Bauakustik I. FHNW HABG CAS Akustik 4 h. Version: 26. Februar kann man das Verhalten mit den folgenden drei Grössen beschreiben: p t p i.

Größe: px
Ab Seite anzeigen:

Download "Bauakustik I. FHNW HABG CAS Akustik 4 h. Version: 26. Februar kann man das Verhalten mit den folgenden drei Grössen beschreiben: p t p i."

Transkript

1 Bauakustik I FHNW HABG CAS Akustik 4 h Version: 6. Februar 009 Inhalt 1 3 Theoretische Grundlagen der Luftschalldämmung Messen und Masse der Luftschalldämmung Praktische Berechnungsverfahren für die Luftschalldämmung (1) 1 Theoretische Grundlagen Luftschalldämmung 1.1 Luftschalldämm-Mass [1] Kap. 7. Fällt eine Welle p i auf eine Wand oder Grenzschicht, dann wird ein Teil der Welle reflektiert p r, ein Teil wird disssipiert p d und ein Teil wird transmittiert p t. Damit kann man das Verhalten mit den folgenden drei Grössen beschreiben: Transmissionsfaktor: t p t p i Reflexionsfaktor: r p r p i Dissipationsfaktor: d p d p i Diese Grössen sind meist komplex, da sie mathematisch erschöpfend die Wirkung einer Sperrschicht beschreiben. Etwas einfacher sind dei Verhältnisse, wenn wir die Intensitäten betrachten. Wir haben dabei: Transmissiongrad: t I t I i 1

2

3 p t x, t p_ t, cos cos k xkw t Cp_ t, sin sin k xkw t (1..3) und v i x, t p_ i cos k 1 xkw t (1..4) p_ cos k xcw t r, cos 1 v x, t K r p_ sin k xcw t r, sin 1 C v t x, t p_ t, cos cos k xkw t p_ sin k xkw t t, sin C (1..6) Es gilt nun auf der Wasseroberfläche bei x0 die Gleichheit des Druckes und der Schnelle auf beiden Seiten der Grenzschicht: p 0, t Cp 0, t p 0, t i r t v 0, t Cv 0, t v 0, t i r t und damit: p_ i cos Kw t Cp_ r, cos cos w t Kp_ r, sin sin w t p_ t, cos cos Kw t Cp_ t, sin sin Kw t (1..7) p_ i cos Kw t p_ cos w t r, cos K C p_ r, sin sin w t p_ t, cos cos Kw t p_ sin Kw t t, sin C (1..8) Nun müssen die beiden Gleichen natürlich für alle Zeiten t richtig sein, d.h. sin und cos müssen je die Gleichungen gleichzeitig erfüllen.wir haben also 4 Unbekannte (p i setzen wir als bekannt voraus) und 4 Gleichungen. Getrennt ergeben sich damit die folgenden 4 Gleichungen: p_ i cos w t Cp_ r, cos cos w t p_ t, cos cos w t Kp_ r, sin sin w t Kp_ t, sin sin w t (1..9) p_ i cos w t K p_ r, cos cos w t p_ t, cos cos w t p_ r, sin sin w t p_ sin w t t, sin K (1..1) Und daraus die Lösung: p_ t, sin 0, p_ r, sin 0, p_ r, cos p_ i K C, p_ t, cos p_ i C (1..13) Wie man der Lösung entnehmen kann, sind die transmittierte und die reflektierte Wellen wie die einfallende Welle reine cos-wellen. Es ergibt sich damit für den Transmissionsund Reflexionsfaktor: 3

4 t C (1..14) r K C (1..15) D.h. wenn Z 0 dann ist t 1 und r 0. Das Wichtigste ist: Bei einer diskontinuierlichen Aenderung der Impedanz entsteht immer eine Reflexion. Ist die zweite Schicht "weicher", d.h. Z!Z dann schwingt die reflektierte Welle 1 in Anti-Phase zur einfallenden Welle: r!0. Ist die zweite Schicht "härter", dann schwingt die reflektierte Welle in Phase zur einfallenden Welle, d.h. 0! r. Einige physikalische Eigenschaften von Materialien: Eigenschaften von Materialien bei 0 und 10 5 Pa Material kg/m 3 E GPa u h int % Z kg/(m s) f g *h Hz*m c p m/s Backstein * Beton * Gips Gipskarton * Nadelholz *10 6 (quer zur Faser) Spanplatten * Sperrholz Glas * Aluminium * Blei * Kupfer * Stahl * Erdgas * Luft * Wasser * Gummi * * Kork * Gemäss den obigen Zahlen muss Wasser als schallhart bezeichnet werden, ähnlich wie Holz. D.h. das Schall im Wasser wirkt sehr gut auf Mauerwerk ein. -> Beispiel Unterwasser-Pumpe 4

