zeichen eine Zahl zugeordnet werden. Beim deutschen Alphabet werden die Buchstaben von 0 bis 25 durchnummeriert. Lautet die Nachricht beispielsweise SCHOKOLADE und der Schlüsselstrom AHWOFKLSDW so entsteht der Schlüsseltext SJDCPYWSGA denn A + S mod 26 = S C + H mod 26 = J H + W mod 26 = D O + O mod 26 = C K + F mod 26 = P O + K mod 26 = Y u.s.w Ist die Schlüsselbuchstabenfolge echt zufällig gewählt, gleich lang wie der Klartext und wird sie nur einmal verwendet erhält man den sogenannten One Time Pad die perfekte Verschlüsselung. Der entstandene Chiffretext enthält keinerlei Informationen, die irgendeinen Klartext wahrscheinlicher gegenüber anderen machen. Alle Klartexte deren Länge kleiner oder gleich dem Schlüsseltext ist sind gleichwahrscheinlich. Die Schlüsselsequenz könnte zum Beispeil 11

14 auch WBVKCBZJMI lauten, dann wäre der Klartext gleich ESSINDDREI. Da der Schlüsselstrom echt zufällig erzeugt wurde, hat man keinen Anhaltspunkt, welcher Klartext nun zu dem Chiffretext gehört. Auch darf man den gleichen Schlüssel nicht mehrmals verwenden, da sonst ein Vergleich der Schlüsseltexte möglich ist. Dort liegen dann auch die Schwierigkeiten in der Umsetzung. Denn eine echte Zufallsfolge zu erzeugen ist auf Computern unmöglich. Auf einem Computer kann man nur periodische Folgen generieren. In der Praxis liefert der Schlüsselstromgenerator einen Schlüsselstrom der zufällig aussieht, aber durch eine deterministische Funktion bestimmt ist, sich also reproduzieren läßt. Er wird dann Pseudozufallsgenerator genannt. Je größer die Periode ist, desto zufälliger sieht die Folge aus und desto sicherer ist der Schlüssel. Benutzt man nun ständig den gleichen Schlüsselstrom, ist es für den Angreifer relativ leicht, die Nachrichten aufzubrechen. Wenn der Angreifer zwei Chiffretexte besitzt, kann er sie xor verknüpfen und erhält die xor-verknüpfung der Klartexte c i = p i k i c i = p i k i c i c i = p i p i die aber leicht zu finden sind. Denn nun kann man sehr viele Klartexte ausschließen. Gewöhnlich weiß man, in welcher Sprache eine Nachricht verfaßt wurde. Dann kann man Wörter wie DFSLEOPWE oder PSDLKNNEW ausschließen. Somit wird das Suchen eines Klartextes wesentlich erleichtert. Hat man erstmal den Klartext, braucht man ihn nur noch mit dem Chiffretext xor verknüpfen und erhält den Schlüsselstrom, mit dem man dann jede weitere Nachricht (und auch alle bisher abgefangenen) problemlos dechiffrieren kann. Aus diesem Grund verwenden Schlüsselstromgeneratoren einen Schlüssel, durch den immer wieder andere Pseudozufallsfolgen generiert werden. Somit hängt der erzeugte Schlüsselstrom vom Schlüssel ab. Ein Vertreter von Stromchiffrierungen ist z.b. Ron Rivest s RC4 Algorithmus. 3.3 Blockverschlüsselung Die meisten bekannten Verschlüsselungsverfahren sind Blockchiffrierungen. Diese Algorithmen lesen den Klartext blockweise ein und verschlüsseln diesen Block. Dazu muss die Nachricht in Blöcke fester Länge zerlegt werden. Ist der letzte Block kleiner als die Blockgröße muss er aufgefüllt werden. Dazu werden die letzten Bytes mit Nullen oder Einsen aufgefüllt und das allerletzte Byte enthält die Anzahl der Füllbytes damit diese wieder gelöscht werden können. Nun gibt es verschiedene Möglichkeiten, diese Blöcke beim Verschlüsseln miteinander zu verbinden. Dies wird auch Modus genannt. Es werden nun zwei wichtige Modi beschrieben: Electronic-Codebook-Modus: Beim ECB Modus werden die Klartextblöcke in Chiffreblöcke konvertiert. Aus dem gleichen Klartextblock resultiert der gleiche Chiffreblock. Dadurch ist es theoretisch möglich ein Codebuch anzulegen in dem Klartextblöcke und zugehörige Chiffreblöcke abgelegt 12

15 werden. Bei einer Blocklänge von 64 Bit hat das Codebuch 2 64 Einträge, was zu viel ist, um sie im vorraus zu speichern. Außerdem erzeugt auch jeder Schlüssel ein anderes Codebuch. Mit diesem Modus ist es möglich, wahlfreie Blöcke zu chiffrieren, da die Blöcke nicht miteinander zusammenhängen. So kann man erst den hinteren Abschnitt einer Nachricht oder Datei chiffrieren und danach den vorderen. Dies wird bei Datenbanken noch deutlicher. Wird eine Datenbank im ECB Modus verschlüsselt, kann jeder Datensatz gelöscht oder hinzugefügt werden unabhängig von anderen Datensätzen. Außerdem ist es denkbar die Verarbeitung zu parallelisieren. Jeder Prozessor kann unabhängig von den anderen Blöcke chiffrieren oder dechiffrieren. Der Nachteil des ECB ist, das Kryptanalytiker eben ein Codebuch erstellen können. Zu verschlüsselnde Nachrichten enthalten oft regelmäßige Strukturen, die es möglich machen Paare von Klartext und Chiffretextblöcken zu identifizieren, z.b. bei einer . Cipher-Block-Chaining: Chaining bedeutet, dass bei der Blockverschlüsselung das Ergebnis früherer Blöcke mit in das Ergebnis des aktuellen Blockes einfließen. Also beeinflußt jeder Block die Verschlüsselung des nächsten. Der CBC Modus nimmt eine xor Verknüpfung zwischen den aktuellen Klartextblock und einem zuvor gespeicherten Schlüsseltextblock vor. Also wird immer die xor-verknüpfung von aktuellen Klartextblock und letzteren Schlüsseltextblock verschlüsselt. Somit hängt jeder verschlüsselte Block von allen seinen Vorgängern ab. Der CBC Modus erzeugt also zu gleichen Klartextblöcken unterschiedliche Schlüsseltextblöcke, allerdings nur wenn sie mindestens einen unterschiedlichen Vorgängerblock haben. Also werden zwei Nachrichten solange gleich verschlüsselt bis der erste Unterschied auftritt. Um diese Sicherheitslücke zu vermeiden benutzt man eine Initialisierungsvariable IV für den ersten Vorgängerblock (also den nullten Chiffreblock). Als IV kann z.b. der Zeitstempel dienen oder einige Zufallsbits. Nun werden auch identische Nachrichten zu verschiedenen Chiffretexten verschlüsselt. Im folgenden werden die zwei wichtigsten Blockalgorithmen näher erläutert DES Der Data Encryption Standard wurde von IBM in den frühen siebziger Jahren entwickelt und 1974 dem NBS (National Bureau of Standards) eingereicht. Das NBS hatte zuvor eine Ausschreibung veröffentlicht, um Vorschläge für einen standardisierten, kryptographischen Algorithmus zu erhalten. IBM s Lösung schien vielversprechend und so bat das NBS die NSA (National Security Agency) um Unterstützung, die Sicherheit des Algorithmus und seine Eigung zur Standardisierung zu überprüfen. Im November 1976 wurde der DES als Standard anerkannt. Dieser Standard 13

