Vorlesung Echtzeitsysteme

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Echtzeitsysteme"

Transkript

1 Abb.: Geralt via Pixabay Vorlesung Echtzeitsysteme Thema 2: Zeit Robert Baumgartl 14. März 2015

2 2 / 57 Ursprung des Zeitbegriffes griechische Vorstellung: Alles ist ein Kreislauf ( kein Ursprung, Ende) jüdisch-christliche Vorstellung: Zeitpfeil im Weltmodell (dedizierter Anfang, Ende) heutige Vorstellung: Anfang (Urknall), kontinuierliche Entwicklung Physik: Zeitbegriff als Form der zunehmenden Unordnung (Entropie) ohne Entropiezunahme keine Zeit (z. B. vor dem Urknall) Aurelius Augustinus ( ) zum Begriff der Zeit: Wenn mich niemand danach fragt, weiß ich es, will ich einem Fragenden es erklären, weiß ich es nicht.

3 Zeit aus Sicht des Mathematikers Reduktion: Zeit ist eine Menge M von diskreten, unterscheidbaren Zeitpunkten, über der die Ordnungsrelation < ( liegt zeitlich vor ) folgendermaßen definiert ist: 1. Trichotomie: x, y M gilt genau eine der folgenden Bedingungen: (x < y), (y < x), (x = y) 2. Transitivität: x, y, z M : (x < y) (y < z) (x < z) 3. Irreflexivität: x M : (x < x) 4. Dichtheit: x, y M : (x < y) z : (x < z < y) Aus folgt, daß es sich bei < um eine strenge Totalordnung 1 handelt. 1 Streng bedeutet, dass die Relation transitiv ist, total bedeutet, dass alle Elemente der Relation unterliegen. 3 / 57

4 4 / 57 Historisch: 3 grundlegende Zeitintervalle Tag: Zeitspanne zwischen 2 aufeinanderfolgenden Höchstständen der Sonne ( Sonnentag ) Jahr: Zeitspanne zwischen 2 aufeinanderfolgenden Durchgängen der Sonne durch eine bestimmte Himmelsposition (z. B. den Frühlingspunkt, d.h., die Tag-und-Nacht-Gleiche im März) ( Tropisches Jahr ) Monat: Zeitspanne zwischen 2 aufeinanderfolgenden Neumonden historischer Zeitbegriff von astronomischen Phänomenen geprägt Problem: Phänomene sind keine ganzzahligen Vielfache voneinander (zumindest nicht exakt).

5 5 / 57 Uhren: historisch Sonnenuhren (ab ca v. u. Z.) Prinzip: Beobachtung des Schattenwurfs eines Objektes kürzester Schatten Mittag (Bildquelle: F. S. Sawelski. Die Zeit und ihre Messung. VEB Fachbuchverlag Leipzig, 1977)

6 Uhren: historisch Wasseruhren (ab ca v. u. Z.) Beobachtung: Das Auslaufen einer bestimmten Wassermenge dauert stets gleich lang Problem: Abhängigkeit vom Wasserdruck Anwendung: z. B. Redezeitbegrenzung für Politiker (!) aka Klepsydra (Bildquelle: Gerhard Dohrn-van Rossum. Die Geschichte der Stunde. Anaconda Verlag, 2007, S. 35) 6 / 57

7 Uhren: historisch Pendeluhren Galilei schlägt vor, Pendel als konstante Zeitbasis zu nutzen Ch. Huygens konstruiert erste funktionsfähige Pendeluhr (1656) ϱ 10s d bis in die 20er Jahre des 20. Jh. als Referenz genutzt l T = 2π (Länge des Pendels l) g Galileis Entwurf einer Pendeluhr 2 S Dennis D. McCarthy und P. Kenneth Seidelmann. TIME From Earth Rotation to Atomic Physics. Wiley, 2009, 7 / 57

8 8 / 57 Uhren: historisch Chronometer Problem: Pendeluhr ist nicht (besonders) portabel genaue Uhren jedoch zur exakten Längengradbestimmung auf Schiffen notwendig Wettbewerb der Royal Navy (ab 1714) Sieger: John Harrisons Chronometer H4 (1760) (ϱ 5s 81d ) d = 13cm, m = 1.45kg (Quelle:

9 Uhren Quarzuhren Idee: eine hochfrequente Schwingung ist i. a. stabiler Nutzung eines Quarzoszillators Marrison und Horton, 1927 (Quelle: F. G. Major. The Quantum Beat. 2. Aufl. Springer, 2007, S. 84) 9 / 57

10 10 / 57 Uhren: Atomuhr Funktionsprinzip I Grundlagen Ausgangspunkt: elementare Eigenschaften von Atomen sind stets gleich (unabhängig von Ort, Zeit) Physik-Exkurs: Wechselwirkungen zwischen Atomen und em. Strahlung Absorption Photon wird durch Atom absorbiert, ein Elektron erreicht höheres Energieniveau (Atom angeregt) spontane Emission Atom geht unter Aussendung eines Photons von angeregtem in Grundzustand über induzierte Emission ein angeregtes Atom wird bei Anwesenheit eines Photons animiert, unter Aussendung eines weiteren Photons in Grundzustand zurückzukehren, erstes Photon wird nicht absorbiert

11 11 / 57 Uhren: Atomuhr Funktionsprinzip II Grundidee Idee: Nutzung induziert emittierter Strahlung als Basis für Zeitmessungen. Problem: sehr hohe Frequenz (sichtbares Licht; Hz), schlecht zu managen, schlecht zu messen Frage: Kann man niederfrequentere (besser handhabbare ) Strahlung emittieren?

12 12 / 57 Uhren: Atomuhr Funktionsprinzip III Hyperfeinstrukturniveaus kleine Abweichungen in den Energielevels der Atome infolge magnetischer Wechselwirkung zwischen Kern und Elektron (Spin) Übergang zwischen Hyperfeinstrukturniveaus ähnlich Übergang zwischen Energielevels Unterschied: Mikrowellen werden emittiert (hypothetischer) Orbit ohne Wechselwirkung Orbit bei Abstoßung Orbit bei Anziehung Abbildung: Veranschaulichung zweier Hyperfeinstrukturniveaus

13 Uhren: Atomuhr Funktionsprinzip IV Beispiel: Cäsiumuhr 1. Cs wird im Ofen aufgeheizt, Dampfstrahl tritt durch Düse aus, beide Zustände (Hyperfeinstrukturniveaus, weiß und schwarz) bunt gemischt 2. Magnet A lenkt schwarze Atome ab, Absorption 3. verbleibende Atome (weiß) werden in Ramsey Cavity Mikrowellen wohldefinierter Frequenz ausgesetzt 4. viele Atome wechseln Zustand nach schwarz (induzierte Emission) 5. Magnet B sondert weiße Atome aus 6. Detektor mißt Anzahl Atome, die Zustand wechselten (ursprünglich weiß, jetzt schwarz sind) 7. Oszillatorfrequenz wird so eingestellt, daß ein Maximum von Zustandsänderungen erfolgt. Maximum an Zustandsänderungen ergibt sich für eine Frequenz der Mikrowellen von f = Hz. 13 / 57

14 14 / 57 Uhren: Atomuhr Funktionsprinzip V Prinzipaufbau einer Atomuhr mit Cäsiumstrahl Mikrowellen Ramsey Cavity Osc Ofen (Cs Quelle) N S... S N Detektor Magnet A Magnet B (Quelle: Tony Jones. Splitting The Second. The Story of Atomic Time. IOP Publishing, 2000)

15 15 / 57 Uhren: Atomuhr Funktionsprinzip VI Warum 133 Cs? ein einzelnes Elektron ganz außen 2 Hyperfeinstrukturniveaus (im Grundzustand) nur 1 Isotop (55 Protonen, 78 Neutronen), kein Gemisch leichtes Handling (niedriger Schmelzpunkt 28.4 C, nicht radioaktiv, stabil) schweres Atom ( langsamer) Alternativen: Rubidium, Wasserstoff, ionisiertes Quecksilber

16 Explosionsdarstellung wesentlicher Komponenten 16 / 57 (Quelle: PTB)

17 Beispiel: Atomuhr CS2 der PTB Braunschweig (Quelle: PTB) 17 / 57

18 18 / 57 Uhren Zwischenfazit (somewhat abstract) Uhr = Schwingungsmechanismus, der periodische Ereignisse (Microticks) auslöst + Zähler, der diese Ereignisse zählt mechanisch (Pendel, Unruh) oder elektrisch (Schwingkreis, Quarz) Auflösung der Uhr: Zeitspanne zwischen 2 aufeinanderfolgenden Mikroticks je höher Auflösung, desto größer i.a. die Genauigkeit der Uhr begrenzte Auflösung Quantisierungsfehler Keine zwei Uhren auf der Welt gehen gleich!

19 Mögliche Verhaltensweisen einer Uhr 19 / 57 zu vermessende Uhr 3 1 ideal Referenzuhr

20 20 / 57 Mögliche Verhaltensweisen einer Uhr korrekt: 1. innerhalb der zugesicherten Gangabweichung inkorrekt: 2. Verlassen der zugesicherten Gangabweichung 3. Zustandsfehler Sprung im Zählerwert (nach oben oder unten möglich) 4. Stehenbleiben der Uhr unmöglich: rückwärtslaufende Uhr (negativer Anstieg der Geraden)

21 21 / 57 Mögliche Verhaltensweisen einer Uhr Fehlerursachen: 1. Varianzen innerhalb der Uhr (zufällige und systematische Fehler, z. B. Reibung des Pendels) 2. Störungen bzw. Einflüsse der Umgebung 3. Signalverzögerungen zwischen Uhr und Empfänger (z. B. Signallaufzeit vom Satelliten zum Empfänger im GPS)

22 22 / 57 Güte einer Uhr Mehrere Parameter beschreiben die Qualität einer Uhr: Frequenzgenauigkeit (ρ): Wie genau wird die Sekunde (Zeitbasis) eingehalten? Frequenzstabilität (ρ ): Wie schnell ändert sich ρ? Zeitgenauigkeit ( ): Wie genau stimmt die Uhr mit der offiziellen Zeit überein? Bei sehr hoher Stabilität können präzise Korrekturwerte ermittelt werden, die die Genauigkeit der Uhr erhöhen.

23 23 / 57 Referenzuhr Ermittlung der Ganggenauigkeit einer Uhr mittels Referenzuhr: (viel) höhere Genauigkeit als zu vermessende Uhr erforderlich generiert die Referenzzeit für das betrachtete System, eine (diskrete) Repräsentation der wirklichen Zeit, eine Folge von Ticks (vgl. folgende Abb.) Bestimmung der Ganggenauigkeit stets nur mit Genauigkeit der Referenzuhr möglich generiert Zeitstempel z(e) zu Ereignissen e der zu vermessenden Uhr Gangunterschied : Differenz zweier Uhren für ein und dasselbe Ereignis

24 Verhältnis von Referenzzeit T und wirklicher Zeit t 24 / 57 T T c T b T a t a t b t c t

25 25 / 57 Bestimmung der Gangabweichungsrate ρ Es seien m und n zwei Microticks der zu vermessenden Uhr (Angabe in Zeiteinheiten der Referenzuhr). Dann ermittelt man die normierte Gangabweichungsrate ρ dieser Uhr mittels ρ = z(m) z(n) m n 1 (1) Anmerkungen: nicht mit verwechseln! ideal: ρ = 0 (existiert nicht) ρ > 0 Uhr zu langsam, geht nach ρ ist dimensionslos

26 Bestimmung der Gangabweichungsrate ρ Anmerkungen, cont.: häufig interessiert nur Betrag der Abweichung Unabhängige (free-running) Uhren laufen unendlich weit auseinander, selbst wenn sie ursprünglich perfekt synchronisiert waren. Synchronisation nötig ( später) meist Angabe der maximalen Gangabweichungsrate ρ max unter reproduzierbaren Umweltbedingungen momentaner Bestwert für ρ etwa ρ ist manchmal vom Meßintervall abhängig 2 Uhren, die zu t = 0 synchronisiert wurden, und jeweils eine Gangabweichungsrate ρ aufweisen, können nach Verstreichen von C Zeiteinheiten im worst case um = 2Cρ differieren! 26 / 57

27 27 / 57 Zeitstandards: Naive Zeit naive 12-Stunden-Teilung des Tages (und der Nacht), fixe Phänomene: Sonnenauf- und -untergang Stunden haben unterschiedliche Länge (nur zu den Tagundnachgleichen (Äquinoktien) und am Äquator korrekt) genutzt bis ins 15. Jahrhundert 12-Teilung wahrscheinlich babylonischen Ursprungs; Gründe unklar

28 Zeitstandards: Wahre Ortszeit (WOZ) 28 / 57 aka Wahre Sonnenzeit, apparent solar time wenn Sonne im Zenit steht, ist Mittag (12 Uhr WOZ) direkt beobachtbar, durch Sonnenuhr angezeigt in einigen Ländern bis ins 20. Jahrhundert genutzt Sonne bewegt sich (scheinbar) nicht gleichförmig, weil: elliptische Bahn der Erde um die Sonne (anstatt Kreis) Winkel zwischen Erdachse und Ekliptik ca (anstatt 90 ) keine gleichfg. Zeit, vergeht unterschiedlich schnell kompensierbar, da (jährlich) periodisch: MOZ = mittlere Ortszeit MOZ = WOZ Zeitgleichung

29 Verhältnis WOZ zur MOZ ( 29 / 57

30 30 / 57 Zeitstandards: Mittlere Ortszeit (MOZ) auch Mittlere Sonnenzeit, mean solar time korrigiert jahreszeitliche Schwankungen der WOZ entspräche WOZ, wenn Erde auf Kreisbahn rotierte und senkrecht auf Ekliptik stünde nicht direkt beobachtbar individuell für jeden Ort auf der Erde

31 31 / 57 Zeitzonen Problem: alle Sonnenzeiten hängen von geografischer Länge ab ungünstig für (u. a. ) schnelle Verkehrsmittel (Eisenbahn) Idee: für jedes Land einheitliche Zeit, Pierce/Dowd (1870): 24 Zeitzonen (á 15 Länge) modifiziert durch gewisse kulturelle Zusammenhänge z. B. iranische Zeit UTC+3.5h, Afghanistan UTC+4.5h Abbildung (extern, Wikipedia): Standard_time_zones_of_the_world.png

32 Dauer eines Tages 32 / 57 Problem: Dauer eines Tages schwankt unvorhersehbar (± 4ms) (vermutete) Ursachen Gezeitenreibung durch Gravitation des Mondes (Mond steht bereits still!) Strömungen im Erdmantel als Basis für präzise Definition der Zeit ungeeignet Ephemeridenzeit, basierend auf Revolution Erde um Sonne (ca. 50fach genauer) Atomzeit

33 Astronomische Maßstäbe: Universal Time 33 / 57 UT0 ( mittlere Sonnenzeit ): definiert durch Rotation der Erde um sich selbst (Genauigkeit: ca. 0.1 s), direkt aus Beobachtung abgeleitet Lage der Drehachse der Erde schwankt leicht und periodisch (p = 435d) (Abb. nächste Folie) näherungsweise Korrektur von UT0: UT1 = UT0 tan ϕ m (x sin λ m + y cos λ m ). λ m ϕ m mittlere Länge des Beobachterstandpunkts mittlere Breite des Beobachterstandpunkts x, y Koordinaten des Pols

34 Polbewegung zwischen 2001 und / 57 (Quelle:

35 Fazit: Astronomische Maßstäbe UT1 korrigiert UT0 um Schwankung der Drehachse UT2 korrigiert UT1 Variabilität der Erdrotation infolge (u. a. ) Gezeitenreibung Erdrotation verlangsamt sich momentan etwa um im Jahr, jedoch nicht linear Länge eines Tages differiert um etwa (Tag zu Tag, Jahr zu Jahr) d. h., alle UTx variieren verhältnismäßig stark als Zeitbasis zur hochgenauen Definition der Sekunde ungeeignet 35 / 57

36 SI-Sekunde 36 / 57 Lösung: Definition der Sekunde unabhängig von astronomischen Phänomenen. Definition (1967): Eine Sekunde ist das fache der Periodendauer, der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids 133 Cs entsprechenden Strahlung.

37 37 / 57 Internationale Atomzeit TAI Temps Atomique International aka Atomzeit fortlaufender, chronoskopischer Zeitmaßstab (keine Diskontinuitäten) Basis: 230 über die Erde verteilte Atomuhren zentral ermittelt am Bureau International des Poids et Mesures in Paris (BIPM) Ermittlung dauert etwa einen Monat (!) Grundlage für die gesetzliche Weltzeit UTC (siehe unten) Problem: astronomische Phänomene (und damit UT1 & Co.) verschieben sich allmählich zeitlich Synchronisation nötig UTC

38 38 / 57 Koordinierte Weltzeit UTC engl. Universal Coordinated Time Basis der gesetzlichen Zeit abgeleitet aus TAI: durch Einfügung sog. leap seconds an (astronomische) Erdzeit UT1 angepaßt Einfügung einer Sekunde erfolgt etwa einmal pro Jahr, festgelegt durch International Earth Rotation Service (IERS) UTC und UT1 weichen nie mehr als 0.9s voneinander ab modifiziert durch 24 Zeitzonen, Sommer-/Winterzeit-Festlegungen nicht chronoskopisch per definitionem: TAI und UTC am 1.Januar 1958 identischer Wert

39 39 / 57 Koordinierte Weltzeit UTC TAI-UTC=31 Sekunden (1997) Berechnung wie TAI am BIPM, dauert etwa einen Monat aktuelle UTC wird geschätzt, und zwar von den genauesten Atomuhren der Welt: UTC(k), k {NIST, PTB,... } Aussendung der UTC in Deutschland/Europa über Langwellensender DCF77 der Physikalisch-Technischen Bundesanstalt (PTB). Sendefrequenz 77.5 khz Reichweite: etwa 2000 km Empfang: drahtlos (Funkwecker), Analog-Modem, NTP

40 40 / 57 Uhrensynchronisation Die Existenz der Gangabweichungsrate ρ bedingt die Notwendigkeit der Synchronisation jeder Uhr. 2 Formen: externe S.: Abgleich der Systemuhr(en) mit einer (als ideal angenommenen) externen Referenzuhr (z.b. Zeitserver) interne S.: Einigung aller Systemuhren auf einen gemeinsamen Wert ohne externe Referenz

41 Resynchronisierungsintervall 41 / 57 Um die Gangdifferenz zu beschränken, muß periodisch synchronisiert werden. Die maximal geduldete Differenz a zweier betrachteter Uhren determiniert die Größe des sogenannten Resynchronisierungsintervalls t sync. Diese beträgt bei externer Synchronisation a ρ Zeiteinheiten und bei interner Synchronisation a Zeiteinheiten (beide 2ρ beteiligten Uhren sollen eine maximale Gangabweichungsrate von ρ aufweisen).

42 Wertverlauf einer extern synchronisierten Uhr t zu messen de Uhr Toleranzbereich mit Synchronisation ideal synchronisierte Uhr Resynchronisierungs intervall Toleranzbereich ohne Synchronisation Referenz uhr t 42 / 57

43 43 / 57 Zentrale vs. dezentrale Synchronisation Unterscheidung von zentralen (ein verantwortlicher Server) und dezentralen (alle Teilnehmer gleichberechtigt) Synchronisationsverfahren. Fehlertoleranz Datenaufkommen zentral schlecht gering dezentral gut sehr hoch Tabelle: zentrale vs. dezentrale Synchronisation

44 44 / 57 Korrektur der Uhr Keine Zeitsprünge und keine Verletzungen der Kausalität (d. h. nicht zurückstellen), da bestimmte Aktivitäten im System an absolute Zeitpunkte geknüpft sind (Beispiele: make-utility, Abschuss einer Rakete,... ). Stattdessen: Zeittakt des Clients bis zur Angleichung beschleunigen bzw. verlangsamen ( HA)

45 45 / 57 Probabilistische Uhrensynchronisation Grundidee 1. Client C schickt Anfrage an Server S ( time=? ). 2. S ermittelt beim Empfang seine Zeit t S und schickt diese an C. 3. C empfängt die Nachricht und stellt seine Uhr auf t S. C S t 0 Time=? Time=t S t S t 1 C S (t 1 )

46 Probabilistische Uhrensynchronisation Näherungsweise Kompensation der Nachrichtenlaufzeit Problem: t S ist nicht präzise; während der Nachrichtenübertragung ist Uhr weitergelaufen es ist prinzipiell unmöglich, die Laufzeit der Nachricht exakt zu bestimmen, da die Uhren von C und S nicht exakt synchronisiert sind, d. h. C S (t 1 ) ist für C nicht bestimmbar probabilistisches Intervall für C S (t 1 ) angebbar 3 : { } C S (t 1 ) t S + t min (1 ρ), t S + 2D(1 + 2ρ) t min (1 + ρ) D = t 1 t 0 2, durch C gemessene halbe Roundtripzeit t min minimale Nachrichtenlaufzeit ρ Ganggenauigkeit der Uhren von C und S 3 Flaviu Cristian. Probabilistic clock synchronization. In: Distributed Computing 3.3 (1989), S / 57

47 47 / 57 Probabilistische Uhrensynchronisation Anmerkungen Uhr von C wird auf die Mitte des Intervalls gesetzt (um potentiellen Fehler zu minimieren): C C S (t S, D) = t S + D(1 + 2ρ) ρt min Intervall wird umso kleiner ( umso genauer kann Uhr von C gestellt werden) je kleiner ρ, je näher D an tmin mehrere Anfragen (und Antworten); diejenige mit minimalem D wird genutzt

48 48 / 57 Probabilistische Uhrensynchronisation Vereinfachung bei vernachlässigbarer Drift ρ der beteiligten Uhren vereinfacht sich das Intervall für C S (t 1 ): } C S (t 1 ) {t S + t min, t S + 2D t min Länge des Intervalls wird zu l = 2D 2t min C setzt seine Uhr beim Empfang der Nachricht auf C C S (t S, D) = t S + D maximal möglicher Fehler der zu stellenden Uhr ist dann D t min

49 Berkeley-Algorithmus (1989) 4 Zentralisierter Algorithmus mit aktivem Server. Server hat keine genaue Zeitbasis! (Ursprung: 4.3 BSD UNIX) Zeitserver (time daemon) übermittelt periodisch seine Zeit an alle Clients diese errechnen Differenz zu ihren lokalen Zeiten Differenzen werden an Zeitserver zurückgesandt Zeitserver mittelt Differenzen und bildet Korrekturwerte für jeden Client (und sich selbst) Korrekturwerte werden an Clients übertragen Clients beschleunigen bzw. verzögern lokale Uhren, bis Korrekturwerte eingestellt bei Ausfall des Servers kann ein anderer Knoten die Rolle übernehmen (per Election) 4 Riccardo Gusella und Stefano Zatti. The Accuracy of the Clock Synchronization Achieved by TEMPO in Berkeley UNIX 4.3BSD. In: IEEE Transactions on Software Engineering 15.7 (Juli 1989), S / 57

50 Berkeley-Algorithmus: Beispiel A) Zeit server 12:00 11:55 12:08 12:00 B) :00 12:00 11:55 12: C) +1 12:01 12:01 12: / 57

51 Dezentrale Mittelwertbildung Dezentraler Algorithmus, kein Server. Einteilung der ( Zeit ) in fixe Resynchronisierungsintervalle, Dauer R = a 2ρ Uhren aller Systeme haben gleichen Wert zu T 0 i-tes Intervall = {T 0 + ir, T 0 + (i + 1)R} R t T 0 T 0 +R T 0 +2R T 0 +ir T 0 +(i+1)r Abbildung: Verfahren der Dezentralen Mittelwertbildung 51 / 57

52 Dezentrale Mittelwertbildung: Prinzip 52 / 57 zu Beginn jedes Intervalls Broadcasting der eigenen Uhrzeit (nicht wirklich gleichzeitig, da Uhren differieren) Empfang der Uhrzeiten in einer definierten Zeitspanne a) einfache Mittelwertbildung b) Mittelung unter Ausschluß der m größten und m kleinsten Werte (Fehlersicherheit gegenüber maximal m fehlerhaften Uhren) c) Einbeziehung der Nachrichtenlaufzeit, wenn ermittelbar Angleichung der eigenen Uhr an errechneten Mittelwert

53 Unterstützung in Rechensystemen Hardware Timer zur periodischen Unterbrechung, abgeleitet aus Taktfrequenz des Rechners, z. B. Intel 8254 programmable Interrupt Timer (PC) 2 On-Chip-Timer im DSP TMS320C6x CMOS-Uhr Real-Time-Clock (RTC) im PC, enthält Batterie, Quarz und notwendige Beschaltung, mäßige Ganggenauigkeit, z. B. z. B. Dallas DS12887 Einsteckkarte mit eigenem DCF-77-Empfänger oder GPS-Empfänger Register z.b. Time Stamp Counter (TSC) im Intel Pentium, inkrementiert mit Taktfrequenz Watchdog zur Überwachung der korrekten Prozessorfunktion in sensitiven Applikationen 53 / 57

54 54 / 57 Unterstützung in Rechensystemen Betriebssystem-Dienste Betriebssysteme etablieren i.a. eine Approximation der gültigen Weltzeit konkrete Schnittstelle abhängig vom Betriebssystem Typische zeitbehaftete Funktionen und Kommandos eines UNIX-Systems sind: Ermittlung der aktuellen (Welt-)zeit: date, time() Umwandlung interne Darstellung in lesbare (ASCII)-Form: ctime(), asctime() Berechnungen mit Zeitangaben: difftime() (Zeitdifferenzen) Korrektur der Rechnerzeit: automatisch durch ntpd, date, wenn Uhr völlig nach Mond geht

55 55 / 57 Unterstützung in Rechensystemen Betriebssystem-Dienste II getimte Abarbeitung: Dienst cron (stündliche, tägliche und wöchentliche Verrichtungen), at-kommando Verzögerung um bestimmte Dauer (sleep(), usleep(), nanosleep()) periodische Aktivierung bzw. Signalisierung (getitimer(), setitimer()) Zeitstempel für persistente Objekte (z.b. Dateien letzter Zugriff, letzte Modifikation, letzte Statusänderung Ermittlung mittels stat())

56 56 / 57 Zusammenfassung: Was haben wir gelernt? 1. Zeitbegriff 2. Uhren: Typen, Historie, Parameter, Gütekriterien 3. Zeitstandards 4. (einfache) Verfahren zur Synchronisation

57 Vertiefende Literatur David W. Allan, Neil Ashby und Clifford C. Hodge. The Science of Timekeeping. Techn. Ber. AN Agilent Technologies, 2000 David L. Mills. Computer Network Time Synchronization. CRC Press, 2006 Dennis D. McCarthy und P. Kenneth Seidelmann. TIME From Earth Rotation to Atomic Physics. Wiley, 2009 F. G. Major. The Quantum Beat. 2. Aufl. Springer, / 57

Wasseruhren (ab ca. 1500 v. u. Z.) I I I

Wasseruhren (ab ca. 1500 v. u. Z.) I I I Ursprung des Zeitbegriffes Vorlesung Echtzeitsysteme Thema 2: Zeit griechische Vorstellung: Alles ist ein Kreislauf ( kein Ursprung, Ende) jüdisch-christliche Vorstellung: Zeitpfeil im Weltmodell (dedizierter

Mehr

Fakultät für Informatik der Technischen Universität München. Kapitel 7. Uhren & Synchronisation

Fakultät für Informatik der Technischen Universität München. Kapitel 7. Uhren & Synchronisation Kapitel 7 Uhren & Synchronisation 1 Inhalt Motivation Definition Zeit Uhren Synchronisation Algorithmus von Cristian Algorithmus aus Berkeley NTP-Protokoll Synchronisation bei fehlerbehafteten Uhren 2

Mehr

Vorlesung "Verteilte Systeme" Sommersemester 1999. Verteilte Systeme NTP) Verteilte Systeme, Sommersemester 1999 Folie 4.2

Vorlesung Verteilte Systeme Sommersemester 1999. Verteilte Systeme NTP) Verteilte Systeme, Sommersemester 1999 Folie 4.2 Verteilte Systeme 4. Zeit Ansätze Pragmatisch: Uhrensynchronisation Abgleich der lokalen Uhren Beispiele Zeitabgleich nach F. Christian Berkeley-Algorithmus Verteilte Synchronisation Network Time Protocol

Mehr

Uhrensynchronisation. Dipl.-Inf. J. Richling Wintersemester 2003/2004

Uhrensynchronisation. Dipl.-Inf. J. Richling Wintersemester 2003/2004 Uhrensynchronisation Dipl.-Inf. J. Richling Wintersemester 2003/2004 Motivation Zeit kann in Anwendungen eine große Rolle spielen, insbesondere bei Echtzeitsystemen Häufig wichtiger noch als korrekte Zeit:

Mehr

Nottebohmstraße Lüdenscheid DEUTSCHLAND. Tel.: Fax: Web:

Nottebohmstraße Lüdenscheid DEUTSCHLAND. Tel.: Fax: Web: Nottebohmstraße 41 58511 Lüdenscheid DEUTSCHLAND Tel.: +49-2351-9386-86 Fax: +49-2351-9386-93 Web: http://www.hopf.com Besuchen Sie uns online: Was ist Zeit? Definitionen des Zeitbegriffs und Methoden

Mehr

3 Physikalische Größen

3 Physikalische Größen 3 Physikalische Größen Warum hat der Tag 24 Stunden? Warum drehen sich die Zeiger einer Uhr im Uhrzeigersinn? 3.1 Wert und Einheit Physikalische Größe = Zahlenwert Einheit G = { G } [ G ] Verknüpfung physikalischer

Mehr

1Raum-Zeit-Materie-Wechselwirkungen

1Raum-Zeit-Materie-Wechselwirkungen 1Raum-Zeit-Materie-Wechselwirkungen 1. 11 1.1 Der Raum 1.2 Raum und Metermaß 1.3 Die Zeit 1.4 Materie 1.5 Wechselwirkungen 1.1 Der Raum Wir sehen: Neben-, Über- und Hintereinander von Gegenständen Objektive

Mehr

Elementare Systemkomponenten:

Elementare Systemkomponenten: Elementare Systemkomponenten: Zeitsynchronisation Verteilten Systemen (Time Service) VSS1-Time-1 Zeit und Koordination: Einführung Grundsätzliche Alternativen: externe Synchronisation interne Synchronisation

Mehr

Verteilte Systeme - 3. Übung

Verteilte Systeme - 3. Übung Verteilte Systeme - 3. Übung Dr. Jens Brandt Sommersemester 2011 1. Zeit in verteilten Systemen a) Nennen Sie mindestens drei verschiedene Ursachen zeitlicher Verzögerungen, die bei einem Entwurf eines

Mehr

Lösung zur Praktikumsaufgabe 2

Lösung zur Praktikumsaufgabe 2 1. Es gilt Echtzeitsysteme Lösung zur Praktikumsaufgabe 2 Thema: Zeit t = 2ρ t sync. Mit ρ a = 5.7 10 6 und ρ b = 1 10 4 (der Ausdruck parts per million steht für 1 10 6 ) sowie der Zeitspanne 1 a = 31.536.000

Mehr

Kommunikation in drahtlosen Sensornetzen

Kommunikation in drahtlosen Sensornetzen Kommunikation in drahtlosen Sensornetzen Zeitsynchronisation in drahtlosen Sensornetzen (DSN) Michael Oeste - 674177 Michael Oeste 12.02.2007-1 / 27 Inhalt Problematik der Zeitsynchronisation Zeit Synchronisation

Mehr

EMES: Eigenschaften mobiler und eingebetteter Systeme. Uhrensynchronisation. Dr. Siegmar Sommer, Dr. Peter Tröger Wintersemester 2009/2010

EMES: Eigenschaften mobiler und eingebetteter Systeme. Uhrensynchronisation. Dr. Siegmar Sommer, Dr. Peter Tröger Wintersemester 2009/2010 EMES: Eigenschaften mobiler und eingebetteter Systeme 00101111010010011101001010101 Uhrensynchronisation Dr. Siegmar Sommer, Dr. Peter Tröger Wintersemester 2009/2010 00101111010010011101001010101 Motivation

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 III.1 Exzentrizität der Erdumlaufbahn

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 Exzentrizität der Erdumlaufbahn = 0,0167

Mehr

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7.

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7. Verteilte Systeme SS 2015 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 7. Juli 2015 Betriebssysteme / verteilte Systeme Verteilte Systeme (1/13) i

Mehr

Zeitsynchronisation in Sensornetzen. Kay Römer ETH Zürich Switzerland

Zeitsynchronisation in Sensornetzen. Kay Römer ETH Zürich Switzerland Zeitsynchronisation in Sensornetzen Kay Römer ETH Zürich Switzerland Überblick Wozu wird Zeit gebraucht? Warum Forschung notwendig? Varianten von Synchronisation Eigenschaften von Sensorknoten Einmalige

Mehr

1 AE = km = 149, km.

1 AE = km = 149, km. 1. Astronomische Entfernungsangaben Astronomische Einheit (AE) Die große Halbachse der Erdbahn um die Sonne = mittlere Entfernung Erde - Sonne, beträgt 149 597 892 ± 5 km. Sie wird als Astronomische Einheit

Mehr

Überblick. Zeit Motivation Network Time Protocol (NTP) Logische Uhren. c td VS (SS16) Zeit 9 1

Überblick. Zeit Motivation Network Time Protocol (NTP) Logische Uhren. c td VS (SS16) Zeit 9 1 Überblick Zeit Motivation Network Time Protocol (NTP) Logische Uhren c td VS (SS16) Zeit 9 1 Motivation Zeit als Mittel zur Reihenfolgebestimmung (Beispiele) Erkennung von Modifikationen an Dateien (z.

Mehr

Verteilte Systeme - Synchronisation

Verteilte Systeme - Synchronisation Verteilte Systeme - Synchronisation... alois.schuette@h-da.de Alois Schütte 25. Februar 2014 1 / 24 Inhaltsverzeichnis Die Synchronisationsmethoden bei Einprozessorsystemen (z.b. Semaphore oder Monitore)

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Verteilte Systeme. Synchronisation I. Prof. Dr. Oliver Haase

Verteilte Systeme. Synchronisation I. Prof. Dr. Oliver Haase Verteilte Systeme Synchronisation I Prof. Dr. Oliver Haase 1 Überblick Synchronisation 1 Zeit in verteilten Systemen Verfahren zum gegenseitigen Ausschluss Synchronisation 2 Globale Zustände Wahlalgorithmen

Mehr

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März Unser Sonnensystem Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 8. März 2010 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen Ellipsen und Planetenbahnen

Mehr

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010 Beobachtungen am Himmel Manuel Erdin Gymnasium Liestal, 2010 Grundsätze Alle am Himmel beobachtbaren Objekte befinden sich auf der Innenseite einer Kugel. Wir als Beobachter sind in Ruhe. Die Himmelskugel

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5,

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5, Astronomie Prof. Dr. H.M. Schmid, Institut für Astronomie, ETH Zürich Prof. Dr. W. Schmutz, Physikalisch-Meteorolgisches Observatorium, World Radiation Center, Davos Vorlesung HS 2015 (16. Sept. 16. Dez.

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

One way Delay (OWD) Determination Techniques

One way Delay (OWD) Determination Techniques Lehrstuhl Netzarchitekturen und Netzdienste Institut für Informatik Technische Universität München One way Delay (OWD) Determination Techniques Referent: Mislav Boras Betreuer: Dirk Haage Seminar: Innovative

Mehr

Überblick. Zeit Motivation Konvergenz-Algorithmus CNV Network Time Protocol (NTP) Logische Uhren. c td VS (SS17) Zeit 8 1

Überblick. Zeit Motivation Konvergenz-Algorithmus CNV Network Time Protocol (NTP) Logische Uhren. c td VS (SS17) Zeit 8 1 Überblick Zeit Motivation Konvergenz-Algorithmus CNV Network Time Protocol (NTP) Logische Uhren c td VS (SS17) Zeit 8 1 Motivation Zeit als Mittel zur Reihenfolgebestimmung (Beispiele) Erkennung von Modifikationen

Mehr

Wie funktioniert eine Atomuhr?

Wie funktioniert eine Atomuhr? Wie funktioniert eine Atomuhr? - Deutschlands nationales Metrologieinstitut - 1 - Was ist eine Uhr Uhren Messgeräte der Zeit gehören zu den genauesten Messgeräten überhaupt und werden für viele Anwendungen

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

Grüß Gott zum öffentlichen Vortrag des THEMA:

Grüß Gott zum öffentlichen Vortrag des THEMA: Grüß Gott zum öffentlichen Vortrag des AiC* am Tag der Astronomie Astronomie im Chiemgau ev. * http://www.astronomie-im-chiemgau.de/ THEMA: THEMA: Über astronomische Zeitrechnung oder Warum am Himmel die

Mehr

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel Die Zeitgleichung Joachim Gripp, Lindau bei Kiel Einleitung Den meisten Sonnenuhr- Freunden ist die Zeitgleichung gut bekannt. Sie ist als Unterschied zwischen der von einer Sonnenuhr angezeigten Sonnenzeit

Mehr

Wie man Computer übers Internet identifiziert

Wie man Computer übers Internet identifiziert Remote Physical Device Fingerprinting Wie man Computer übers Internet identifiziert ein Vortrag von Cyrus Massoumi und Johannes Zschoche Chair for Communication Technology (ComTec), Faculty of Electrical

Mehr

Doppler-Effekt und Bahngeschwindigkeit der Erde

Doppler-Effekt und Bahngeschwindigkeit der Erde Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Doppler-Effekt und Bahngeschwindigkeit der Erde 1 Einleitung Nimmt man im Laufe eines Jahres

Mehr

WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT?

WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT? WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT? Jürgen R. Reuter, DESY Science Café, DESY 28.11.2012 ALLTAG: (GPS-)NAVIGATION MIT IPHONE Smartphone enthält GPS- Empfänger Positionsbestimmung

Mehr

Verteilte Algorithmen

Verteilte Algorithmen Verteilte Algorithmen Zeitsynchronisation (Time Service) Zustandsalgorithmen VIS-1 VertAlg-1 VIS1-VertAlg-1 Gliederung Übersicht verteilte Algorithmen Zeitalgorithmen Zustandsalgorithmen VIS-1 VertAlg-2

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Physikalisches Praktikum für Maschinenbauer Lehrstuhl für Messtechnik und Sensorik

Physikalisches Praktikum für Maschinenbauer Lehrstuhl für Messtechnik und Sensorik Basiseinheiten B1a Lehrstuhl für Messtechnik & Sensorik Basiseinheiten B1a Physikalisches Praktikum für Maschinenbauer Lehrstuhl für Messtechnik und Sensorik 1 Der Versuch soll mit den SI-Basiseinheiten

Mehr

Kap. 8: Globale Zeit /

Kap. 8: Globale Zeit / Kap. 8: Globale Zeit / Uhrensynchronisation 81 8.1 Einführung 8.2 Zeitbegriff und Zeitsysteme 83 8.3 Rechneruhren 8.4 Synchronisationsprotokolle 85 8.5 Logische Zeitmarken Verteilte Systeme 8-1 8.1 Einführung

Mehr

Astronomie. Wich7ge Folien (=Skript) zur Vorlesung: Vorlesung HS 2016 (21. Sept. 21. Dez. 2016) ETH Zürich, Mi 10-12, CAB G61,

Astronomie. Wich7ge Folien (=Skript) zur Vorlesung: Vorlesung HS 2016 (21. Sept. 21. Dez. 2016) ETH Zürich, Mi 10-12, CAB G61, Astronomie Prof. Dr. H.M. Schmid, Ins7tut für Astronomie, ETH Zürich Prof. Dr. W. Schmutz, Physikalisch-Meteorolgisches Observatorium, World Radia7on Center, Davos Vorlesung HS 2016 (21. Sept. 21. Dez.

Mehr

Aufgaben zum Wasserstoffatom

Aufgaben zum Wasserstoffatom Aufgaben zum Wasserstoffatom Hans M. Strauch Kurfürst-Ruprecht-Gymnasium Neustadt/W. Aufgabenarten Darstellung von Zusammenhängen, Abgrenzung von Unterschieden (können u.u. recht offen sein) Beantwortung

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

S1 Zeit in verteilten Systemen

S1 Zeit in verteilten Systemen S1 Zeit in verteilten Systemen Süddeutsche Zeitung vom 1.1.1 FK4 Prof. Dr. Rainer Seck 1 Eigenschaften verteilter Systeme Szenarien: konkurrierender Zugriff auf einmal vorhandene Betriebsmittel verteilter

Mehr

Verteilte Algorithmen. Zeitsynchronisation (Time Service) Zustandsalgorithmen

Verteilte Algorithmen. Zeitsynchronisation (Time Service) Zustandsalgorithmen Verteilte Algorithmen Zeitsynchronisation (Time Service) Zustandsalgorithmen VIS-1 VertAlg-1 Gliederung Übersicht verteilte Algorithmen Zeitalgorithmen ith Zustandsalgorithmen VIS-1 VertAlg-2 Übersicht

Mehr

Astronomische Ortsbestimmung mit dem Sextanten

Astronomische Ortsbestimmung mit dem Sextanten Astronomische Ortsbestimmung mit dem Sextanten Der Sextant Die einfachste Art seine Position zu bestimmen ist die Mittagsmethode. Dabei wird die Sonnenhöhe zur Mittagszeit gemessen. Sie hat den Vorteil,

Mehr

Zeit Definitionen. UT = Universal Time (Weltzeit)

Zeit Definitionen.  UT = Universal Time (Weltzeit) Zeit Definitionen UT = Universal Time (eltzeit) astronomische eltzeit entspricht mittlerer onnenzeit des Nullmeridian gezählt von Mitternacht. in Maß für den Drehwinkel der rde. 24 h eltzeit = 360 rddrehung

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?

Mehr

Berechnung der Zeitgleichung

Berechnung der Zeitgleichung Berechnung der Zeitgleichung Um eine Sonnenuhr berechnen zu können, muss man zu jedem Zeitpunkt den infallswinkel der Sonne relativ zur Äquatorebene (= Deklination δ) sowie den Winkel, um den sich die

Mehr

Berechnung und Messung der Sonnenscheindauer. auf einer Dachschrägen

Berechnung und Messung der Sonnenscheindauer. auf einer Dachschrägen Didaktik der Physik Frühjahrstagung Wuppertal 2015 Berechnung und Messung der Sonnenscheindauer auf beliebigen Dachschrägen Tran Ngoc Chat*, Adrian Weber* *Universität Siegen, Didaktik der Physik, Adolf-Reichwein-Straße

Mehr

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen Dieter Suter - 423 - Physik B2 6.7. Laser 6.7.1. Grundlagen Das Licht eines gewöhnlichen Lasers unterscheidet sich vom Licht einer Glühlampe zunächst dadurch dass es nur eine bestimmte Wellenlänge, resp.

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Fehlertoleranz in eingebetteten Systemen

Fehlertoleranz in eingebetteten Systemen Fehlertoleranz in eingebetteten Systemen Ausgewählte Kapitel eingebetteter Systeme (AKES) 19.07.2006 1 / 36 Was ist ein Fehler? Fehlerklassen Überblick Einführung Was ist ein Fehler? Fehlerklassen 2 /

Mehr

Empfängeruhrmodellierung in GNSS: Auswirkungen und Realisierbarkeit

Empfängeruhrmodellierung in GNSS: Auswirkungen und Realisierbarkeit Empfängeruhrmodellierung in GNSS: Auswirkungen und Realisierbarkeit i it Ulrich Weinbach, ib Steffen Schön Institut für Erdmessung Motivation GNSS sind Einweg-Messverfahren. Problem der Zeitsynchronisation

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Elementare Systemkomponenten:

Elementare Systemkomponenten: Elementare Systemkomponenten: Zeitsynchronisation in verteilten Systemen (Time Service) VIS2-Time-1 Gibt es etwas aus der Welt der Technik, das Sie besonders beeindruckt? F.A.Z. Mein funkgesteuerter Wecker,

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Zeit-und Frequenzstandards. Nick Rothbart

Zeit-und Frequenzstandards. Nick Rothbart Zeit-und Frequenzstandards Nick Rothbart 1 Gliederung Einleitung Klassische Cäsium-Atomuhr Cäsium-Fontäne 2 Einleitung Was ist Zeit? Zeit ist, was verhindert, dass alles auf einmal passiert! John A. Wheeler

Mehr

Der Tanz der Jupiter-Monde

Der Tanz der Jupiter-Monde T.H. Der Tanz der Jupiter-Monde V1.1 Thomas Hebbeker 27.10.2012 Motivation Messung der Bahndaten der 4 Galileischen Jupitermonde Umlaufzeiten, Bahnradien Überprüfung des III. Keplerschen Gesetzes Berechnung

Mehr

Bild:Dali : Zerfliessende Uhren. Zeitmessungen

Bild:Dali : Zerfliessende Uhren. Zeitmessungen Bild:Dali : Zerfliessende Uhren Zeitmessungen Gliederung Einleitung Zeitmessung Theorie Experimentelle Realisierung Möglichkeiten der Zeitbestimmung Riehle 'Frequency standards' Eigenschaften der guten

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Zeit, Länge und Geschwindigkeit

Zeit, Länge und Geschwindigkeit Zeit, Länge und Geschwindigkeit Grundlegendes zur Messung physikalischer Größen: 1. Definition einer Einheit 2. Abzählen von Vielfachen dieser Einheit oder Vielfache von Bruchteilen der Einheit Oder: mittels

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Um physikalische Aussagen über das Verhältnis von Messgrößen zu erhalten, ist es notwendig die Größen exakt und nachvollziehbar

Mehr

Didaktik der Astronomie. Orientierung am Himmel II Veränderungen

Didaktik der Astronomie. Orientierung am Himmel II Veränderungen Didaktik der Astronomie Orientierung am Himmel II Veränderungen Bezugssysteme Horizontsystem (fest) Äquatorsystem (bewegt) > Erdrotation: Tag; Tägliche Änderung Ekliptiksystem (bewegt) > Sonnenumlauf:

Mehr

Extrasolare Planeten und ihre Zentralsterne

Extrasolare Planeten und ihre Zentralsterne Extrasolare Planeten und ihre Zentralsterne Nachtrag Organisatorisches Da schlussendlich eine individuelle Benotung erfolgen muss, soll am Ende eine etwa einstündige Klausur über den Stoff der Vorlesung

Mehr

Spule mit und ohne ferromagnetischen Kern

Spule mit und ohne ferromagnetischen Kern Spule mit und ohne ferromagnetischen Kern Auf Basis der in der Vorlesung gelernten theoretischen Grundlagen sollen nun die Eigenschaften einer Luftspule und einer Spule mit ferromagnetischem Kern untersucht

Mehr

Relativistische Effekte auf Atomuhren

Relativistische Effekte auf Atomuhren Relativistische Effekte auf Atomuhren André Stefanov Universität Bern 29.09.2012, 125 Jahre PGZ A. Einstein: Mitbegründer der Quantenphysik 1905: Annalen der Physik 17 (6): 132 148. "Über einen die Erzeugung

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Verbundstudium TBW Teil 1 Grundlagen 3. Semester

Verbundstudium TBW Teil 1 Grundlagen 3. Semester Verbundstudium TBW Teil 1 Grundlagen 3. Semester 1.1 Internationales Einheitensystem System (SI) Größe Symbol Einheit Zeichen Länge x Meter m Zeit t Sekunde s Masse m Kilogramm kg Elektr. Stromstärke I

Mehr

Grundlagen verteilter Systeme

Grundlagen verteilter Systeme Universität Augsburg Insitut für Informatik Prof. Dr. Bernhard Bauer Wolf Fischer Christian Saad Wintersemester 08/09 Übungsblatt 5 26.11.08 Grundlagen verteilter Systeme Lösungsvorschlag Aufgabe 1: Erläutern

Mehr

GPS Analogieexperiment

GPS Analogieexperiment Didaktik der Physik, Ruhr-Universität Bochum, www.dp.rub.de GPS Analogieexperiment Einleitung Das Global Positioning System (GPS) erlangt zunehmende Bedeutung in vielen technischen Anwendungen. Im täglichen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Messung der Astronomischen Einheit nach Aristarch (mit Lösung)

Messung der Astronomischen Einheit nach Aristarch (mit Lösung) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch (mit Lösung) 1 Einleitung Bis ins 17. Jahrhundert

Mehr

Erläuterungen zur Funktionsweise der Sonnenuhr

Erläuterungen zur Funktionsweise der Sonnenuhr Erläuterungen zur Funktionsweise der Sonnenuhr Hans Huber 28. November 2016 Lieber Besucher, nehmen Sie sich bitte fünf Minuten Zeit. Vielleicht verändert dies Ihre Sicht auf die Zeit und unser damit verbundenes

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Die dunkle Seite der Kosmologie

Die dunkle Seite der Kosmologie Die dunkle Seite der Kosmologie Franz Embacher Workshop im Rahmen der 62. Fortbildungswoche Kuffner Sternwarte 27. 2. 2008 Fakultät für Physik Universität Wien 4 Aufgaben Aufgabe 1 Im Zentrum der Milchstraße

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Algorithmus von Berkeley (1989)

Algorithmus von Berkeley (1989) Annahme: kein UTC Empfänger verfügbar Algorithmus (zentral, intern): Algorithmus von Berkeley (1989) ein Rechneragiert als aktiver Time Server. Der Server fragt periodisch die Zeiten/Unterschiede aller

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Astronomische Koordinatensysteme

Astronomische Koordinatensysteme Übung für LA Physik Astronomische Koordinatensysteme Sergei A.Klioner Lohrmann-Observatorium, Technische Universität Dresden Kartesische und sphärische Koordinaten Kartesisches Koordinatensystem und sphärische

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Musterlösung Montag 14. März 2011 1 Maxwell Wir bilden die Rotation der Magnetischen Wirbelbleichung mit j = 0: ( B) = +µµ 0 ɛɛ 0 ( E) t und verwenden wieder die Vektoridenditäet

Mehr

Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007

Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007 Relative Atommassen Stefan Pudritzki Göttingen 8. September 2007 Berechnung der relativen Atommassen Nach dem derzeitigen Kenntnisstand können die relativen Atommassen der chemischen Elemente mit einem

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Timer. Funktionsprinzip

Timer. Funktionsprinzip Timer Funktionsprinzip 8-Bit-Timer des ATmega28 Beispiel Timer im Polling- und Interrupt-Betrieb Funktionsprinzip Timer ist ein in Hardware realisierter i Zähler ändert seinen Zählerstand mit einer vorgegebenen

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation?

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Was ist RAUMZEIT? z t 3 dimensionaler Raum y + Zeitachse x = 4 dimensionale RAUMZEIT Was ist RAUMZEIT? Zeitachse = t c http://www.ws5.com/spacetime

Mehr