5 Es kann auch die "Schalldämmung" einer Grenzschicht berechnet werden. Diese ist: R 10 ln 1 4 ln 10 C (1..16) Die Schalldämmung nimmt also zu, je härter die zweite Schicht ist, und zwar bei sehr grosser Härte proportional zur Härte. Interessant ist ebenfalls, dass die Schalldämmung unabhängig von der Frequenz und der Richtung des Uebergangs ist! Beispiel 1 Was ist die Schalldämmung der Grenzschicht Luft-Wasser und der Grenzschicht Wasser- Beton? Lösung: Aus der obigen Tabelle ergibt sich für Luft und Wasser eingesetzt in obiger Gleichung für R: R db (1..1.1) Und für Wasser auf Beton: R db (1..1.) Zum Vergleich noch der Uebergang von Luft auf Beton: R db (1..1.3) Auf keinen Fall darf man deshalb Wasser als isolierend betrachten, ähnlich wie z.b. Gummi. Was passiert nun, wenn die Schallwelle schräg im Winkel q 1 auf die Trennschicht auftrifft? 5

6

7

8 p_ i cos Kw t p_ cos w t r, cos K C p_ r, sin sin w t p_ t, cos cos Kw t p_ sin Kw t t, sin C (1.3.) Auch hier trennen wir in den sin und den cos Anteil: p_ i cos w t Cp_ r, cos cos w t Kp_ t, cos cos w t m'' p_ t, sin cos w t w (1.3.3) Kp_ r, sin sin w t Cp_ t, sin sin w t m'' p_ t, cos sin w t w p_ i cos w t K p_ r, cos cos w t p_ t, cos cos w t p_ r, sin sin w t p_ sin w t t, sin K (1.3.6) Und dann ergibt sich für die Lösung: p_ t, cos Z Z CZ p_ m'' w Z p_ 1 i C Z Z Cm'' w CZ, p_ K 1 i r, sin 1 1 C Z Z Cm'' w CZ, p_ r, cos 1 1 (1.3.7) p_ i Cm'' w K C Cm'' w C, p_ t, sin m'' w p_ i C Cm'' w C Hier besteht die transmittierte Welle sowohl aus einem sin wie auch aus einem cos Anteil. Die jeweiligen Transmissionsfaktoren sind: t cos C C Cm'' w C (1.3.8) t sin m'' w C Cm'' w C (1.3.9) Der Transmissiongrad ergibt sich als Summe des Quadrates der beiden Anteile. Wenn wir noch annehmen, dass hinter und vor der Wand die Impedanz gleich ist, ergibt sich t zu: t 4 Z 0 4 Z 0 Cm'' w (1.3.10) und die Schalldämmung: R 10 ln 1 C 1 m'' w 4 Z 0 ln 10 db (1.3.11) Das ist das berühmte Massengesetz der Akustik. Wenn wir noch den Einfallswinkel berücksichtigen, ergibt sich: 8

9 R Masse 10 ln 1 C 1 4 m'' w cos q ln 10 Z 0 db (1.3.1) Aus der obigen Formel lassen sich folgende Schlüsse ziehen: Die Schalldämmung nimmt um 6 db pro Oktave zu. Die Schalldämmung nimmt mit 6 db pro Verdoppelung der Masse zu. Die Schalldämmung verschwindet für q p Beispiel 1 Was ist die Schalldämmung eines mm dicken Bleilappens bei 45 Grad Schalleinfall? Lösung: Die Dichte von Blei ist: r Blei kg m 3 ( ) und damit die Flächenmasse: m''.600 kg m (1.3.1.) Daraus ergibt sich: R ln 1. C Blei kg m s kg m w cos q db ( ) Und als Graphik: 9

10 80 Grad Grad Grad db Frequenz [Hz] Und die Schalldämmung bei 500 Hz in Funktion des Einfallswinkels: 10

11 Abhaengigkeit der Schalldämmung R vom Einfallswinkel für mm Blei bei 500 Hz R [db] Einfallswinkel [Grad] 1.4 Einfluss der Biegesteife [] Kap Wände besitzen eine Steifigkeit in Bezug auf Biegung. Dies nennt man die Biegesteife B. Die Biegesteife B ergibt sich aus dem Elastizitätsmodul E und der Poissonzahl m des Materials: B' E h 3 1 K1 m (1.4.1) Aufgrund von Biegesteifigkeit und Flächenmasse können sich nun Biege-Wellen in der Wand ausbreiten. Die Ausbreitungsgeschwindigkeit und die Wellenzahl dieser Biegewellen ergibt sich wie folgt aus der Biefgesteife und der Masse: c B' B' m'' 1/4 w (1.4.) k B' m'' B' 1/4 w (1.4.3) Interessant ist nun, dass die Biegewellengeschwindigkeit von der Frequenz abhängt! Man nennt dies auch Dispersion. Neben anderen Effekten, die direkte Auswirkung auf die Bauakustik haben, hat die Dispersion den Effekt, dass Signale, also Information, schneller übermittelt werden kann als aufgrund der Biegenwellengeschwindigkeit vorgegeben. Dazu ist anzumerken, dass durch eine monochromatische Welle keine Information übermittelt werden kann. Nur mit einem Gemisch von Wellen kann Information 11

12 übermittelt werden. Dies sei an einem Beispiel gezeigt: K0.4 K x K1 Wie man dem Beispiel entnehmen kann, bewegt sich die Gruppe schneller vorwärts als die Phase, und zwar genau aufgrund der Differenz zwischen den beiden Wellen. Man definiert deshalb drei Geschwindigkeiten: 1

13 die Phasengeschwindigkeit c k w k p k die Gruppengeschwindigkeit: c k v g vk w k die Frontgeschwindigkeit: c k lim f k/n w k k Die Uebermittlung von Information erfolgt immer mittels Frontgeschwindigkeit (An- und Ausschalten eines Trägers). Für die Biegewellen ergibt sich: c p k k m'' B' (1.4.4) c g k k m'' B' c f N (1.4.6) Die Gruppengeschwindigkeit ist also doppelt so gross wie die Phasengeschwindigkeit! Informationen können (wenigstens theoretisch) unendlich schnell ausgetauscht werden. Für eine optimale Abstrahlung von Biegewellen muss die Spur der Wellenzahl der akustischen Welle der Wellenzahl der Biegewelle entsprechen. -> Demo Abstrahlung Es muss also gelten: k 0 sin q k B' oder w sin q m'' c B' 0 1/4 w (1.4.7) Das ergibt für den Winkel q: sin q m'' B' w 1/4 c0 (1.4.8) Nun muss aber sin q %1 sein, was für die Frequenz bedeutet: m'' B' c 0 %w (1.4.9) Die Frequenz, ab welcher also Abstrahlung aufgrund der Biegewellen stattfindet heisst 13

14 auch Grenzfrequenz. Die Biegesteifigkeit eingesetzt ergibt: f g 1 r 1 K1 m h E p c 0 (1.4.10) Wie man sieht, ist die Grösse f g h eine Konstante des Materials, die es erlaubt, einfach die Grenzfrequenz zu berechnen. Oberhalb der Grenzfrequenz ergibt sich rückwärts der Abstrahlwinkel zu: sin q f g f (1.4.11) Materialien, die ihre Grenzfrequenz unterhalb des bauakustisch relevanten Bereichs von 100 Hz Hz haben, nennt man biegesteif, Materialien, die die Grenzfrequenz oberhalb dieses Bereichs haben, nennt man biegeweich. Schlecht ist, wenn die Koinzidenzfrequenz innerhalb des bauphysikalisch relevanten Bereichs ist. Als Beispiel für den typischen Verlauf die Schalldämmung einer Sperrholzplatte und einer Bleiplatte gleichen Flächengewichts: 110. R[dB] Frequenz [Hz] Theoretisch nimmt oberhalb der Koinzidenzfrequenz die Schalldämmung mit 18 db / Oktave zu. Bei Glasscheiben, kann man den Koinzidenzeffekt direkt hören: 14

15

16 mit m" der Flächenmasse der beiden Schalen in kg m und s' der dynamischen Steifigkeit der Zwischenschicht in Pa. Ist das Material in Bezug auf die Dicke linear, so ergibt m sich die dynamische Steifigkeit s' aus dem dynamischen Elastizitätsmodul E und der Dicke h zu: s' E h Eine Zusammenstellung der dynamischen Steifigkeiten befindet sich in []. Zusammengefasst anbei eine Zusammenstellung: Elastizitätsmodul von Dämmschichten (Dies sind nur Anhaltswerte. Konkrete dynamische Steifigkeiten sind direkt den Produktedaten zu entnehmen) Material E MPa Glaswolle 0.0 Gummischrot 0.60 Luft 0.1 Melaminharzschaum 0.36 Polystyrol, extrudiert 16 Polystyrol, expandiert und elastifiziert 0.16 Polyurethanschaum, weich 0.35 Sind die beiden Schichten nicht durch eine elastische Dämmschicht direkt miteinander verbunden, so ist die Steifigkeit der Luft zu nehmen. Anbei ein Beispiel für die Luftschalldämmung einer Fensterscheibe, bestehend aus Gläsern je 3 mm dick in einem Abstand von 10 mm: 16