16 stellte damals eine absolute Neuheit da. Es war der erste kryptographische Algorithmus der veröffentlicht wurde und von der NSA als sicher bezeichnet wurde! DES arbeitet auf einer Blocklänge von 64 Bit ein 64 Bit großer Klartextblock wird zu einem 64 Bit großen Chiffretextblock konvertiert. Er benutzt einen 64 Bit langen Schlüssel, wovon jedes 8. Bit ein Paritätsbit ist, die zur Überprüfung der Integrität des Schlüssels benutzt werden. Demnach gehen nur 56 Bit als Schlüssel in den Algorithmus ein. DES ist ein Feistel-Netzwerk (siehe Anhang A, Seite 35), welches mit 16 Runden arbeitet. In jeder Runde werden Substitution und Transposition auf den Klartextblock angewendet. Am Anfang wird der Klartextblock einer Eingangspermutation unterzogen. Danach werden 16 Runden von Operationen auf den Block durchgeführt. Eine Runde verläuft wie folgt: 1. (Abbildung 6) Der permutierte Klartextblock wird in zwei Teile zu je 32 Bit zerlegt. Auf den rechten Teilblock R wird eine Expansionspermutation angewendet. Wie der Name schon sagt expandiert der 32 Bit lange rechte Teilblock zu 48 Bit. Gleichzeitig wird aus dem 64 Bit langen Schlüssel der eigentlich 56 Bit Schlüssel extrahiert und mittels der Paritätbits auf Fehler überprüft. Dann wird der Schlüssel in zwei 28 Bit große Teile zerlegt und in zwei Register C und D abgelegt. Je nach Rundenindex werden die Register zyklisch um ein oder zwei Bits verschoben, so dass zum Schluss wieder der originale Schlüssel in den Registern steht. (M) K= C D L 2(R) Abbildung 6: Eine Runde von DES: Teil 1 2. (Abbildung 7) Jetzt werden aus dem 56 Bit Schlüssel 48 Bit ausgewählt und der expandierte rechte Teilblock wird mit dem komprimierten 48 Bit Teilschlüssel xor verknüpft. Mit diesem Ergebnis wird eine Substitution durchgeführt, die in 8 Substitutionsboxen (den S-Boxen) geschieht. Jede S-Box besteht aus einer Tabelle mit vier Zeilen und sechzehn Spalten und in jeder Zelle befindet sich eine 4 Bit Zahl. Eine S-Box erwartet eine 6 Bit Eingabe und bringt ein 4 Bit Ausgabe. Die sechs Eingabebits legen fest welche Tabellenzelle ausgewählt werden soll, dessen Inhalt ausgegeben wird. Das erste und letzte Bit der Eingabe legen die Zeile fest und die mittleren vier Bits der Eingabe definieren eine Spalte. 3. (Abbildung 8) Das 32 Bit lange Ergebnis der S-Boxen wird permutiert und wird mittels xor mit dem linken Teilblock L verknüpft. Dieses Ergebnis dient als neuer rechter Teilblock, und der alte rechte Teilblock wird als neuer linker Teilblock genommen und die Runde wird erneut gestartet. 14

17 L (M) 2(R) K= C 48Bit x D SBox SBox SBox SBox SBox SBox SBox SBox SBox Abbildung 7: Eine Runde von DES: Teil 2 L (M) 2(R) K= C 48Bit x D SBox SBox SBox SBox SBox SBox SBox SBox SBox 3(t) R 2 Abbildung 8: Eine Runde von DES: Teil 3 Zum Schluß erfolgt noch eine zur Eingangspermutation inverse Schlußpermutation. Die Eingangs- und Schlußpermutation hat keinen Einfluß auf die Sicherheit von DES. Sie wurden aus dem Grund geschaffen die Blöcke byteweise auf einen DES Chip zu laden, denn eine Eigenschaft von DES sollte sein, dass er sich leicht in Hardware implementieren läßt. Heutzutage ist DES mit seinem 56 Bit Schlüssel schon mit einem Brute-Force Ansatz (relativ) leicht knackbar. DES wurde erstmals 1994 geknackt. Der dazu benötigte Rechenaufwand betrug 50 Tage und es wurden 12 HP-9735 Workstations benutzt wurde DES von Rechnern und einem Spezialrechner in 22 Stunden geknackt. Abhilfe dagegen schafft z.b. 3DES (Triple DES). Hier wird der DES Algorithmus drei mal hintereinander angewendet und es wird die Schlüssellänge auf 112 Bit erhöht. Der erste 56 Bit Schlüssel wird zum Verschlüsseln benutzt und der zweite zum Entschlüsseln. Bild 9 zeigt die Arbeitsweise von Triple DES. Der Nachteil ist die Geschwindigkeit. DES ist ohnehin schon eher langsam gegenüber neueren Verfahren. Durch dessen dreifache Anwendung dauert das Verund Entschlüsseln noch wesentlich länger. Eine sehr genaue Beschreibung von DES findet man in [2]. 15

