4.4 Taylorentwicklung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4.4 Taylorentwicklung"

Transkript

1 4.4. TAYLORENTWICKLUNG Taylorentwicklung. Definitionen f sei eine reellwertige m + -mal stetig differenzierbare Funktion der n Variablen x bis x n auf einem Gebiet M R n. Die Verbindungsgerade der Punkte a und a + h liege ganz in M. Dann gilt die Taylorformel Taylorformel f( a + h) = T m f( h) + R m f( h) = m k=0 ( ( h) k f ) ( ( a) + ( h) m+ f ) ( a + ϑ k! (m + )! h), ϑ ]0, [. Wie in Kapitel.0 heißt T m f (m-tes) Taylorpolynom (in den n Variablen h bis h n ) und R m f m-tes Restglied. Das Taylorpolynom enthält die Werte von f und den partiellen Ableitungen bis zur m-ten Ordnung am Entwicklungspunkt a, das Restglied die Werte der m + - sten partiellen Ableitungen an einer Zwischenstelle a + ϑ h, ϑ ]0, [. Dabei ist der Nabla-Operator = (,,..., x x (h, h,..., h n ). h ist das (Matrix-)Produkt dieser beiden Vektoren, also ( h) k = ( h + + ) k. h n x x n Taylorpolynom Restglied x n ) und h der Vektor Nabla- Beim Ausmultiplizieren dieses Ausdrucks kommt es wegen des Satzes von Schwarz auf die Reihenfolge der Ableitungsoperatoren nicht an. In konkreten Fällen verwendet man als Variablennamen statt x bis x n oft x, y usw. Andere übliche Schreibweise der Taylorformel: wenn man x = a + h setzt, ist h = x a und man hat Operator f( x) = m k=0 ( ( ( x a)) k f ) ( ( a) + ( ( x a)) m+ f ) ( a + ϑ( x a)) k! (m + )! Bei dieser Schreibweise muß man unbedingt beachten, daß der Nablaoperator in der Klammer nur auf f und nicht auf den Vektor x wirkt! Für den Entwicklungspunkt x = 0 lautet die Formel Achtung! f( x) = m k=0 ( ( x) k f ) ( ( 0) + ( x) m+ f ) (ϑ x) k! (m + )!

2 84 KAPITEL 4. DIFFERENTIALRECHNUNG IM R N. Berechnung Fall n = Berechnung im Fall n = Hier verwenden wir die Variablen x und y. Es ist = ( x, y ) und h = (h, h ). Damit hat das Produkt h die Form h = x h + y h und die Potenz ( h) k läßt sich mit Hilfe der binomischen Formel auswerten: ( h) k f(x, y) = k j=0 Die Taylorformel hat also die Gestalt ( k j ) k x j y k j f(x, y)hj h k j. f(a + h, b + h ) = + (m + )! m k=0 m+ j=0 ( ) k k ( k k! j=0 j ( ) m + ( m+ ϑ liegt wie immer zwischen Null und Eins. j x j y f ) (a, b) h j h k j k j x j y f ) (a + ϑh m+ j, b + ϑh ) h j h m+ j Daraus ergibt sich folgendes praktische Verfahren, daß beispielhaft für den Fall m = (d.h. Taylorentwicklung bis zur zweiten Ordnung, das Restglied enthält die dritten Ableitungen) aufgeschrieben ist: Man schreibt alle partiellen Ableitungen bis zur Ordnung m + in einem Schema auf, das wie das Pascalsche Dreieck aufgebaut ist.. Dreieck f 0. Zeile f x f y. Zeile f xx f xy f yy m-te Zeile, hier. Zeile f xxx f xxy f xyy f yyy m + -ste, hier 3. Zeile In der ersten bis zur m-ten Zeile werden die Werte der Funktion und Ableitungen an der Entwicklungsstelle (a, b) notiert in der letzten, also der m + -sten Zeile die Werte an einer Zwischenstelle (ã, b) mit ã = a + ϑh und b = b + ϑh :. Dreieck f(a, b) 0. Zeile f x (a, b) f y (a, b). Zeile f xx (a, b) f xy (a, b) f yy (a, b) m-te Zeile f xxx (ã, b) f xxy (ã, b) f xyy (ã, b) f yyy (ã, b) m + -ste Zeile