17 80. R[dB] Frequenz [Hz] Im oberen Frequenzbereich ist der Beginn der Resonanzen innerhalb des Scheibenzwischenraumes zu beobachten. Messen und Masse der Luftschalldämmung 3 Praktische Berechnungsverfahren für die Luftschalldämmung Im Prinzip ist die exakte Berechnung des Luftschallschutzes vorläufig noch nicht möglich bzw. ist sehr schwierig. Es gibt darum drei Möglichkeiten: Berechnung der Luftschalldämmung mit grösstem numerischen Aufwand Praktische Berechungsverfahren, basierend auf Erfahrung Messungen. Nur Messungen vermögen im Moment die Genauigkeit zu liefern, die in Fällen, wo eine Haftpflicht besteht, nötig ist. Praktische Berechungsverfahren können nur mit Einbezug entsprechender Reserven verwendet werde. 3.1 Schalldämmung biegeweicher Materialien [] Kap Die Schalldämmung für das diffuse Schallfeld ergibt sich aus der Flächenmasse m' unterhalb der Koinzidenzfrequenz zu: 17

18 R Diff 0 log10 f m'' K47 db Da die Form des Spektrums sich mit der Flächenmasse nicht ändert, sondern nur parallell verschiebt, so ergibt sich für die bewertete Schalldämmung nach obiger Formel zu: R Diff, w 0 log10 m'' C11.7 db Man kann mit folgender rechnerischen Näherung für die bewertete Schalldämmung monolitischer, schwerer Bauteile mit 150 kg m!m'' (Beton, Backstein, Gips etc.) rechnen: R w 37.5 log10 m'' K4 db 3. Biegewellen [] Kap Oberhalb der Koinzidenzfrequenz ergibt sich die Schalldämmung aus der Flächenmasse m', der Koinzidenzfrequenz f g und dem Verlustfaktor h zu: R Diff 0 log10 f m'' C5 log10 f f g C10 log10 h K40 db Es scheint das beste zu sein, die Koinzidenzfrequenz unter einem Einfallswinkel von 45 Grad zu nehmen. Wenn man die Schwingungen einer Wand misst, kann aus dem Schnellepegel L v der Wand auf die abgestrahlte Schall-Leistung L W geschlossen werden. Diese ergibt sich zu (Achtung die Referenzgrösse für die Schnelle ist dabei K8 m ) : s L W L v C10 log10 s C10 log S s nennt man den Abstrahlgrad. Nach Heckl Müller ist der Abstrahlgrad als Funktion von Fläche S, Umfang U und Koinzidenzfrequenz f g des Bauteils: f!0.5 f g : s : U c 0 S p f f g 3 f f g : s : 0.45 U f g c 0 f g!f: s 1. Nach SIA ergeben sich praktisch folgende Schalldämm-Masse für Einzelschalen: 18

19 3.3 Doppelschalige Bauteile [] Kap Die Verbesserung, die durch doppelschalige Bauteile im Gegensatz zu gleich schweren einschaligen Bauteilen oberhalb der Resonanzfrequenz f r erreichbar ist, ist: D R 40 log f f r Die Verbesserung von Wänden mit einem bewerteten Schalldämmass R durch Vorsatzschalen, w sofern die Resonanzfrequenz unter 80 Hz ist und die Vorsatzschale mind. 10 kg/m schwer, ergibt sich zu: D R 35 K0.5 R w w Bei Fensterscheiben ist besonders zu beachten, dass die Schalldämmung auch von der Grösse der Scheiben abhängt. Aus Erfahrung verändert sich für luft- oder argongefüllte Scheiben die Schalldämmung mit der Scheibengrösse S nach folgender Formel: D R w K4.3 log10 S 1.88 m db und für Scheiben mit Schwergasfüllung: D R w K0.6 log10 S 1.88 m db. 19

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Schalldämmung bei thermisch entkoppelten Konstruktionen

Schalldämmung bei thermisch entkoppelten Konstruktionen Schalldämmung bei thermisch entkoppelten Konstruktionen Markus Ringger 1. Schalleffekte 3 2. Schalldurchgang 3 3. Schall-Längsleitung 4 4. Fazit 5 Bauphysik-Apéro 2014 1 Bauphysik an der FHNW: Zertifikatskurs

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

3.3 Schalldämpfer. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1

3.3 Schalldämpfer. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1 3.3 Schalldämpfer Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1 3. Schalldämpfer Schalldämpfer haben die Aufgabe, das durch sie transportierte Schallfeld abzuschwächen. Reflexionsschalldämpfer:

Mehr

SCHREINER LERN-APP: « SCHALLSCHUTZ»

SCHREINER LERN-APP: « SCHALLSCHUTZ» Wie breitet sich Schall aus? Was ist der akkustische Unterschied zwischen einem Ton und einem Geräusch? Was gibt die Frequenz an? Was gibt der Schalldruck an? 443 Schallausbreitung 444 Ton - Geräusch 445

Mehr

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung Technische Akustik 2016 Jan Borgers 1. Grundlagen Bezugsgrößen für Schalldruck; Schallleistung Seite 2 Filterkurven A-; B-; C-Gewichtung Seite 3 Terz-; Oktavfilter und deren Bandbreiten Seite 5 Rauschsignale

Mehr

Physik 2 am

Physik 2 am Name: Matrikelnummer: Studienfach: Physik 2 am 28.03.2017 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

Luftschalldämmung von zweischaligen Bauteilen

Luftschalldämmung von zweischaligen Bauteilen Martin Bohnenblust Ing. HTL, Leiter Bautechnik Saint-Gobain ISOVER SA Lucens, Schweiz Luftschalldämmung von zweischaligen Bauteilen 1 2 1. Einleitung In unserer täglichen Beratungstätigkeit stellen wir

Mehr

Was Sie über Schallschutz wissen sollten

Was Sie über Schallschutz wissen sollten Was Sie über Schallschutz wissen sollten 47.Bildungswoche der österreichischen Holzbau- und Zimmermeister in Alpbach 2016 Institut für Konstruktion und Materialwissenschaften / Arbeitsbereich Holzbau Ass.-Prof.

Mehr

A Rechnen mit Pegeln A.1 Dekadischer Logarithmus A.2 Pegel-Umkehrgesetz A.3 Gesetz der Pegeladdition

A Rechnen mit Pegeln A.1 Dekadischer Logarithmus A.2 Pegel-Umkehrgesetz A.3 Gesetz der Pegeladdition Inhaltsverzeichnis 1 Wahrnehmung von Schall.................................. 1 1.1 Terz- und Oktav-Filter................................... 8 1.2 Die Hörfläche...........................................

Mehr

Rechenverfahren. DGfM. Schallschutz. SA2 Rechenverfahren Seite 1/7. Kennzeichnung und Bewertung der Luftschalldämmung

Rechenverfahren. DGfM.  Schallschutz. SA2 Rechenverfahren Seite 1/7. Kennzeichnung und Bewertung der Luftschalldämmung Rechenverfahren Kennzeichnung und Bewertung der Luftschalldämmung von Bauteilen Zur allgemeinen Kennzeichnung der frequenzabhängigen Luftschalldämmung von Bauteilen mit einem Zahlenwert wird das bewertete

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Wellen Eine an einem Draht befestigte Stimmgabel schwinge senkrecht zum Draht und erzeuge so auf diesem eine Transversalwelle. Die Amplitude der Stimmgabelschwingung

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

V 35 Werkstoffuntersuchungen mit Ultraschall

V 35 Werkstoffuntersuchungen mit Ultraschall V 35 Werkstoffuntersuchungen mit Ultraschall 1. Aufgabenstellung 1.1 Untersuchen Sie den Wellencharakter des Ultraschalls im Hochfrequenzund Amplitudenmode, und bestimmen Sie die Frequenz des verwendeten

Mehr

7. Klausur am

7. Klausur am Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Lösungsblatt Richtungshören

Lösungsblatt Richtungshören Richtungshören A Wissenswertes Der Schall breitet sich mit einer bestimmten Geschwindigkeit aus (in Luft ca. 340 m/s), d.h. er legt in einer bestimmten Zeit einen bestimmten Weg zurück. Das ist ein Grund,

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Temperaturabhängigkeit der Schallgeschwindigkeit in Flüssigkeiten Abbildung 1: Experimenteller Aufbau zur Bestimmung der Schallgeschwindigkeit in Abhängigkeit von der Temperatur.

Mehr

DIE BEDEUTUNG DES VERLUSTFAKTORS BEI DER BESTIMMUNG DER SCHALLDÄMMUNG

DIE BEDEUTUNG DES VERLUSTFAKTORS BEI DER BESTIMMUNG DER SCHALLDÄMMUNG DIE BEDEUTUNG DES VERLUSTFAKTORS BEI DER BESTIMMUNG DER SCHALLDÄMMUNG IM PRÜFSTAND Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen

Mehr

8. Akustik, Schallwellen

8. Akustik, Schallwellen Beispiel 2: Stimmgabel, ein Ende offen 8. Akustik, Schallwellen λ l = n, n = 1,3,5,.. 4 f n = n f1, n = 1,3,5,.. 8.Akustik, Schallwellen Wie gross ist die Geschwindigkeit der (transversalen) Welle in der

Mehr

Schwerfolie zur Verbesserung der Luftschalldämmung im Hochbau

Schwerfolie zur Verbesserung der Luftschalldämmung im Hochbau Schwerfolie zur Verbesserung der Luftschalldämmung im Hochbau Anwendungsbeispiele: Dachisolation Maschinenverkleidung (Lüftungen / Liftmotoren) Boden- oder Deckenisolation Wand gegen Nachbarn Lüftungskanäle

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung Technische Akustik 2016 Jan Borgers 1. Grundlagen Bezugsgrößen für Schalldruck; Schallleistung Seite 2 Filterkurven A-; B-; C-Gewichtung Seite 3 Terz-; Oktavfilter und deren Bandbreiten Seite 5 Rauschsignale

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

1 Grundlagen. Grundlagen 9

1 Grundlagen. Grundlagen 9 1 Grundlagen Der Begriff Akustik stammt aus der griechischen Srache (ἀκούειν akoyein: hören) und bedeutet die Lehre vom Schall und seiner Ausbreitung. Er umfasst die Schwingungen in gasförmigen, flüssigen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Universität Duisburg-Essen Fachbereich Bauwesen

Universität Duisburg-Essen Fachbereich Bauwesen Universität Duisburg-Essen Fachbereich Bauwesen IBPM - Institut für Bauphysik und Materialwissenschaft Univ.-Prof. Dr. rer. nat. Dr.-Ing. habil. M. J. Setzer Univ.-Prof. Dr.-Ing. R. Dillmann Vordiplomklausur

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit.

Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Bank für Schallversuche Best.- Nr. 2004611 Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Dieses Gerät besteht aus 1 Lautsprecher (Ø 50 mm, Leistung 2 W, Impedanz 8 Ω)

Mehr

EPI WS 2007/08 Dünnweber/Faessler

EPI WS 2007/08 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen Wiederholung: Resonanz 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Glas zersingen

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Phsik Abzüge für Darstellung: Rundung:. Klausur in K am.0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

BAUPHYSIK Aufgaben Schall- und Lärmschutz 1

BAUPHYSIK Aufgaben Schall- und Lärmschutz 1 BAUPHYSIK Aufgaben Schall- und Lärmschutz 1 Lektion Aufgabe 14 Berechnen Sie die Pegelzunahmen L, wenn 2, 3, 5 und 10 identische Schallquellen gleichzeitig einwirken. Wie wird die Lautstärkezunahme subjektiv

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Materialwissenschaft. Bauphysik / Schall SS 2004

Materialwissenschaft. Bauphysik / Schall SS 2004 Aufgabensammlung SS 2004 Literaturhinweise: Lehrbücher, u.a.: [1] Berber: Bauphysik: Wärmetransport, Feuchtigkeit, Schall. 4. Aufl. Handwerk u. Technik, 1994. [2] Brandt: Bauphysik nach Maß. Düsseldorf,

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Bauakustik - schlechte Schalldämmung

Bauakustik - schlechte Schalldämmung Bauakustik Die Wissenschaft und Sprache des baulichen Schallschutzes Ulrich Schanda, Hochschule Rosenheim 1/12 Die Wissenschaft. Raumakustik - gute Hörsamkeit in Räumen - Behaglichkeit Bauakustik - schlechte

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Inhalt dieses Vorlesungsteils - ROADMAP

Inhalt dieses Vorlesungsteils - ROADMAP Inhalt dieses Vorlesungsteils - ROADMAP 2 Von der Kavitation zur Sonochemie 21 Industrieller Einsatz von Ultraschall 22 Physikalische Grundlagen I Was ist Ultraschall? 23 Einführung in die Technik des

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10L) 22. August 2013, 14-17 Uhr, HIL F41 Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 5 Aufgaben und hat 3 beidseitig

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

28. Lineare Approximation und Differentiale

28. Lineare Approximation und Differentiale 28. Lineare Approximation und Differentiale Sei y = f(x) differenzierbar. Die Gleichung der Tangente t im Punkt x 0 lautet t : y f(x 0 ) = f (x 0 )(x x 0 ) Für x nahe bei x 0 können wir f(x) durch den

Mehr

Projekt: DIN 4109 "Schallschutz im Hochbau" Kurzeinführung

Projekt: DIN 4109 Schallschutz im Hochbau Kurzeinführung Seite 1 von 13 Landshut 0871/14383-51 Projekt: Auftraggeber: bfz - Augsburg Referent: Dipl.-Ing. (FH) Johann Storr Telefon: 0821/34779-0 Stand: Mai 1999 Seite 2 von 13 Landshut 0871/14383-51 Inhaltsverzeichnis

Mehr

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Versuchsziel Geschwindigkeitsmessung mit Hilfe

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Schallschutz im Hochbau Trittschalldämmung von Fußbodenkonstruktionen

Schallschutz im Hochbau Trittschalldämmung von Fußbodenkonstruktionen Schallschutz im Hochbau Trittschalldämmung von Fußbodenkonstruktionen Teil 1: Begriffe und Anforderungen von Egbert Müller veröffentlicht in Estrichtechnik (Heft III/1991) 1. Einleitung Die in der Fassung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Schall - Physik und Musik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Schall - Physik und Musik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Schall - Physik und Musik Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

IO2. Modul Optik. Refraktion und Reflexion

IO2. Modul Optik. Refraktion und Reflexion IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.

Mehr

2. Berechnen Sie anhand der beigefügten Korrektur-Tabelle den gesamten linearen Schallleistungs-Pegel!

2. Berechnen Sie anhand der beigefügten Korrektur-Tabelle den gesamten linearen Schallleistungs-Pegel! Übungen zur Technischen Akustik SS 13 Aufgabe 1: Ein leerer Raum mit kreisförmiger Grundfläche (Radius = 6m, Höhe = 3m) sei auf allen Flächen mit Ausnahme der Bodens mit einem Material (Absorptionsgrad

Mehr

Wissenswertes zum Einsatz von Lichtleitern

Wissenswertes zum Einsatz von Lichtleitern Wissenswertes zum Einsatz von Lichtleitern Dr. Jörg-Peter Conzen Vice President NIR & Process Bruker Anwendertreffen, Ettlingen den 13.11.2013 Innovation with Integrity Definition: Brechung Brechung oder

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall

Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Praktikum für Fortgeschrittene am Dritten Physikalischen Institut der Universität Göttingen 27. April 2008 Praktikant Johannes

Mehr

Taschenbuch Akustik. Herausgegeben von Prof. Dr.-Ing. Wolfgang Fasold Prof. Dr.-Ing. habil. Wolfgang Kraak Dr.-Ing.

Taschenbuch Akustik. Herausgegeben von Prof. Dr.-Ing. Wolfgang Fasold Prof. Dr.-Ing. habil. Wolfgang Kraak Dr.-Ing. Taschenbuch Akustik Teil 1 Herausgegeben von Prof. Dr.-Ing. Wolfgang Fasold Prof. Dr.-Ing. habil. Wolfgang Kraak Dr.-Ing. Werner Schirmer & VEB VERLAG TECHNIK BERLIN 1 Physikalische Grundlagen 1.1 Kennzeichnung

Mehr

Technische Akustik. Bearbeitet von Michael Möser

Technische Akustik. Bearbeitet von Michael Möser Technische Akustik Bearbeitet von Michael Möser 1. Auflage 2012. Buch. xviii, 538 S. Hardcover ISBN 978 3 642 30932 8 Format (B x L): 16,8 x 24 cm Gewicht: 1096 g Weitere Fachgebiete > Technik > Sonstige

Mehr

Vergleich DIN EN mit VDI 2571

Vergleich DIN EN mit VDI 2571 Vergleich DIN EN 12354-4 mit VDI 2571 Schallübertragung von Räumen ins Freie Ingenieurbüro Frank & Apfel GbR 1 Gemeinsamer Anwendungszweck beider h a Regelwerke t d e n S t a t u s e i n e r D e u t s

Mehr

2. Übungstest aus Physik für ET A

2. Übungstest aus Physik für ET A 2. Übungstest aus Physik für ET 14.12.2012 A Zuname: Vorname(n): Matr.Nr.: Übungsgruppe: Jedes abgegebene Blatt muss oben Ihren Namen/Matr.Nr./ Übungsgruppe tragen. 1. Eine Masse m=0,3 kg schwingt ungedämpft

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation

Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Es gibt zwei Möglichkeiten, ein Objekt zu sehen: (1) Wir sehen das vom Objekt emittierte Licht direkt (eine Glühlampe, eine Flamme,

Mehr

Fortgeschrittene Photonik Technische Nutzung von Licht

Fortgeschrittene Photonik Technische Nutzung von Licht Fortgeschrittene Photonik Technische Nutzung von Licht Fresnel Formeln Fresnel sche Formeln Anschaulich Fresnel sche Formeln Formeln Fresnel schen Formeln R k = r 2 k = R? = r 2? = Energieerhaltung:

Mehr

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP 13. Vorlesung EP I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Stimmgabel mit u ohne Resonanzboden Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Bereich hörbarer

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren)

Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren) Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren) https://cuvillier.de/de/shop/publications/885 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

J01. D2m,nT,w=55dB DPCM D2m,nT,w 40 Cat.A Wohngebäude und Ähnliches. Blatt Nr. N.C. IV III II I

J01. D2m,nT,w=55dB DPCM D2m,nT,w 40 Cat.A Wohngebäude und Ähnliches. Blatt Nr. N.C. IV III II I J01 Dach, Terrasse Klassifikation des Bauteils nach UNI 11367:2010 N.C. IV III II I 32 37 40 43 Leichtbau Luftschall D2m,nT,w=55dB DPCM 5.12.1997 D2m,nT,w 40 Aufbau Stärke s *) Masse Materialien *) Dynamische

Mehr

Technische Information Schallschutz

Technische Information Schallschutz Allgemeines Der bauliche gehört zu den wichtigsten individuellen Schutzzielen im Hochbau. Im Gegensatz zu den rein technischen Anforderungen an die Tragfähigkeit von Mauerwerk, den Brand- und Wärmeschutz

Mehr

6.2.2 Mikrowellen. M.Brennscheidt

6.2.2 Mikrowellen. M.Brennscheidt 6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ

Mehr

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2004/2005

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2004/2005 Name: Gruppennummer: Aufgabe 1 2 3 4 5 6 7 insgesamt erreichte Punkte erreichte Punkte Aufgabe 8 9 10 11 12 13 14 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner

Mehr

Physik & Musik. Dopplereffekt. 1 Auftrag

Physik & Musik. Dopplereffekt. 1 Auftrag Physik & Musik 19 Dopplereffekt 1 Auftrag Physik & Musik Dopplereffekt Seite 1 Dopplereffekt Bearbeitungszeit: 45 Minuten Sozialform: Einzelarbeit Voraussetzung: Posten 1: "Wie funktioniert ein KO?" Einleitung

Mehr

Weißes Licht wird farbig

Weißes Licht wird farbig B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter

Mehr

Aufgaben Mechanische Wellen

Aufgaben Mechanische Wellen I.2 Unterscheidung von Wellen 1. Beschreibe, in welche zwei Arten man Wellenvorgänge einteilen kann. 2. Welche Arten von mechanischen Wellen gibt es in folgenden Medien: a) Luft, b) Wasser, c) Stahl? I.3

Mehr

Physik 1 Mechanik Tutorium Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten.

Physik 1 Mechanik Tutorium Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten. Seite1(6) Übung 7 Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten. Aufgabe 1 ISS (IRS) Die ISS (IRS) hat eine Masse von 455 t und fliegt aktuell in einer mittleren

Mehr

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig 7.6 Brechung Phasengeschwindigkeit ist von Wassertiefe abhängig Dreieckige Barriere lenkt ebene Welle ab Dispersion Brechung von Licht 7.7 Zusammenfassung Schwingungen und Wellen 7.1 Harmonische Schwingungen

Mehr

Zukünftiger Schallschutz im Wohnungsbau

Zukünftiger Schallschutz im Wohnungsbau Zukünftiger Schallschutz im Wohnungsbau Prof. Dipl.-Ing. Rainer Pohlenz Jahrgang 1945 Ab 1967 Architekturstudium an der RWTH Aachen, Diplom 1972 Seit 1972 Wissenschaftlicher Mitarbeiter am Lehrstuhl Baukonstruktion

Mehr

Digital Signal Processing Audio Measurements Custom Designed Tools

Digital Signal Processing Audio Measurements Custom Designed Tools In einem idealen Hallraum, mit seinem diffusen Schallfeld, fällt der logarithmische Schallpegel linear mit der Zeit ab. Daher ist es sinnvoll, die akustischen Eigenschaften eines solchen Raumes durch einen

Mehr

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen 12 3 AKUSTIK 3 Akustik 3.1 Schallwellen (Versuch 23) (Fassung 11/2011) Physikalische Grundlagen Fortschreitende (laufende) Wellen Eine in einem elastischen Medium hervorgerufene Deformation breitet sich

Mehr

I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.

I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. KLASSE: DATUM: NAMEN: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf eine glatte oder

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

ULTRASCHALL. Einleitung. Eingenschaften des Ultraschalls. Einleitung. mechanische Schwingung, mechanische Welle

ULTRASCHALL. Einleitung. Eingenschaften des Ultraschalls. Einleitung. mechanische Schwingung, mechanische Welle ULTRASCHALL Einleitung Längswellen (longitudinale Wellen): Verdichtungen und Verdünnungen (d.h. Druckschwankungen gegenüber dem Normaldruck) laufen über das Trägermedium. Die Schwingungsrichtung der einzelnenoszillatoren

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr