Rekursion und Induktion

Größe: px
Ab Seite anzeigen:

Download "Rekursion und Induktion"

Transkript

1 Rekursion und Induktion Rekursion und Induktion Quick Start Informatik Theoretischer Teil WS2011/ Oktober 2011

2 Rekursion und Induktion > Rekursion > Was ist Rekursion? Definition der Rekursion fu r Funktionen Definition Eine rekursive Funktion ist eine Funktion, die sich selber aufruft Beispiel: Wir kennen (aus der Schule): n! = n Wir ko nnen dies umformulieren zu einer rekursiven Funktion: f :N N f (0) = 1 f (n) = f (n 1) n

3 Rekursion und Induktion > Rekursion > Was ist Rekursion? Auswertung der Funktion f :N N f (0) = 1 f (n) = f (n 1) n Wir ko nnen diese Funktion wie folgt auswerten: f (3) = f (2) 3 = f (1) 2 3 = f (0) = = 6 Wir vermuten f (n) := n!.

4 Rekursion und Induktion > Rekursion > Anwendungen in der Informatik Anwendung von Rekursion in der Informatik Die Rekursion hat viele Anwendungen in der Informatik zum Beispiel als Programmiertechnik. Beispiel: f :N N f (0) = 1 f (n) = f (n 1) n wa re programmiert in Python: def f (n ) : i f n == 0 : return 1 else : r e t u r n f ( n 1) n

5 Rekursion und Induktion > Rekursion > Anwendungen in der Informatik weitere Anwendungen in der Informatik Programmiertechnik Es gibt Programiersprachen, in denen die Rekursion sehr stark optimiert ist. (Beispiel: Haskell) Ersetzen in einigen Programmiersprachen, Kontrollstrukturen wie die for-schleife (siehe: Haskell (PRG-2)) Gu ltige Syntax fu r Programmiersprachen werden (mu ssen meist sogar) rekursiv definiert werden Der U bersetzer (Compiler) arbeitet meist rekursiv

6 Rekursion und Induktion > Rekursion > Basis- und Rekursionsfall... wieder ein bisschen Fachchinesisch Definition (Basisfall) Der Basisfall in einer Rekursion beschreibt den Teil, in dem die Funktion nicht noch einmal aufgerufen wird. f :N N f (0) = 1 f (n) = f (n 1) n Quizfrage der Folie Wo ist hier der Basisfall??

7 Rekursion und Induktion > Rekursion > Basis- und Rekursionsfall... und noch mehr Fachchinesisch :-P Definition (Rekursionsfall) Der Rekursionsfall in einer Rekursion beschreibt den Teil, in dem die Funktion noch einmal aufgerufen wird. f :N N f (0) = 1 f (n) = f (n 1) n Quizfrage der Folie Wo ist hier der Rekursionsfall??

8 Rekursion und Induktion > Rekursion > Rekursionstu rmchen Tu rmchen bauen Wir ko nnen uns die einfache Rekursion auch wie ein Tu rmchen vorstellen. Sei f eine rekursive Funktion. f (n) stellt das Dach dar. Teile, die darunter sind, werden von dem oberen Teil aufgerufen. Irgendwann haben wir einen Boden und das ist dann unser Basisfall. (Animation siehe na chste Folie)

9 Rekursion und Induktion > Rekursion > Rekursionstu rmchen...zur Animation

10 Rekursion und Induktion > Rekursion > Rekursionstu rmchen...und als Sequenzdiagramm

11 Rekursion und Induktion > Induktion > Einleitung Wie kann ich nachpru fen, dass rekursive Aussagen richtig sind? Wir erinnern uns: Wir haben unseren Python Code: def f (n ) : i f n == 0 : return 1 else : r e t u r n f ( n 1) n und wir haben dann vermutet, dass dieser Code die Fakulta t: 0! = 1 n! = 1 2 n berechnet. Tut er das wirklich????