3 4.4. TAYLORENTWICKLUNG 85 Darunter (oder daneben, wenn der Platz reicht), schreibt man in einem Pascalschen Dreieck die Terme auf, die bei der Binomialentwicklung von (h + h ) k entstehen und daneben die Kehrwerte von k! 0. Zeile h h. Zeile h h h h m! = m-te Zeile h 3 3h h 3h h h 3 (m + )! = m + -ste Zeile 3. Dreieck 3 Jeder Term des zweiten Dreiecks (das die Werte an der Entwicklungs- bzw. Zwischenstelle enthält) wird mit dem entsprechenden Term des dritten Dreiecks (mit den Teilen von (h +h ) k ) und mit dem in der entsprechenden Zeile stehenden Kehrwert von k! multipliziert. Alle diese Werte werden addiert. In der Entwicklung bis zur zweiten Ordnung bedeutet das f(a + h, b + h ) 0. Zeile = f(a, b). Zeile + f x (a, b) h + f y (a, b) h. Zeile + f xx (a, b) h + f xy(a, b) h h + f yy h 3. Zeile + f xxx (a + ϑh, b + ϑh ) h 3 + f xxy(a + ϑh, b + ϑh ) 3h h + f xyy (a + ϑh, b + ϑh ) 3h h + f yyy(a + ϑh, b + ϑh ) h 3 Beispiel : Taylorentwicklung bis zur zweiten Ordnung von f(x, y) = x y am Punkt (a, b) = (, ). Alle Ableitungen bis zur dritten Ordnung: y x y y y 3 x y x y 3 x y 4

4 8 KAPITEL 4. DIFFERENTIALRECHNUNG IM R N In den Zeilen 0 bis des linken Dreiecks stehen die Werte für x = und y =. In der dritten (der letzten) Zeile stehen die Werte der dritten Ableitungen an der Stelle ã = +ϑh und b = +ϑh. Daneben stehen die Teile von (h +h ) k und die Kehrwerte der Fakultäten. h h 0 4 h h h h ã 0 0 h 3 3h h 3h h h 3 b3 b4 3 Damit sieht die gesuchte Taylorentwicklung so aus: + h + h = ( ) + ( h h ) + ( h h + 4 h ) + ( + ϑh ) 3h h 3 + ( + ϑh ) h 3 ( + ϑh ) 4 = + h h h h + h + R (h, h ) mit R (h, h ) = h h ( + ϑh ) ( + ϑh )h 3 3 ( + ϑh ) 4 allgemeiner Fall Allgemeiner Fall (drei und mehr Variable) Im allgemeinen geht man bei einer Taylorentwicklung bis zur m-ten Ordnung so vor: Der Ausdruck ( h) k = ( x n h n ) k wird für k = bis h + + x k = m ausmultipliziert. Wenn man auch das Restglied benötigt, muß man auch die m + -ste Potenz bilden. Die nötigen partiellen Ableitungen von f werden gebildet. 3 Das Taylorpolynom wird mit Hilfe der Ableitungswerte am Entwicklungspunkt a aufgebaut, das Restglied mit Werten an einer Zwischenstelle a + ϑ h.