18 Klartext DES DES 1 DES Chiffrat K 1 K 2 K 1 Abbildung 9: Triple DES IDEA IDEA heißt International Standard Encryption Algorithm und wurde 1990 das erste mal unter dem Namen PES (Proposed Encryption Standard) vorgestellt. Nach Verbesserungen, die den Algorithmus gegen die 1991 durch Biham und Shamir bekannt gewordene differentielle Kryptanalyse absichern, wurde PES in IDEA umbenannt. Es wird z.b. in PGP (siehe Anhang A, Seite 35) eingesetzt. IDEA beruht auf Mischung verschiedener algebraischer Gruppen. IDEA arbeitet mit 64 Bit langen Blöcken und mit einem 128 Bit langen Schlüssel. Wie bei DES wird auch der gleiche Algorithmus zur Entschlüsselung angewendet. Es werden folgende algebraischen Gruppen in acht Runden gemischt: XOR ( ) Addition mod 2 16 ( ) Multiplikation mod Diese Operation dient IDEA als S-Box. ( ) Eine Runde in IDEA sieht wie folgt aus: 1. (Abbildung 10) Der Klartextblock wird zuerst in vier gleichgroße Blocke X 1,..., X 4 zerlegt. Zusätzlich werden in jeder Runde sechs Teilschlüssel K 1,..., K 6 gebraucht. Der Schlüssel wird in 8 Teilschlüssel zerlegt, welche auch als erste Teilschlüssel in den Runden dienen. Danach wird der Schlüssel um 25 Stellen nach links verschoben und wieder in acht Teilschlüssel zerlegt. Das setzt sich so fort bis die acht Runden vorbei sind. Die ersten vier Teilschlüssel werden mit den vier Klartextblöcken addiert und mutlipliziert. Danach wird der erste und der dritte Klartextblock mittels xor verknüpft, sowie der zweite und der vierte. 2. (Abbildung 11) Die daraus entstandenen Resultate werden wieder addiert und multipliziert. Dann wird das eine Ergebnis mittels xor mit dem ersten und dritten Klartextblock verknüpft, das andere Ergebnis mit dem zweiten und vierten. Dann werden zweiter und dritter Klartextblock vertauscht und die Runde beginnt von vorn. In der letzten Runde wird der zweite und dritte Block nicht mehr vertauscht. Nach der letzten Runde findet noch eine Schlußtransformation statt: 16

19 X 1 X 2 X 3 X 4 K1 K 2 K 3 K 4 Abbildung 10: Eine Runde von IDEA: Teil 1 X 1 X 2 X 3 X 4 K 1 K 2 K 3 K 4 K 5 K 6 Abbildung 11: Eine Runde von IDEA: Teil 2 1. X 1 K 1 2. X 2 K 2 3. X 3 K 2 4. X 4 K 4 Die zusammengefügten Teilblöcke ergeben dann den Chiffreblock. Software- Implementierungen von IDEA sind etwa doppelt so schnell wie DES. Von IDEA sind keine weiteren Schwächen bekannt, so bleibt als einziges der Brute-Force Angriff. Ein Brute-Force Angriff auf einen 128 Bit großen Schlüssel ist auch heute noch viel zu komplex. Die gesamte Schlüsselmenge besteht aus (10 38 ) Schlüsseln. Bei einer Millarde Prozessoren, die eine Millarde Schlüssel pro Sekunde testen können, dauert die Suche immer noch Jahre! 3.4 Schlüsselaustauschproblem Es gibt noch eine Menge weitere Algorithmen (eine Übersicht findet sich unter [4]), die zur starken Kryptographie gehören. Alle symmetrischen Verfahren 17

20 gehen aber davon aus, dass die Kommunikationspartner vorher Schlüssel vereinbart haben. Im Internet ist gerade dies nicht einfach. Es nützt nicht viel einen noch so sicheren Algorithmus zu benutzen, wenn man den Schlüssel auf einen ungesicherten Kanal übertragen muss. Außerdem wird die Anzahl der benötigten Schlüssel sehr hoch, wenn mehrere Teilnehmer miteinander kommunizieren möchten. Wenn t die Anzahl der Teilnehmer ist, braucht man stets (t 1) = n(n 1) 2 Schlüssel bei 10 Personen sind es schon 45! Es ist also nötig, einen Schlüsselaustausch so vorzunehmen, dass nur die kommunizierenden Parteien einen Schlüssel erhalten. Ein solches Verfahren wurde 1976 von Whitfield Diffie und Martin Hellman beschrieben. Es verläuft wie folgt: 1. Alice und Bob (die zwei kommunizierenden Parteien) einigen sich auf eine große Primzahl n und eine Zahl g. Die Übertragung dieser Zahlen kann auf einem ungesicherten Kanal verlaufen, da die Information nicht geheim bleiben muss. 2. Alice wählt eine große zufällige Zahl x und sendet Bob X = g x mod n 3. Bob wählt eine große zufällige Zahl y und sendet an Alice Y = g y mod n 4. Alice berechnet nun 5. Bob berechnet k = k = g xy mod n k = Y x mod n k = X y mod n Ein Angreifer kann nicht an den Schlüssel kommen, denn es sind beide Geheimnisse x und y notwendig um den Schlüssel zu berechnen. Dieser Algorithmus war der erste Public-Key Algorithmus der patentiert wurde. Public-Key Verschlüsselung ist das Thema des nächsten Kapitels. 3.5 Überblick symmetrischer Verfahren Die Tabelle 1 enthält eine Übersicht über verschieden Block- und Stromchiffren. Außer A5 und DES werden alle in der Tabelle aufgeführten Algorithmen bis heute als sicher bezeichnet. Die Schwäche von DES ist seine geringe Schlüssellänge. Die Stromchiffre A5, die in fast allen GSM Handys vorhanden ist, wurde geknackt. 18

21 Name Art Schlüssellänge Blocklänge One-Time-Pad Strom Klartextlänge - DES Block 56 Bit 64 Bit 3DES Block 112 Bit 64 Bit IDEA Block 128 Bit 128 Bit RC4 Strom variable - A5 Strom 64 Bit - RC5 Block variabel (bis 2040 Bit) Bit RC6 Block variabel (bis 2040 Bit) Bit Blowfish Block Bit 64 Bit Twofish Block 128,192,256 Bit 128 Bit AES Block 128,192,256 Bit 128 Bit Tabelle 1: Überblick symmetrischer Algorithmen 4 Asymmetrische Verschlüsselung 4.1 Grundlagen Asymmetrische Verschlüsselung oder Public-Key Encryption verwendet unterschiedliche Schlüssel zur Ver- und Entschlüsselung. Jeder Benutzer hat zwei Schlüssel einen geheimen, der nur ihm zugänglich sein darf und einen öffentlichen, welcher unter seinen Namen jedem zugänglich gemacht wird. Der öffentliche Schlüssel wird aus dem geheimen Schlüssel berechnet, aber der private Schlüssel kann nicht aus dem öffentlichen Schlüssel berechnet werden (jedenfalls nicht in angemessener Zeit). Eine mit dem öffentlichen Schlüssel verschlüsselte Nachricht kann nur mit dem korrespondierenden geheimen Schlüssel (privater Schlüssel) wieder entschlüsselt werden. Bild 12 stellt die asymmetrische Verschlüsselung schematisch dar. Die Kommunikation sieht jetzt wie folgt aus: A B Sender k = k Empfänger Klartext Klartext k encrypt Schlüsseltext decrypt k Abbildung 12: Schema: Asymmetrische Verschlüsselung. 1. Alice will Bob eine Nachricht schicken und besorgt sich den öffentlichen Schlüssel Kp B von Bob und schickt ihm C = E KpB (M) 19

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012 Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Kryptographie oder Verschlüsselungstechniken

Kryptographie oder Verschlüsselungstechniken Kryptographie oder Verschlüsselungstechniken Dortmund, Dezember 1999 Prof. Dr. Heinz-Michael Winkels, Fachbereich Wirtschaft FH Dortmund Emil-Figge-Str. 44, D44227-Dortmund, TEL.: (0231)755-4966, FAX:

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Rainer 20.11.2007 Inhaltsverzeichnis 1 Grundlagen 2 2 Substitutionschiffren 2 2.1 Monoalphabetische Substitutionen....................... 3 2.1.1 Verschiebechiffren............................

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation VON 07. März 2013 & Kryptographie Powerpoint-Präsentation 1 Allgemeines über die Kryptographie kryptós= griechisch verborgen, geheim gráphein= griechisch schreiben Kryptographie + Kryptoanalyse= Kryptologie

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen

10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen 10.6 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

1. Klassische Kryptographie: Caesar-Verschlüsselung

1. Klassische Kryptographie: Caesar-Verschlüsselung 1. Klassische Kryptographie: Caesar-Verschlüsselung Das Bestreben, Botschaften für andere unlesbar zu versenden, hat zur Entwicklung einer Wissenschaft rund um die Verschlüsselung von Nachrichten geführt,

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Kryptographische Algorithmen

Kryptographische Algorithmen Kryptographische Algorithmen Stand: 11.05.2007 Ausgegeben von: Rechenzentrum Hochschule Harz Sandra Thielert Hochschule Harz Friedrichstr. 57 59 38855 Wernigerode 03943 / 659 900 Inhalt 1 Einleitung 4

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Kryptographie Motivation Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Geheimzahlen (Geldkarten, Mobiltelefon) Zugriffsdaten (Login-Daten, Passwörter)

Mehr

Erste Vorlesung Kryptographie

Erste Vorlesung Kryptographie Erste Vorlesung Kryptographie Andre Chatzistamatiou October 14, 2013 Anwendungen der Kryptographie: geheime Datenübertragung Authentifizierung (für uns = Authentisierung) Daten Authentifizierung/Integritätsprüfung

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

Digital Signature and Public Key Infrastructure

Digital Signature and Public Key Infrastructure E-Governement-Seminar am Institut für Informatik an der Universität Freiburg (CH) Unter der Leitung von Prof. Dr. Andreas Meier Digital Signature and Public Key Infrastructure Von Düdingen, im Januar 2004

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Informatik der digitalen Medien 1 2 3 4 5 6 7 8 9 10 11

Informatik der digitalen Medien 1 2 3 4 5 6 7 8 9 10 11 Informatik der digitalen Medien 1 2 3 4 5 6 7 8 9 10 11 25.01.2006 Vorlesung Nr. 12 13 3. 14 Ergänzungs-Studienangebot der Mediendidaktik für Lehramtstudenten Dr. rer. nat. Harald Sack Institut für Informatik

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

KRYPTOLOGIE KRYPTOLOGIE

KRYPTOLOGIE KRYPTOLOGIE KRYPTOLOGIE Die Kryptologie beschäftigt sich mit dem Verschlüsseln von Nachrichten. Sie zerfällt in zwei Gebiete: die Kryptographie, die sich mit dem Erstellen von Verschlüsselungsverfahren beschäftigt,

Mehr

Digitale Signaturen. Sven Tabbert

Digitale Signaturen. Sven Tabbert Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit: Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Integrität: Garantie der Korrektheit (unverändert,

Mehr

Vortrag Keysigning Party

Vortrag Keysigning Party Vortrag Keysigning Party Benjamin Bratkus Fingerprint: 3F67 365D EA64 7774 EA09 245B 53E8 534B 0BEA 0A13 (Certifcation Key) Fingerprint: A7C3 5294 E25B B860 DD3A B65A DE85 E555 101F 5FB6 (Working Key)

Mehr

Symmetrische und Asymmetrische Kryptographie

Symmetrische und Asymmetrische Kryptographie TECHNIK SEMINAR SS2012 Symmetrische und Asymmetrische Kryptographie Maurice 21.05.2012 Dozent: Prof. Dr. Michael Anders 1 Inhalt 1.Einleitung...3 2.Symmetrische Kryptografie:...4 2.1 Transpositionschiffren:...5

Mehr

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg immo@ctdo.de Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg immo@ctdo.de (CTDO) SSL/TLS Sicherheit

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK)

Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK) Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK) Vortrag zum Thema: Symmetrische Verschlüsselung (DES, 3DES, AES) und Schlüsselaustausch (Diffie-Hellman) Referent:

Mehr

Was heißt Kryptographie I? Understanding Cryptography Christof Paar und Jan Pelzl

Was heißt Kryptographie I? Understanding Cryptography Christof Paar und Jan Pelzl Was heißt Kryptographie I? Understanding Cryptography Christof Paar und Jan Pelzl Die Autoren Dr.-Ing. Jan Pelzl Prof. Dr.-Ing. Christof Paar Gliederung Historischer Überblick Begrifflichkeiten Symmetrische

Mehr

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik

Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik Seite 1 von 9 Inhaltsverzeichnis Inhaltsverzeichnis...2 1. Allgemein...3 1.1 Was ist Public Key Verschlüsselung?...3

Mehr

Eine Praxis-orientierte Einführung in die Kryptographie

Eine Praxis-orientierte Einführung in die Kryptographie Eine Praxis-orientierte Einführung in die Kryptographie Mag. Lukas Feiler, SSCP lukas.feiler@lukasfeiler.com http://www.lukasfeiler.com/lectures_brg9 Verschlüsselung & Entschlüsselung Kryptographie & Informationssicherheit

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Verschlüsselungsverfahren

Verschlüsselungsverfahren Verschlüsselungsverfahren Herrn Breder hat es nach dem Studium nach München verschlagen. Seine Studienkollegin Frau Ahrend wohnt in Heidelberg. Da beide beruflich sehr stark einspannt sind, gibt es keine

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

1. Asymmetrische Verschlüsselung einfach erklärt

1. Asymmetrische Verschlüsselung einfach erklärt 1. Asymmetrische Verschlüsselung einfach erklärt Das Prinzip der asymmetrischen Verschlüsselung beruht im Wesentlichen darauf, dass sich jeder Kommunikationspartner jeweils ein Schlüsselpaar (bestehend

Mehr

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 Facharbeit Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 1 Inhaltsverzeichnis 1.) DES 2.) Das Problem der Schlüsselverteilung - Lösung von Diffie, Hellman und Merkle 3.) Die Idee der asymmetrischen

Mehr

Kryptographie eine erste Ubersicht

Kryptographie eine erste Ubersicht Kryptographie eine erste Ubersicht KGV bedeutet: Details erfahren Sie in der Kryptographie-Vorlesung. Abgrenzung Steganographie: Das Kommunikationsmedium wird verborgen. Klassische Beispiele: Ein Bote

Mehr

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Digital Rights Management 4FriendsOnly.com Internet Technologies AG Vorlesung im Sommersemester an der Technischen Universität Ilmenau

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm

Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm Andre Pawlowski, Gymnasium Holthausen, LK Mathematik, 2004/2005

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Sicherheit von PDF-Dateien

Sicherheit von PDF-Dateien Sicherheit von PDF-Dateien 1 Berechtigungen/Nutzungsbeschränkungen zum Drucken Kopieren und Ändern von Inhalt bzw. des Dokumentes Auswählen von Text/Grafik Hinzufügen/Ändern von Anmerkungen und Formularfeldern

Mehr

Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen. Public-Key-Kryptographie (2 Termine)

Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen. Public-Key-Kryptographie (2 Termine) Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen Vorlesung im Sommersemester 2010 an der Technischen Universität Ilmenau von Privatdozent Dr.-Ing. habil. Jürgen

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Informatik für Ökonomen II HS 09

Informatik für Ökonomen II HS 09 Informatik für Ökonomen II HS 09 Übung 5 Ausgabe: 03. Dezember 2009 Abgabe: 10. Dezember 2009 Die Lösungen zu den Aufgabe sind direkt auf das Blatt zu schreiben. Bitte verwenden Sie keinen Bleistift und

Mehr

Modulprüfung (Grundlagen der Informationsverarbeitung und -sicherheit) am 9. 2. 2011 um 14:00 15:30 Uhr im HS 1 (Tivoli) Viel Erfolg!

Modulprüfung (Grundlagen der Informationsverarbeitung und -sicherheit) am 9. 2. 2011 um 14:00 15:30 Uhr im HS 1 (Tivoli) Viel Erfolg! Organisatorisches Modulprüfung (Grundlagen der Informationsverarbeitung und -sicherheit) am 9. 2. 2011 um 14:00 15:30 Uhr im HS 1 (Tivoli) Viel Erfolg! Auswertung Studentenfragebögen Vorbereitung auf die

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6 Kryptographie und Sicherheit 1. Kryptographische Hashfunktionen 2. Passwörter und Identifikation 3. Digitale Signaturen 4. Secret Sharing 5. Anwendungen und Ausblick

Mehr

PKI (public key infrastructure)

PKI (public key infrastructure) PKI (public key infrastructure) am Fritz-Haber-Institut 11. Mai 2015, Bilder: Mehr Sicherheit durch PKI-Technologie, Network Training and Consulting Verschlüsselung allgemein Bei einer Übertragung von

Mehr

Kryptografische Algorithmen

Kryptografische Algorithmen Kryptografische Algorithmen Lerneinheit 5: Weitere symmetrische Kryptosysteme Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 21.9.2015 Einleitung Einleitung Diese

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Workshop Experimente zur Kryptographie

Workshop Experimente zur Kryptographie Fakultät Informatik, Institut Systemarchitektur, Professur Datenschutz und Datensicherheit Workshop Experimente zur Kryptographie Sebastian Clauß Dresden, 23.03.2011 Alltägliche Anwendungen von Kryptographie

Mehr

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung

Mehr

FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION. Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht

FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION. Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht INHALTSÜBERSICHT Risiken für die Sicherheit von Kommunikation und die Freiheit

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

DES der vergangene Standard für Bitblock-Chiffren

DES der vergangene Standard für Bitblock-Chiffren DES der vergangene Standard für Bitblock-Chiffren Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 1 D-55099 Mainz Vorlesung Kryptologie 1. März 1991, letzte Änderung:

Mehr

Bernd Blümel. Verschlüsselung. Prof. Dr. Blümel

Bernd Blümel. Verschlüsselung. Prof. Dr. Blümel Bernd Blümel 2001 Verschlüsselung Gliederung 1. Symetrische Verschlüsselung 2. Asymetrische Verschlüsselung 3. Hybride Verfahren 4. SSL 5. pgp Verschlüsselung 111101111100001110000111000011 1100110 111101111100001110000111000011

Mehr

Betriebsarten von Blockchiffren. ECB Electronic Code Book Mode. Padding. ECB Electronic Code Book Mode

Betriebsarten von Blockchiffren. ECB Electronic Code Book Mode. Padding. ECB Electronic Code Book Mode Betriebsarten von Blockchiffren Blocklänge ist fest und klein. Wie große Mengen an Daten verschlüsseln? Blockchiffre geeignet verwenden: ECB Mode (Electronic Code Book) CBC Mode (Cipher Block Chaining)

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

Einfache kryptographische Verfahren

Einfache kryptographische Verfahren Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b

Mehr

Was ist Kryptographie

Was ist Kryptographie Was ist Kryptographie Kryptographie Die Wissenschaft, mit mathematischen Methoden Informationen zu verschlüsseln und zu entschlüsseln. Eine Methode des sicheren Senden von Informationen über unsichere

Mehr

Kryptographie. nur mit. Freier Software!

Kryptographie. nur mit. Freier Software! Michael Stehmann Kryptographie nur mit Freier Software! Kurze Einführung in Kryptographie ErsterTeil: Bei der Kryptographie geht es um die Zukunft von Freiheit und Demokratie Artur P. Schmidt, 1997 http://www.heise.de/tp/artikel/1/1357/1.html

Mehr

5. Signaturen und Zertifikate

5. Signaturen und Zertifikate 5. Signaturen und Zertifikate Folgende Sicherheitsfunktionen sind möglich: Benutzerauthentikation: Datenauthentikation: Datenintegrität: Nachweisbarkeit: Digitale Unterschrift Zahlungsverkehr Nachweis

Mehr

Das wichtigste Kennzeichen asymmetrischer Verschlüsselungsverfahren ist, dass die Kommunikationspartner dabei anstelle eines

Das wichtigste Kennzeichen asymmetrischer Verschlüsselungsverfahren ist, dass die Kommunikationspartner dabei anstelle eines Prof. Dr. Norbert Pohlmann, Malte Hesse Kryptographie: Von der Geheimwissenschaft zur alltäglichen Nutzanwendung (IV) Asymmetrische Verschlüsselungsverfahren In den letzten Ausgaben haben wir zunächst

Mehr

Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten

Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten Versuch: Eigenschaften einer Unterhaltung Instant Messaging Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten welche Rollen gibt es in einem IM-System? Analysieren

Mehr

Denn es geht um ihr Geld:

Denn es geht um ihr Geld: Denn es geht um ihr Geld: [A]symmetrische Verschlüsselung, Hashing, Zertifikate, SSL/TLS Warum Verschlüsselung? Austausch sensibler Daten über das Netz: Adressen, Passwörter, Bankdaten, PINs,... Gefahr

Mehr

Fachhochschule Frankfurt am Main Fachbereich 2: Informatik WS 2008/2009. IT-Security

Fachhochschule Frankfurt am Main Fachbereich 2: Informatik WS 2008/2009. IT-Security Fachhochschule Frankfurt am Main Fachbereich 2: Informatik WS 2008/2009 IT-Security Teil 2: Grundlagen der Kryptographie DES, RSA, Hashes Dr. Erwin Hoffmann E-Mail: it-security@fehcom.de Risiken bei ungesicherter

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

Seminar zur Kryptologie

Seminar zur Kryptologie Seminar zur Kryptologie Practical Key Recovery Schemes Basierend auf einer Veröffentlichung von Sung-Ming Yen Torsten Behnke Technische Universität Braunschweig t.behnke@tu-bs.de Einführung Einführung

Mehr

IT Sicherheit: Authentisierung

IT Sicherheit: Authentisierung Dr. Christian Rathgeb IT-Sicherheit, Kapitel 4 / 18.11.2015 1/21 IT Sicherheit: Dr. Christian Rathgeb Hochschule Darmstadt, CASED, da/sec Security Group 18.11.2015 Dr. Christian Rathgeb IT-Sicherheit,

Mehr

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr.

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY 1 Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. Bernd Borchert GLIEDERUNG 1. Motivation Gründe für die Entwicklung Ideen für

Mehr

3 Betriebsarten bei Blockverschlüsselung

3 Betriebsarten bei Blockverschlüsselung 3 Betriebsarten bei Blockverschlüsselung Die Anwendung einer Blockverschlüsselungsfunktion f : F n 2 Fn 2 auf längere (oder kürzere) Bitfolgen erfordert zwei Maßnahmen: 1 die Folge in n-bit-blöcke aufspalten,

Mehr

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008 RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile

Mehr