12 Rekursion und Induktion > Induktion > Einleitung Die vollsta ndige Induktion Auch dafu r gibt es eine Beweistechnik: Die vollsta ndig Induktion. Sie besteht aus zwei Teilen: Induktionsanfang: Wir u berpru fen, ob die Aussagen fu r die Rekursionsbasis gilt. Induktionsschritt: Wir nehmen an, dass im rekursiven Aufruf unsere Aussage stimmt. Dann weisen wir das nur noch fu r den Rest nach! Schauen wir uns mal das Beispiel von der vorherigen Folie an!

13 Rekursion und Induktion > Induktion > Rekursive Definition der natu rlichen Zahlen Was kann so eine Induktion noch? Aussagen fu r natu rliche Zahlen beweisen. Wir hatten: N = {0, 1, 2,...} Geht diese Definition auch rekursiv? In der Tat: Wir bauen ein Tu rmchen mit Zahlen. Unten ist die 0 und den Nachfolger stecken wir drauf.

14 Rekursion und Induktion > Induktion > Rekursive Definition der natu rlichen Zahlen...zur Animation

15 Rekursion und Induktion > Induktion > Rekursive Definition der natu rlichen Zahlen Rekursion in nat. Zahlen Wir haben hier unseren N-Turm. Die Basis: 0 ist eine natu rliche Zahl. Die Rekursion: Wenn n eine natu rliche Zahl ist, dann ist der Nachfolger (also ein Stockwerk ho her) n + 1 ebenfalls eine natu rliche Zahl.

16 Rekursion und Induktion > Induktion > Rekursive Definition der natu rlichen Zahlen Wenn wir unser N-Turm betrachten, dann... gilt fu r die Induktion fu r natu rliche Zahlen: Der Induktionsanfang : Die Aussage ist fu r n = 0 zu pru fen. (Fu r Mengen wie {n n N, n 2} nehmen wir n = 2 als Induktionsanfang) Der Induktionsschritt: Wir nehmen an, dass die Aussage fu r ein beliebiges n N gilt, und weisen dann nach, dass es fu r n + 1 (im Turm eine Etage ho her) gilt.

17 Rekursion und Induktion > Induktion > Rekursive Definition der natu rlichen Zahlen Das Prinzip der Induktion Gilt eine Aussage fu r n = 0 und gilt die Aussage unter der Annahme, dass sie fu r n gilt, auch fu r n + 1, dann gilt sie fu r alle natu rlichen Zahlen.

18 Rekursion und Induktion > Induktion > Summen- und Produktzeichen Ein paar Kleinigkeiten... Definition Summen- und Produktzeichen Sei n N. Seien a1,..., an beliebige Zahlen. Dann ist: n X ai = a1 + + an i=1 n Y a1 = a1 an i=1 Spezialfa lle: 0 X i=1 ai = 0 0 Y ai = 1 i=1

19 Rekursion und Induktion > Induktion > Beispiel fu r die vollsta ndige Induktion fu r natu rliche Zahlen Jetzt zum Beispiel Induktion fu r nat. Zahlen Der Klassiker: Beweise: Satz Fu r alle n N gilt: n X i=0 i= n (n + 1) 2 Beweis: siehe Tafel

20 Rekursion und Induktion > Induktion > Beispiel fu r die vollsta ndige Induktion fu r natu rliche Zahlen Wie geht es jetzt weiter?... mit der Diskreten Modellierung Mengen, Beweise Aussagenlogik Graphentheorie Markov-Ketten Logik erster Stufe kontextfreie Grammatiken

21 Rekursion und Induktion > Induktion > Beispiel fu r die vollsta ndige Induktion fu r natu rliche Zahlen noch Fragen??? Quelle Bild: fragezeichen.png

Kontraposition und Widerspruch

Kontraposition und Widerspruch Kontraposition und Widerspruch Kontraposition und Widerspruch Quick Start Informatik Theoretischer Teil WS2/2. Oktober 2 Kontraposition und Widerspruch > Beweis durch Kontraposition > Motivation Neue Beweistechnik??

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12 Logik Logik Quick Start Informatik Theoretischer Teil WS2/2 7. Oktober 2 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine wichtige

Mehr

Relationen und Funktionen

Relationen und Funktionen Relationen und Funktionen Relationen und Funktionen Quick Start Informatik Theoretischer Teil WS2011/12 11. Oktober 2011 Relationen und Funktionen > Relationen Relationen Relationen und Funktionen > Relationen

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Sommersemester 2018 Ronja Düffel 16. März 2018 Induktion und Rekursion > Mathematische Beweistechniken > Vollständige Induktion Der kleine Gauß Induktion

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Mengenlehre. Mengenlehre. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12

Mengenlehre. Mengenlehre. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12 Mengenlehre Mengenlehre Quick Start Informatik Theoretischer Teil WS2011/12 10. Oktober 2011 Mengen Mengen Den Begriff Menge hat Cantor wie folgt beschrieben: Definition (Menge) Unter einer Menge verstehen

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Mächtigkeit von LOOP-Programmen. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Mächtigkeit von LOOP-Programmen. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Mächtigkeit von LOOP-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Die Programmiersprache LOOP Syntax Elemente eines LOOP-Programms Variablen

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Induktion und Rekursion WS 2012/2013 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise:

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 26. Oktober 2017 1/35 Abbildungen Boolesche Algebra Summen- und Produktzeichen Definition

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

Informatik I Für eine feste Zahl. Informatik I Benutzereingaben Eine Funktion factorial Iteration von unten. 18.

Informatik I Für eine feste Zahl. Informatik I Benutzereingaben Eine Funktion factorial Iteration von unten. 18. Informatik I 25. Januar 2011 18. Schleifen und Iteration Informatik I 18. Schleifen und Iteration Jan-Georg Smaus Albert-Ludwigs-Universität Freiburg 25. Januar 2011 18.1 Für eine feste Zahl 18.2 Benutzereingaben

Mehr

Vorkurs Informatik WiSe 17/18

Vorkurs Informatik WiSe 17/18 Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Nicole Naczk, 10.10.2017 Technische Universität Braunschweig, IPS Überblick Einleitung Türme von Hanoi Rekursion Beispiele 10.10.2017 Dr. Werner Struckmann

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

2. Klausur Einführung in die Theoretische Informatik Seite 1 von Welche der folgenden Aussagen zur Aussagenlogik ist falsch?

2. Klausur Einführung in die Theoretische Informatik Seite 1 von Welche der folgenden Aussagen zur Aussagenlogik ist falsch? 2. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welche der folgenden Aussagen zur Aussagenlogik ist falsch? A. Für jede Formel A existiert eine DNF D und eine KNF K, sodass A D K

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Tag 5. Repetitorium Informatik (Java) Dozent: Marius Kamp Lehrstuhl für Informatik 2 (Programmiersysteme)

Tag 5. Repetitorium Informatik (Java) Dozent: Marius Kamp Lehrstuhl für Informatik 2 (Programmiersysteme) Tag 5 Repetitorium Informatik (Java) Dozent: Marius Kamp Lehrstuhl für Informatik 2 (Programmiersysteme) Friedrich-Alexander-Universität Erlangen-Nürnberg Wintersemester 2017/2018 Übersicht Methoden Deklaration

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Syntax der Aussagenlogik

Syntax der Aussagenlogik Einführende Beispiele bitte im Buch nachlesen: Uwe Schöning: Logik für Informatiker. 5. Auflage, Spektrum Akad. Verlag, 2. Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln.

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt 10 Prof. Dr. J. Csirik 7. Januar 00 randt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am 16.

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 4: Formale Sprachen 1 Motivation 2 Rechtsreguläre Grammatiken 3 Exkurs: Abgeschlossenheit 4 Strukturelle Induktion

Mehr

2. Algorithmenbegriff

2. Algorithmenbegriff 2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von

Mehr

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Grundlagen der Programm- und Systementwicklung Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Technische Universität München Institut für Informatik Software &

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I µ-rekursive Funktionen WS 2012/2013 Primitiv-rekursive Funktionen Jede primitiv-rekursive Funktion ist Loop-berechenbar. Das bedeutet, dass jede PR-Funktion in der Loop-Programmiersprache formuliert

Mehr

Tutoraufgabe 1 (Vollständige Induktion):

Tutoraufgabe 1 (Vollständige Induktion): für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Tutoriumslösung - Übung 5 (Abgabe..0) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Vollständige Induktion):

Mehr

INFORMATIK FÜR BIOLOGEN

INFORMATIK FÜR BIOLOGEN Technische Universität Dresden 15012015 Institut für Theoretische Informatik Professur für Automatentheorie INFORMATIK FÜR BIOLOGEN Musterklausur WS 2014/15 Studiengang Biologie und Molekulare Biotechnologie

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

Informatik für Schüler, Foliensatz 18 Rekursion

Informatik für Schüler, Foliensatz 18 Rekursion Prof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 26. März 2009 1/10 Informatik für Schüler, Foliensatz 18 Rekursion Prof. G. Kemnitz Institut für Informatik, Technische Universität

Mehr

8 Anwendung: Suchen. Folge a ganzer Zahlen; Element x. Wo kommt x in a vor?

8 Anwendung: Suchen. Folge a ganzer Zahlen; Element x. Wo kommt x in a vor? 8 Anwendung: Suchen Gegeben: Gesucht: Folge a ganzer Zahlen; Element x Wo kommt x in a vor? Naives Vorgehen: Vergleiche x der Reihe nach mit a[0], a[1], usw. Finden wir i mit a[i] == x, geben wir i aus.

Mehr

Übungspaket 22 Rekursive Funktionsaufrufe

Übungspaket 22 Rekursive Funktionsaufrufe Übungspaket 22 Rekursive Funktionsaufrufe Übungsziele: Skript: 1. Technische Voraussetzungen für rekursive Funktionsaufrufe 2. Umsetzung mathematisch definierter Rekursionen in entsprechende C-Programme

Mehr

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar?

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? 3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? A. Gegeben eine kontextfreie Grammatik G. Gibt es ein

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 -

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 - 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 -

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 - 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

Topologische Räume und stetige Abbildungen

Topologische Räume und stetige Abbildungen TU Dortmund Mathematik Fakultät Proseminar Lineare Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Julia Schmidt Dozent: Prof. Dr. L. Schwachhöfer Datum: 29.11.2013 Inhaltsverzeichnis

Mehr

Inhalt Kapitel 3: Induktion und Termination

Inhalt Kapitel 3: Induktion und Termination Inhalt Kapitel 3: Induktion und Termination 1 Wohlfundierte Relationen Ackermannfunktion 2 Untere Schranke für Türme von Hanoi Weitere Beispiele 52 Wohlfundierte Relationen Wohlfundierte Relationen Definition

Mehr

(X Y )(a) = X (a) Y (a).

(X Y )(a) = X (a) Y (a). Aufgabe Teilaufgabe a) Seien X, Y zwei Zufallsvariablen, so definieren wir das Produkt dieser Zufallsvariablen X Y wie folgt: (X Y )(a) = X (a) Y (a). Teilaufgabe b) Gegenbeispiel: Betrachten wir uns folgenden

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web:

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: Algorithmen I Prof. Jörn Müller-Quade 24.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Berechenbarkeit und Komplexität Vorlesung 11

Berechenbarkeit und Komplexität Vorlesung 11 Berechenbarkeit und Komplexität Vorlesung 11 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 7. Dezember 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 7.

Mehr

Basteln mit Pfeifenputzern

Basteln mit Pfeifenputzern Kapitel 3 Basteln mit Pfeifenputzern Zum Basteln mit Pfeifenputzern brauchst du in erster Linie natürlich die Putzer selbst, wobei sich hierbei die bunten ein wenig besser eignen als die schwarz-weiß geringelten

Mehr

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016 Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016 Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik 2 - SS 06 Bäume 2 Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen 6. Zahlen Vom lieben Gott gemacht Menschenwerk: operativ oder Klassen äquivalenter Mengen oder axiomatisch (Peano 1889) 6. Zahlen GM 6-1 GM 6- Peano sche Axiome der natürlichen Zahlen Definition 6.1.1:

Mehr

Informatik I. Informatik I Iteration vs. Rekursion. Iteration vs. Rekursion Iteration vs. Rekursion. 20. Iteration vs.