5 4.4. TAYLORENTWICKLUNG 87 Beispiel : Zweites Taylorpolynom von f(x, y, z) = +yz im Nullpunkt. Benötigt wird ( x h + y h + z h ) 3 = x h + y h + z h 3 + x y h h + x z h h 3 + y z h h 3 Die ersten partielle Ableitungen sind f x = +yz, f y = z+yz und f z = y+yz. Es gibt zweite partielle Ableitungen: f xx = 4+yz, f yy = z +yz, f zz = y +yz f xy = z+yz, f xz = y+yz, f yz = ( + yz)+yz 3 Die Werte der Ableitungen am Entwicklungspunkt x = y = z = 0 sind f(0, 0, 0) = f x (0, 0, 0) =, f y (0, 0, 0) = f z (0, 0, 0) = 0 f xx (0, 0, 0) = 4, f yz (0, 0, 0) = f yy (0, 0, 0) = f zz (0, 0, 0) = f xy (0, 0, 0) = f xz (0, 0, 0) = 0 Damit hat das zweite Taylorpolynom die Form T f(h, h, h 3 ) = + h + 4h + h h 3 = + h + h + h h 3. Wenn man will, kann man jetzt auch h, h und h 3 durch x, y und z ersetzen: T f(x, y, z) = + x + x + yz. Vektorwertige Funktionen Die oben angegeben Formel dient der Taylorentwicklung reellwertiger Funktionen. Ist f eine R k -wertige Funktion, so geht man nach der Grundregel auf S. 50 vor. Wichtig: Bei der Bestimmung des Restglieds muß man in jeder Komponente eine eigene Zwischenstelle nehmen. ( ) Das erste Restglied R f(h, h ) bei der Taylorentwicklung von f f (x, y) = f (x, y) an der Stelle (a, b) = (0, 0) ist ( fxx (ϑ h, ϑ h )h + f xy (ϑ h, ϑ h )h h + f yy (ϑ h, ϑ h )h f xx (ϑ h, ϑ h )h + f xy (ϑ h, ϑ h )h h + f yy (ϑ h, ϑ h )h ) Vektorwertige Funktionen mit ϑ ]0, [ und ϑ ]0, [.

6 88 KAPITEL 4. DIFFERENTIALRECHNUNG IM R N Analytische Funktionen Analytische Funktionen Analog zu Kapitel. heißt eine auf einem Gebiet G R n definierte Funktion f analytisch, wenn man sie um jeden Punkt von G in eine konvergente Potenzreihe in den Variablen x bis x n entwickeln kann. Eigenschaften: Alle Funktionen, die sich aus (eindimensionalen) analytischen Funktionen zusammensetzen, sind in ihrem Definitionsbereich analytisch. Analytische Funktionen lassen sich stets in Taylorreihen entwickeln. Die Taylorreihe konvergiert in einer Umgebung des Entwicklungspunkts gegen die Funktion. Das Taylorpolynom erhält man als den entsprechenden Abschnitt der Potenzreihe der Funktion. Bei der Ermittlung der Potenzreihen darf man Reihen ineinander einsetzen und miteinander multiplizieren. 3. Beispiele Beispiel 3: Taylorentwicklung von f(x, y) = y um (0, 0), Angabe des Restglieds. ex bis zur zweiten Ordnung Da auch das Restglied berechnet wird, müssen alle Ableitungen bis zur dritten Ordnung berechnet werden: y y y y ( y) ( y) ( y) 3 ( y) ( y) 3 ( y) 4 In Funktion, erster und zweiter Ableitung werden die Werte am Entwicklungspunkt (0, 0) aufgeschrieben, bei der dritten Ableitung die Werte an einer Stelle (ã, b) = (ϑx, ϑy) mit ϑ ]0, [. Daneben stehen die Binomialkoeffizienten und die Kehrwerte der Fakultäten. eã b / h h / h h h h / eã eã eã ( b) ( b) 3 ( b) h 3 4 3h h 3h h h 3 /

7 4.4. TAYLORENTWICKLUNG 89 3 Damit wird das Taylorpolynom und das Restglied aufgebaut: f(h, h ) = + (h + h ) + (h + h h + h ) (Taylorpolynom) + ( eã eã eã b h3 + 3 ( b) h h + 3 ( b) h h 3 + eã ) ( b) 4 h3 (Restglied) Jetzt kann man h und h durch x und y ersetzen: f(x, y) = + x + y + x + xy + y + eϑx ( ϑy x3 + ϑ ]0, [ 3 ( ϑy) x y + ( ϑy) 3 xy + ( ϑy) 4 y3) Wird die gesamte Taylorreihe von f gesucht, kann man so vorgehen: Da f sich aus analytischen Funktionen zusammensetzt und daher auch analytisch ist, ist die Taylorreihe mit der Potenzreihe identisch. Diese erhält man, wenn man die Potenzreihen der Faktoren miteinander multipliziert: y = ex y = n! xn n=0 y m = m=0 n,m=0 n! xn y m. Das zweite Taylorpolynom kann man aus dieser Darstellung erhalten, wenn man alle Glieder heraussucht, in denen n + m ist. Damit erhält man natürlich wieder dasselbe Polynom wie oben: T f(x, y) = }{{} n=m=0 + x + y }{{} n+m= + x + xy + y. } {{} n+m= Beispiel 4: Entwicklung von f(x, y) = (x + y) 3 um (a, b) = (, ) Alle Ableitungen von f bis zur dritten Ordnung: (x + y) 3 3(x + y) (x + y) (x + y) (x + y) 4(x + y) 4 48 Alle weiteren Ableitungen sind Null.

8 90 KAPITEL 4. DIFFERENTIALRECHNUNG IM R N Jetzt werden die Werte am Entwicklungspunkt x =, y = aufgeschrieben. Daneben stehen die Binomialkoeffizienten und die Kehrwerte der Fakultäten. / 3 h h / 4 h h h h / 4 48 h 3 3h h 3h h h 3 / 3 Da alle höheren Ableitungen Null sind, sind auch die entsprechenden Restglieder Null und die Funktion stimmt mit dem Taylorpolynom überein: f( + h, + h ) = + 3h + h + 3h + h h + h + h 3 + h h + h h + 8h 3 Ersetzt man h durch x + und h durch y, so erhält man f( + h, + h ) = f(x, y) = (x + y) 3 (x + y) 3 = + 3(x + ) + (y ) + 3(x + ) + (x + )(y ) + (y ) + (x + ) 3 + (x + ) (y ) + (x + )(y ) + 8(y ) 3 Alternative: In (x+y) 3 ersetzt man x durch +h und y durch h. Dann multipliziert man die dritte Potenz aus und ersetzt h wieder durch x + und h durch y. Beispiel 5: Die Taylorreihe von sin(x + y) Da die Funktion analytisch ist, stimmen Taylor- und Potenzreihe überein. Die Potenzreihe erhält man durch Einsetzen von x + y in die Sinusreihe: sin(x + y) = n=0 ( ) n + Mit = m ( ) n (n + )! (x + y)n+ = (n + )! m!(n + m)! sin(x + y) = n n=0 m=0 n=0 erhält man ( ) n (n + )! n+ m=0 ( ) n m!(n + m)! xm y n+ m. ( ) n + x m y n+ m. m

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Taylorreihen. Kapitel 9. Lernziele. Taylorreihe. (x x 0 ) + f (x 0 ) 2! (x x 0 ) f (n) (x 0 ) (x x 0 ) n. Taylorreihe und MacLaurinreihe

Taylorreihen. Kapitel 9. Lernziele. Taylorreihe. (x x 0 ) + f (x 0 ) 2! (x x 0 ) f (n) (x 0 ) (x x 0 ) n. Taylorreihe und MacLaurinreihe Kapitel 9 Taylorreihen Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 1 / 25 Lernziele Taylorreihe und MacLaurinreihe Beispiele Alternative Schreibweisen Approimation der Veränderung einer

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Kapitel 4: Variable und Term

Kapitel 4: Variable und Term 1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Binomischer Satz. 1-E Vorkurs, Mathematik

Binomischer Satz. 1-E Vorkurs, Mathematik Binomischer Satz 1-E Vorkurs, Mathematik Terme Einer der zentralen Begriffe der Algebra ist der Term. Definition: Eine sinnvoll verknüpfte mathematische Zeichenreihe bezeichnet man als Term. Auch eine