Informatik I. Informatik I Iteration vs. Rekursion. Iteration vs. Rekursion Iteration vs. Rekursion. 20. Iteration vs. Informatik I 1. Februar 2011 20. Informatik I 20. Jan-Georg Smaus 20.1 Albert-Ludwigs-Universität Freiburg 1. Februar 2011 Jan-Georg Smaus (Universität Freiburg) Informatik I 1. Februar 2011 1 / 31 Jan-Georg

Mehr

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 29. November 2007 Turing-mächtige

Mehr

Vorsemesterkurs Informatik. Sommersemester 2013

Vorsemesterkurs Informatik. Sommersemester 2013 Vorsemesterkurs Informatik Sommersemester 2013 Stand der Folien: 3. April 2013 Personen Organisation: Ronja Düffel (Ingo Wegener-Lernzentrum) Vorlesung: Teil 1: Conrad Rau und Dr. David Sabel (Lehrstuhl

Mehr

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 13. November 2006 Turing-mächtige

Mehr

2.1 Direkter Beweis. Theorie der Informatik. Theorie der Informatik. 2.1 Direkter Beweis. 2.2 Indirekter Beweis

2.1 Direkter Beweis. Theorie der Informatik. Theorie der Informatik. 2.1 Direkter Beweis. 2.2 Indirekter Beweis Theorie der Informatik 18. Februar 2015 2. Beweistechniken Theorie der Informatik 2. Beweistechniken 2.1 Direkter Beweis Malte Helmert Gabriele Röger 2.2 Indirekter Beweis Universität Basel 18. Februar

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

Theoretische Informatik II

Theoretische Informatik II Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Wintersemester 2007/2008 B. Beckert Theoretischen Informatik II: WS 2007/08 1 / 175 Dank Diese Vorlesungsmaterialien basieren

Mehr

Zunächst ein paar einfache "Rechen"-Regeln: Lemma, Teil 1: Für beliebige Funktionen f und g gilt:

Zunächst ein paar einfache Rechen-Regeln: Lemma, Teil 1: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Zunächst ein paar einfache "Rechen"-Regeln: G. Zachmann Informatik 1 - WS 05/06 Komplexität 22 Additionsregel Lemma, Teil 1: Für beliebige Funktionen f und g gilt: Zu beweisen: nur das

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 11.10.2016 Technische Universität Braunschweig, IPS Überblick Einleitung Beispiele 11.10.2016 Dr. Werner Struckmann / Stephan Mielke,

Mehr

Inhalt Kapitel 2: Rekursion

Inhalt Kapitel 2: Rekursion Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion

Mehr

13 Berechenbarkeit und Aufwandsabschätzung

13 Berechenbarkeit und Aufwandsabschätzung 13 Berechenbarkeit und Aufwandsabschätzung 13.1 Berechenbarkeit Frage: Gibt es für jede Funktion, die mathematisch spezifiziert werden kann, ein Programm, das diese Funktion berechnet? Antwort: Nein! [Turing

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken schulz@eprover.org Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten

Mehr

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form. für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa AG Softech FB Informatik TU Kaiserslautern Lernziele Rekursive Prozeduren zu charakterisieren. Terminierung von rekursiven Prozeduren mit Hilfe von geeigneten Abstiegsfunktionen

Mehr

Kapitel 3: Berechnungstheorie Algorithmisch unlösbare Probleme. Einordnung

Kapitel 3: Berechnungstheorie Algorithmisch unlösbare Probleme. Einordnung Einordnung es gibt algorithmische Probleme, die algorithmisch unlösbar sind (/ * d.h. unter der Annahme, das die Churchsche These richtig ist, kann es nachweislich kein Computerprogramm geben, welches

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Abschnitt 11: Korrektheit von imperativen Programmen

Abschnitt 11: Korrektheit von imperativen Programmen Abschnitt 11: Korrektheit von imperativen Programmen 11. Korrektheit von imperativen Programmen 11.1 11.2Testen der Korrektheit in Java Peer Kröger (LMU München) in die Programmierung WS 16/17 931 / 961

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 12. November 2014 Darstellung natürlicher Zahlen durch Mengen 1. Wie können wir natürliche Zahlen durch Mengen darstellen? Idee 0 = und

Mehr

Nachklausur LÖSUNG. Bitte in Druckschrift leserlich ausfüllen!

Nachklausur LÖSUNG. Bitte in Druckschrift leserlich ausfüllen! Informatik für Informationsmanger I WS 2005/6 Universität Koblenz-Landau Institut für Informatik Jun.Prof. Dr. Bernhard Beckert Dr. Manfred Jackel Nachklausur 28.02.2007 LÖSUNG Bitte in Druckschrift leserlich

Mehr

III.1 Prinzipien der funktionalen Programmierung - 1 -

III.1 Prinzipien der funktionalen Programmierung - 1 - 1. Prinzipien der funktionalen Programmierung 2. Deklarationen 3. Ausdrücke 4. Muster (Patterns) 5. Typen und Datenstrukturen 6. Funktionale Programmiertechniken III.1 Prinzipien der funktionalen Programmierung

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 45

Bäume und Wälder. Bäume und Wälder 1 / 45 Bäume und Wälder Bäume und Wälder 1 / 45 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. V muss endlich sein. Bäume und

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mariano Zelke Datenstrukturen 2/19 Das Teilfolgenproblem: Algorithmus A 3 A 3 (i, j bestimmt den Wert einer maximalen Teilfolge für a i,..., a j. (1 Wenn

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion Aussageformen mit natürlichen Zahlen als Parametern kann man mit vollständiger Induktion beweisen. Ist A(n) eine von n N abhängige Aussage, so sind dazu die folgenden beiden Beweisschritte

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Dr.-Ing. Sven Hellbach S. Hellbach Grundlagen der Informatik II Abbildungen entnommen aus: Dirk W. Hoffmann: Theoretische Informatik; Hanser Verlag 2011, ISBN: 978-3-446-42854-6

Mehr

(2 n + 1) = (n + 1) 2

(2 n + 1) = (n + 1) 2 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Induktion 0 +... Aufgaben und Lösungen Aufgabe 1 Summen von ungeraden Zahlen ). 1. Zeige durch vollständige Induktion, dass für

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Programmieren lernen mit Groovy Rekursion Rekursion und Iteration

Programmieren lernen mit Groovy Rekursion Rekursion und Iteration Programmieren lernen mit Groovy Rekursion Seite 1 Rekursion Rekursion Ursprung lat. recurrere ~ zurücklaufen rekursive Definition Definition mit Bezug auf sich selbst Beispiel Fakultätsfunktion n! 0! =

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-11: LOOP und WHILE Programme I 1/46 Organisatorisches Nächste Vorlesung: Mittwoch,

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 3 Aussagenlogik

Mehr

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, November 29, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Wir beschäftigen uns im folgenden mit einem wichtigen Aspekt der natürlichen Zahlen, dem sogenannten Prinzip der vollständigen Induktion.

Wir beschäftigen uns im folgenden mit einem wichtigen Aspekt der natürlichen Zahlen, dem sogenannten Prinzip der vollständigen Induktion. Schülerzirkel Mathematik Fakultät für Mathematik Universität Regensburg Induktion 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + Wir beschäftigen uns im folgenden mit einem wichtigen Aspekt der natürlichen Zahlen,

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren FH Wedel Prof. Dr. Sebastian Iwanowski DM3 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 3: Beweisverfahren Meinel 3, 6, 7 Lang 4.1 (nur bis S. 43), 2.2

Mehr