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Mathematik, Klasse 7, Terme und Termwerte

Mathematik, Klasse 7, Terme und Termwerte Mathematik, Klasse 7, Terme und Termwerte. Finde den Term und berechne dann den Termwert für x = - 5 und x = 00. x = x = x = 3 x = 4 x = 5 x = - 5 x =00 T (x) = 5 8 4 7 T (x) = 3 6 9-5 T 3 (x) = 0 3 8

Mehr

Differenzierbarkeit von Funktionen mehrerer Variablen

Differenzierbarkeit von Funktionen mehrerer Variablen Kapitel 1 Differenzierbarkeit von Funktionen mehrerer Variablen 11 Definition und grundlegende Eigenschaften Bemerkung 11 Motivation Auch die Differenzierbarkeit von Funktionen mehrerer Veränderlicher

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene

Mehr

A.12 Nullstellen / Gleichungen lösen

A.12 Nullstellen / Gleichungen lösen A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Potenzen, bei denen der Exponent negativ oder 0 ist 2 2 Potenzregeln 2 3 Terme mit Wurzelausdrücken 4 4 Wurzelgesetze 4 5 Das

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe Aufgabenblatt Aufgaben zum Thema Potenzgesetze 1. Unterhaltsame Potenzgesetze Im Unterricht wurden die folgenden 5 Potenzgesetze behandelt: 1. Gesetz: 2. Gesetz: 3. Gesetz: 4. Gesetz: 5. Gesetz: a n a

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

26. Höhere Ableitungen

26. Höhere Ableitungen 26. Höhere Ableitungen 331 26. Höhere Ableitungen Im letzten Kapitel haben wir gesehen, wie man für Abbildungen zwischen mehrdimensionalen Räumen das Konzept der Differenzierbarkeit definieren und für

Mehr

Lösen von Differentialgleichungen durch Reihenentwicklung

Lösen von Differentialgleichungen durch Reihenentwicklung Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri Binomischer Lehrsatz Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 20 Inhaltsverzeichnis Nötiges Vorwissen. Fakultät................................ Definition...........................2

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Höhere Mathematik II. (Vorlesungskript)

Höhere Mathematik II. (Vorlesungskript) Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Vorlesungskript) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen Kapitel 8.3 Anwendungen der partiellen Differentiation (Teil 1): Kettenregel und Linearisierung

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y

Mehr

ur Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk

ur Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk Mathematik f ur Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 1 Tutorium Hinweis:

Mehr

Übungen mit dem Applet Interpolationspolynome

Übungen mit dem Applet Interpolationspolynome Interpolationspolynome 1 Übungen mit dem Applet Interpolationspolynome 1 Ziele des Applets... 2 2 Übungen mit dem Applet... 2 2.1 Punkte... 3 2.2 y=sin(x)... 3 2.3 y=exp(x)... 4 2.4 y=x 4 x 3 +2x 2 +x...

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

Termumformungen (ohne binomische Formeln)

Termumformungen (ohne binomische Formeln) ALGEBRA Terme Termumformungen (ohne binomische Formeln) Datei Nr. 0 Stand 6. Oktober 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.schule 0 Term-Umformungen Inhalt DATEI 0 Zahlenterme

Mehr

Repetitionsaufgaben Termumformungen

Repetitionsaufgaben Termumformungen Kantonale Fachschaft Mathematik Repetitionsaufgaben Termumformungen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkung... 1 B) Lernziele... 1 C)

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

(D.5) Ein beliebiges Element γ der endlichdimensionalen Grassmann-Algebra läßt sich darstellen als ein Polynom der Form

(D.5) Ein beliebiges Element γ der endlichdimensionalen Grassmann-Algebra läßt sich darstellen als ein Polynom der Form D SUPERZAHLEN 113 D Superzahlen Die folgenden Ausführungen orientieren sich an dem Buch von Buchbinder & Kuzenko [BK95]. D.1 Algebra und Generatoren einer Algebra Definition: Eine Algebra ist ein linearer

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr