Berechnung der Zeitgleichung

Größe: px
Ab Seite anzeigen:

Download "Berechnung der Zeitgleichung"

Transkript

1 Berechnung der Zeitgleichung Um eine Sonnenuhr berechnen zu können, muss man zu jedem Zeitpunkt den infallswinkel der Sonne relativ zur Äquatorebene (= Deklination δ) sowie den Winkel, um den sich die rde seit dem Sonnenhöchststand weitergedreht hat (= Stundenwinkel τ), kennen. Wenn sich die rde gleichmäßig auf einer idealen Kreisbahn mit dazu senkrechter Drehachse bewegen würde, wäre es nicht allzu schwer, diese Größen zu berechnen. Da sich jedoch die rde auf einer elliptischen Bahn mit veränderlicher Geschwindigkeit bewegt und die Drehachse zur bene der rdbahn (kliptik) um den Winkel γ geneigt ist, ist die Lösung des Problems etwas komplizierter. Ich habe im folgenden Artikel versucht, die Sachverhalte so zu veranschaulichen, dass man sich den Ablauf der rdbewegung sowie die inflüsse auf die Deklination und den Stundenwinkel gut vorstellen kann. (Hinweis: Die Nutation der rdachse wird im Folgenden nicht berücksichtigt.) Algorithmus: a) Berechnung der Zeitdifferenz d vom gegebenen Datum zum , 1:00, ausgedrückt in Tagen. b) Berechnung des Anteils T am Julianischen Jahrhundert (= Tage): d T = 3655 (Die folgenden Berechnungen erfolgen mit Näherungsformeln von Jan eeus) c) Berechnung der xzentrizität ε der rdbahn: ε = 0, , * T d) Berechnung der Schiefe der kliptik: γ = 3, , * T 0, * T 0, * T e) Berechnung des Winkelweges, den die rde seit dem letzten Periheldurchgang zurückgelegt hätte, wenn sie sich auf einer Kreisbahn bewegen würde: 3 = 357, ,05030 * T 0, * T 0, * T mod 360 f) Berechnung des Winkelweges ν, den die rde seit dem letzten Periheldurchgang tatsächlich zurückgelegt hat (Die Berechnung erfolgt mit der Keplergleichung unter Verwendung des Newtonschen Iterationsverfahrens): ε.sin hilf ε.sin hilf hilf =, = hilf, 1 ε.cos 1 ε.cos hilf 1+ ε ν = * tan.tan 1 ε g) Berechnung des Winkelweges, den die rde seit dem letzten Frühlingspunkt zurückgelegt hätte, wenn sie sich auf einer Kreisbahn bewegen würde: = 80, ,76983 * T + 0, * T mod 360 h) Berechnung des Winkelweges, den die rde zwischen Periheldurchgang und Frühlingspunkt zurückgelegt hätte, wenn sie sich auf einer Kreisbahn bewegen würde: = 1 Schwarz Alfred Zeitgleichung Seite 1

2 i) Die Nullpunkte von und ν sind so festgelegt, dass für den Winkelweg ν 1, den die rde zwischen Periheldurchgang und Frühlingpunkt tatsächlich zurückgelegt hat, gilt: ν 1 = 1 j) Berechnung des Winkelweges, den die rde seit dem Frühlingspunkt tatsächlich zurückgelegt hat: ν = ν ν 1 k) Projektion von ν auf die Äquatorebene: RA = tan (tanν.cos l) Berechnung der Zeitdifferenz zwischen ittagsmeridian und Sonnenhöchststand (=Zeitgleichung): ZG = RA * min ( ) 4 l) Berechnung der Deklination: ( sin γ.sinν ) δ = sin m) Berechnung des Stundenwinkels: [( OZ (Zeitzone) 1 : 00) + ZG] in min τ = + λ 4 (OZ... gültige Ortszeit innerhalb der Zeitzone, λ... geographische Länge ) Beispiel: Datum: , OZ: 17:00, Zeitzone: GT +1, Geographische Länge: λ = 18 rgebnis: d = 833,1667; T = 0, ; ε = 0,016705; γ = 3,4388 ; = 69,89896 ; ν = 67,98510 ; = 19,96970 ; ν = 76,997 ; ν = 191,05583 ; RA = 190,16345 ; ZG = 11,5 min; 1 = 1 δ = 4,37459 ; τ = 80, Idealisierter Zustand Im idealisierten Zustand (ohne Deklination und llipsenbahn) bewegt sich die rde mit konstanter Geschwindigkeit auf einer Kreisbahn um die Sonne. Wenn wir den eridian durch einen festen Punkt jeweils um 1:00 Uhr betrachten, so sehen wir, dass er sich (relativ zur Sonne) jeweils um denselben Winkel weiterdrehen muss, um den sich die rde um die Sonne bewegt. (siehe Abbildung) Schwarz Alfred Zeitgleichung Seite

3 . Abweichungen vom idealisierten Zustand: a) llipsenbahn: Die rde bewegt sich nicht auf einer Kreisbahn um die rde, sondern sie beschreibt nach dem zweiten Keplerschen Gesetz eine llipsenbahn. Dabei ist die Geschwindigkeit in Sonnennähe größer als in größerer ntfernung zur Sonne. Üblicherweise misst man den überstrichenen Winkel vom Perihel weg das ist der sonnennächste Punkt der rdbahn. Der tatsächlich von der rde in einem bestimmten Zeitraum überstrichene Winkel ν wird aus dem Winkel berechnet, den die Sonne bei einer gleichmäßigen Kreisbahn in dieser Zeit zurückgelegt hätte. ν S Perihel Die dazu nötigen Gleichungen lauten: (siehe: _0607.pdf ) ε.sin = (Keplergleichung) (1) ν tan = 1+ ε.tan 1 ε ε... numerische xzentrizität der rdbahn ( 0,01671) ()... exzentrische Anomalie (für uns eine Hilfsvariable zur Berechnung von ) Hinweis: Für die Lösung von Gleichung (1) müssen und im Bogenmaß angegeben werden. Am besten löst man diese Gleichung durch ein Iterationsverfahren: 0 =, n+ 1 = + ε.sinn,... oder das Newtonverfahren: 0 =, n+ 1 = n n ε.sinn 1 ε.cos (Hinweis: In der Astronomie bezeichnet man den Winkel ν als Wahre Anomalie und den Winkel als ittlere Anomalie) n Schwarz Alfred Zeitgleichung Seite 3

4 b) kliptik: ine zweite Änderung der idealisierten Verhältnisse ergibt sich daraus, dass die rdachse nicht senkrecht auf die bene der rdbahn um die Sonne steht. Die Äquatorebene der rde ist um etwa γ = 3, 44 gegenüber der rdbahnebene geneigt. ine Drehung in der rdbahnebene um einen Winkel α entspricht daher nicht einer Drehung um denselben Winkel in der Äquatorebene. Der Winkel α muss zuerst in die Äquatorebene projiziert werden: β = tan 1 ( tanα.cos 3. Zusammenschau aller ffekte: Wir wollen nun die Auswirkungen der oben beschriebenen ffekte im Laufe des Jahres beobachten: Schwarz Alfred Zeitgleichung Seite 4

5 Phase 1: Die rde befindet sich im Perihel. Der Winkel zwischen dem einfallenden Sonnenstrahl und der Schnittgeraden von rdbahnebene und Äquatorebene beträgt ν 1. Wir legen den Nullpunkt für die essung des von der rde auf ihrer Bahn um die Sonne zurückgelegten Winkels (= wahre Anomalie) durch den einfallenden Lichtstrahl im Perihel fest. Den Nullpunkt für die Bewegung des ittagsmeridians (blau) können wir beliebig festlegen. ine öglichkeit wäre, ihn ebenfalls mit dem einfallenden Sonnenstrahl zu fixieren. In der Praxis wird er jedoch so festgelegt, dass der Winkel zur Schnittgeraden von rdbahnebene und kliptikebene gleich groß ist, wie der Winkel ν 1. s gilt dann 1 = ν1. Zwei Gründe sprechen für diese Wahl des Nullpunktes: Falls der Winkel γ zwischen rdbahnebene und Äquatorebene Null wäre, dann würden die beiden Nullpunkte zusammenfallen. Falls die rde sich auf einer Kreisbahn bewegen würde, dann wären die Winkelgeschwindigkeiten für und ν gleich groß und die Winkel 1 und ν 1 würden im gleichen Zeitabschnitt zurückgelegt werden. Dies hätte zur Folge, dass im Frühlingspunkt ( ) die Zeitgleichung Null wäre. Wenn wir nun die Nullpunkte für die beiden Winkelmessungen (Bewegung der rde um die Sonne, Bewegung des ittagsmeridians) wie oben beschrieben festlegen, dann hat dies zur Folge, dass die eridiane durch die beiden Nullpunkte nicht zusammenfallen. s ergibt sich ein Differenzwinkel zwischen ihnen. Der ittagsmeridian (blau) läuft dem eridian durch den Nullpunkt der wahren Anomalie (orange) nach. Die Sonnenuhr geht daher nach. Das Ausmaß der Differenz können wir berechnen, indem wir den Winkel ν 1 auf die kliptikebene projizieren: ν1 = tan 1 (tanν1.cos und anschließend die Differenz zu 1 bilden. Division durch 4 (h) und ultiplikation mit 60 (min) ergeben die Zeitdifferenz. (für 008: ν1 = 76, 94, γ = 3, 44 ergibt die Winkeldifferenz 1,13 und die Zeitdifferenz 4,5 min.) Phase : Nun betrachten wir die rde im Frühlingspunkt. Der Sonnenstrahl fällt genau in der Richtung der Schnittgeraden von rdbahnebene und Äquatorebene ein. Die rde hat sich um den Winkel ν Υ = ν 1 auf ihrer Bahn weitergedreht. Da sich jedoch die rde auf einer llipsenbahn bewegt und die Geschwindigkeit während des Jahres variiert, hat der ittagsmeridian in dieser Zeit nicht denselben Winkel zurückgelegt. Der vom ittagsmeridian zurückgelegte Winkel Υ ist kleiner als ν Υ. s ergibt sich wieder eine Zeitverschiebung zwischen dem ittagsmeridian (blau) und dem eridian durch den einfallenden Sonnenstrahl (orange). Ihr Wert beträgt Υ 1 (bzw. Υ ν1). (für 008: Υ = 75, 065 ergibt die Winkeldifferenz und die Zeitdifferenz 7,436 min.) Schwarz Alfred Zeitgleichung Seite 5

6 Phase 3: Zuletzt wollen wir die Zeitgleichung für einen beliebigen Zeitpunkt berechnen. Wir bezeichnen den von der rde auf ihrer Bahn zurückgelegten Winkel ν und den vom ittagsmeridian zurückgelegten Winkel. Der seit dem Frühlingspunkt von der rde zurückgelegte Winkelweg beträgt dann ν = ν ν1. Die Projektion dieses Winkels auf die kliptikebene ergibt den Wert ( tan( ν ).cos tan Der ittagsmeridian hat seit dem Frühlingspunkt den Winkel = 1 = ν1 zurückgelegt. Die Differenz der beiden Winkel beträgt also: tan ( tan( ν ).cos (z.b : ν = 136, 760, = 135, 437 ergibt die Winkeldifferenz 0,865 und die Zeitdifferenz 3,64 min) (Hinweis: In der Astronomie wurden folgende Bezeichnungen eingeführt:... ittlere Länge der Sonne ν... Wahre Länge der Sonne ( tan( ν ).cos tan... Rektaszension). 4. Praktische Durchführung: it den bisher angeführten Rechenschritten könnte man die Zeitgleichung für jeden Zeitpunkt berechnen, wenn man ν 1 und kennen würde. In der Wirklichkeit kommen aber noch folgende erschwerende Sachverhalte dazu: Weder die Lage des Perihels auf der rdbahn noch der Abstand zwischen Perihel und Frühlingspunkt noch die Schiefe der kliptik noch die xzentrizität der rdbahn sind konstant, sondern sie alle verändern sich im Laufe der Zeit. In der Praxis löst man die Schwierigkeiten durch folgende Schritte: an berechnet für einen gegebenen Zeitpunkt das Julianische Datum (dieses gibt die Zeit in Tagen an, die seit dem 1. Januar 471 (4713 v. Chr.) 1:00 Uhr vergangen sind; dem 1. Januar 000 1:00 Uhr entspricht zum Beispiel das Julianische Datum ,0). Dann dividiert man die Differenz zu einem Referenzdatum (z.b. 1. Januar 000) durch ein Julianisches Jahrhundert (= 3655) und erhält den Anteil T des Julianischen Jahrhunderts, das seit dem Referenzdatum verstrichen ist. Anschließend verwendet man Näherungsformeln (von Jan eeus), welche die gewünschten Größen in Abhängigkeit von T festlegen: ittlere Anomalie: 3 = + mod , ,05030 * T 0, * T 0, * T Schwarz Alfred Zeitgleichung Seite 6

7 Numerische xzentrizität: ε = 0, , * T Schiefe der kliptik: 0, * T γ = 3, , * T 0, * T Winkelweg, den die rde seit dem letzten Frühlingspunkt zurückgelegt hätte, wenn sie sich auf einer Kreisbahn bewegen würde: = 80, ,76983 * T 0, * T mod V. Deklination und Stundenwinkel: Die Deklination δ bezeichnet den Winkel, unter dem der Sonnenstrahl auf die Äquatorialebene der rde trifft (siehe Abbildung). s gilt: δ = sin ( sin γ.sinν ) Den Stundenwinkel für die Wahre Ortszeit WOZ (bei dieser steht die Sonne um 1 Uhr genau im Süden) erhalten wir, indem wir: die koordinierte Weltzeit berechnen: UTC = Zeit, die in der jeweiligen Zeitzone gültige ist minus Zeitzone (OZ + GT), die Differenz (in inuten) zu 1:00 Uhr bilden, den Wert der Zeitgleichung addieren, das rgebnis durch 4 dividieren (60 inuten entsprechen 15 ), und zuletzt die geographische Länge λ addieren. τ = [( OZ (Zeitzone) 1 : 00) + ZG] 4 in min + λ Schwarz Alfred, A-40 Hellmonsödt, Sonnenhang 4, -mail: alfred.schwarz@eduhi.at Schwarz Alfred Zeitgleichung Seite 7

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.17 016/07/1 16:3:40 hk Exp $ 5 Sphärische Trigonometrie 5.5 Geographische Koordinaten Wir beschäftigen uns gerade mit der Berechnung des Weges zwischen zwei in geographischen Koordinaten

Mehr

Astronomische Koordinatensysteme

Astronomische Koordinatensysteme Übung für LA Physik Astronomische Koordinatensysteme Sergei A.Klioner Lohrmann-Observatorium, Technische Universität Dresden Kartesische und sphärische Koordinaten Kartesisches Koordinatensystem und sphärische

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.8 2015/07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 III.1 Exzentrizität der Erdumlaufbahn

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 Exzentrizität der Erdumlaufbahn = 0,0167

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.25 2017/07/13 11:11:42 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten N N b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010 Beobachtungen am Himmel Manuel Erdin Gymnasium Liestal, 2010 Grundsätze Alle am Himmel beobachtbaren Objekte befinden sich auf der Innenseite einer Kugel. Wir als Beobachter sind in Ruhe. Die Himmelskugel

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März Unser Sonnensystem Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 8. März 2010 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen Ellipsen und Planetenbahnen

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel Die Zeitgleichung Joachim Gripp, Lindau bei Kiel Einleitung Den meisten Sonnenuhr- Freunden ist die Zeitgleichung gut bekannt. Sie ist als Unterschied zwischen der von einer Sonnenuhr angezeigten Sonnenzeit

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.18 216/7/15 18:27:28 hk Exp $ 5 Sphärische Trigonometrie 5.6 Berechnung der Tageslänge Wir beschäftigen uns gerade mit der Berechnung der Tageslänge. Wir betrachten momentan einen

Mehr

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5,

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5, Astronomie Prof. Dr. H.M. Schmid, Institut für Astronomie, ETH Zürich Prof. Dr. W. Schmutz, Physikalisch-Meteorolgisches Observatorium, World Radiation Center, Davos Vorlesung HS 2015 (16. Sept. 16. Dez.

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Prof. Dr. D. Stoffer Orbital Dynamics D-MAVT ETHZ FS Von LEO zu GEO

Prof. Dr. D. Stoffer Orbital Dynamics D-MAVT ETHZ FS Von LEO zu GEO Prof Dr D Stoffer Orbital Dynamics D-MAVT THZ FS 4 Von LO zu GO Lösung 0 a) α = 64, sodass r GO /r LO = α Seien v und v + die Beträge der Geschwindigkeit unmittelbar vor bzw nach dem ersten Impuls, analog

Mehr

Projekt. Sonnenuhr. R.Schorpp. Version

Projekt. Sonnenuhr. R.Schorpp. Version Projekt Sonnenuhr Version 1. - 1-12.1.9 1 INHALTVERZEICHNIS 1 Inhaltverzeichnis...2 1.1 Versionsverwaltung...2 2 Thema...3 2.1 Pflichtenheft...3 3 Astronomische Hintergründe...4 3.1 Nummer des Tages im

Mehr

Eine Sonnenuhr für den Hausgebrauch

Eine Sonnenuhr für den Hausgebrauch Eine Sonnenuhr für den Hausgebrauch von F.Ostermann, Liebigstraße 13, 50859 Köln, e-mail: Ostermann-fritz@t-online.de Im Sommer 2007 sah ich auf dem Sonnenuhrenweg in Röttingen eine Polaruhr (Abb.1). Abb.1

Mehr

Astronomie mit einer Sonnenuhr

Astronomie mit einer Sonnenuhr Astronomie mit einer Sonnenuhr Udo Backhaus, H Joachim Schlichting, Universität Osnabrück (aus: W Kuhn (Hrsg): Vorträge der Tagung der DPG 987 in Berlin, S 99) Einleitung Im Anschluss an den vorhergehenden

Mehr

Foster-Lambert-Sonnenuhr und analemmatische Sonnenuhr

Foster-Lambert-Sonnenuhr und analemmatische Sonnenuhr Foster-Lambert-Sonnenuhr und analemmatische Sonnenuhr Im Februar 20 wurde in diesem Blog die Bastelanleitung für eine polare Foster-Lambert- Sonnenuhr (auch rektilineare Sonnenuhr genannt) veröffentlicht,

Mehr

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Jahreszeiten 1 Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Bevor die Entstehung der Jahreszeiten und die Umsetzung in der GeoGebra-Simulation beschrieben werden, sind hier zunächst noch

Mehr

Die Zeitgleichung. 12 Uhr

Die Zeitgleichung. 12 Uhr Die Zeitgleichung Sonnenuhren zeigen gegenüber Normalzeituhren periodische Gangabweichungen. Sie gehen in gewissen Phasen des Jahres gegenüber der Normalzeit vor oder nach. Im Laufe des Jahres gleicht

Mehr

Astronomie. Wich7ge Folien (=Skript) zur Vorlesung: Vorlesung HS 2016 (21. Sept. 21. Dez. 2016) ETH Zürich, Mi 10-12, CAB G61,

Astronomie. Wich7ge Folien (=Skript) zur Vorlesung: Vorlesung HS 2016 (21. Sept. 21. Dez. 2016) ETH Zürich, Mi 10-12, CAB G61, Astronomie Prof. Dr. H.M. Schmid, Ins7tut für Astronomie, ETH Zürich Prof. Dr. W. Schmutz, Physikalisch-Meteorolgisches Observatorium, World Radia7on Center, Davos Vorlesung HS 2016 (21. Sept. 21. Dez.

Mehr

Mathematisches zur Sonnenreflexionsuhr

Mathematisches zur Sonnenreflexionsuhr Mathematisches zur Sonnenreflexionsuhr Hellmuth Stachel stachel@dmg.tuwien.ac.at http://www.geometrie.tuwien.ac.at/stachel Zur Präsentation des Buches F. Mayrhofer, G. Liechtenstein (Hrsg.): Die Sonnenreflexionsuhr

Mehr

4.03 Leere Kärtchen und Tabellen als Grundlage

4.03 Leere Kärtchen und Tabellen als Grundlage 4.03 Leere Kärtchen und Tabellen als Grundlage 4.04 Planetarien selber zeichnen 4.05 Vom Planetarium zur Ansicht am Himmel Inhalt 2 Informationen 3 Planetarium A (Merkur bis Mars) 4 Planetarium B (Erde

Mehr

Lösung Arbeitsblatt Vektoren

Lösung Arbeitsblatt Vektoren Fachhochschule Nordwestschweiz FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften IMN Dozent: - Brückenkurs Mathematik Lösung Arbeitsblatt Vektoren Modul: Mathematik Datum:. Aufgabe

Mehr

9 ANHANG 4: UMBRA DOCET. DER SCHATTEN LEHRT?

9 ANHANG 4: UMBRA DOCET. DER SCHATTEN LEHRT? 9 ANHANG 4: UMBRA DOCET. DER SCHATTEN LEHRT? 9.4 Iindividuelle Leistungen: Ein naturwissenschaftlich und v. a. mathematisch interessierter Schüler entdeckte schon bald nach Projektbeginn seine Vorliebe

Mehr

Computational Astrophysics 1. Kapitel: Sonnensystem

Computational Astrophysics 1. Kapitel: Sonnensystem Computational Astrophysics 1. Kapitel: Sonnensystem Wilhelm Kley Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2011 W. Kley: Computational Astrophysics

Mehr

Extrasolare Planeten und ihre Zentralsterne

Extrasolare Planeten und ihre Zentralsterne Extrasolare Planeten und ihre Zentralsterne Nachtrag Organisatorisches Da schlussendlich eine individuelle Benotung erfolgen muss, soll am Ende eine etwa einstündige Klausur über den Stoff der Vorlesung

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Physikalisches Praktikum 3

Physikalisches Praktikum 3 Datum: 0.10.04 Physikalisches Praktikum 3 Versuch: Betreuer: Goniometer und Prisma Dr. Enenkel Aufgaben: 1. Ein Goniometer ist zu justieren.. Der Brechungsindex n eines gegebenen Prismas ist für 4 markante

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Schattenwinkelmesser und vertikale Spinnensonnenuhr: ein reizvoller Vergleich

Schattenwinkelmesser und vertikale Spinnensonnenuhr: ein reizvoller Vergleich ORTWIN FEUSTEL - GLASHÜTTEN Schattenwinkelmesser und vertikale Spinnensonnenuhr: ein reizvoller Vergleich In die mathematische Behandlung von Schattenwinkelmesser und vertikaler Spinnensonnenuhr fließen

Mehr

Trigonometrische Berechnungen

Trigonometrische Berechnungen Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Zeit Definitionen. UT = Universal Time (Weltzeit)

Zeit Definitionen.  UT = Universal Time (Weltzeit) Zeit Definitionen UT = Universal Time (eltzeit) astronomische eltzeit entspricht mittlerer onnenzeit des Nullmeridian gezählt von Mitternacht. in Maß für den Drehwinkel der rde. 24 h eltzeit = 360 rddrehung

Mehr

Grüß Gott zum öffentlichen Vortrag des THEMA:

Grüß Gott zum öffentlichen Vortrag des THEMA: Grüß Gott zum öffentlichen Vortrag des AiC* am Tag der Astronomie Astronomie im Chiemgau ev. * http://www.astronomie-im-chiemgau.de/ THEMA: THEMA: Über astronomische Zeitrechnung oder Warum am Himmel die

Mehr

Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte

Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte Innere Planeten mit in xy Berechnung: Beat Booz Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte Berechnungsverfahren: Die Meteorspur wird berechnet für alle gemeinsamen Schnittlinien

Mehr

Radialgeschwindigkeitsvariation bei Exoplaneten - dargestellt mit Geogebra 1

Radialgeschwindigkeitsvariation bei Exoplaneten - dargestellt mit Geogebra 1 Form der Radialgeschwindigkeitskurve 1 Radialgeschwindigkeitsvariation bei Exoplaneten - dargestellt mit Geogebra 1 Exoplanetensuche mit der Radialgeschwindigkeitsmethode Die Radialgeschwindigkeit v r

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Wissenswertes über die Zeitgleichung

Wissenswertes über die Zeitgleichung Wissenswertes über die Zeitgleichung Wechsel von Helligkeit und Dunkelheit prägte von alters her in unseren Breiten den kürzestesten natürlichen Zeitrhythmus: den Tagesrhythmus Verantwortlich dafür: die

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Projekt der Klasse 4l MN Frühlingssemester 2008

Projekt der Klasse 4l MN Frühlingssemester 2008 Projekt der Klasse 4l MN Frühlingssemester 2008 Alexander Mikos Cedric Bergande Dario Goglio Konrad Marthaler Marc Inhelder Olivier Kastenhofer Stefan Kettner Leitung: Jan-Peter Trepp Seite 2 von 13 Inhaltsverzeichnis

Mehr

1 AE = km = 149, km.

1 AE = km = 149, km. 1. Astronomische Entfernungsangaben Astronomische Einheit (AE) Die große Halbachse der Erdbahn um die Sonne = mittlere Entfernung Erde - Sonne, beträgt 149 597 892 ± 5 km. Sie wird als Astronomische Einheit

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte

Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte Innere Planeten mit in xy Beobachtungsdaten: Beobachtungsorte: Nr. Stat.-Id. Geografische Koordinaten der Beobachtungsorte: Φ nördlich positiv, südlich negativ Stationsname λ östlich von Greenwich positiv,

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt Eine Methode zur Positionsberechnung aus Relativmessungen Von Eckhardt Schön, Erfurt Mit 4 Abbildungen Die Bewegung der Sterne und Planeten vollzieht sich für einen irdischen Beobachter scheinbar an einer

Mehr

Von Newton über Hamilton zu Kepler

Von Newton über Hamilton zu Kepler Von Newton über Hamilton zu Kepler Eine Variante von Ein Newton ergibt 3 Kepler, basierend auf einer Arbeit von Erich Ch. Wittman und den bis jetzt publizierten Beiträgen von Kepler_0x.pdf. 1. Bahnen in

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 2

Grundlagen der Physik 1 Lösung zu Übungsblatt 2 Grundlagen der Physik Lösung zu Übungsblatt 2 Daniel Weiss 23. Oktober 29 Aufgabe Angaben: v F = 4 km h α = 58 β = 95 v W = 54 km h Abbildung : Skizze zu Aufgabe a Wie aus Abbildung leicht ersichtlich

Mehr

Infoblatt für den Kometen C/2011 L4 PANSTARRS

Infoblatt für den Kometen C/2011 L4 PANSTARRS Infoblatt für den Kometen C/2011 L4 PASTARRS Der Komet C/2011 L4 PASTARRS wurde in der acht vom 5. auf den 6. Juni 2011 mit Hilfe des 1,8 Meter großen Panoramic Survey Telescope And Rapid Response System

Mehr

Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89

Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis...2 2. Leitfaden...3 3.

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Schulbiologiezentrum Hannover

Schulbiologiezentrum Hannover Schulbiologiezentrum Hannover Vinnhorster Weg 2, 30419 Hannover Tel: 0511-168-47665/7 Fax: 0511-168-47352 Email : schulbiologiezentrum@hannover-stadt.de Unterrichtsprojekte Natur und Technik 19.35 Die

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Astronomische Ortsbestimmung mit dem Sextanten

Astronomische Ortsbestimmung mit dem Sextanten Astronomische Ortsbestimmung mit dem Sextanten Der Sextant Die einfachste Art seine Position zu bestimmen ist die Mittagsmethode. Dabei wird die Sonnenhöhe zur Mittagszeit gemessen. Sie hat den Vorteil,

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

STERNFREUNDE-SEMINAR, WIENER PLANETARIUM / Mucke

STERNFREUNDE-SEMINAR, WIENER PLANETARIUM / Mucke STERNFREUNDE-SEMINAR, WIENER PLANETARIUM. 198 / Mucke Referat: Bahnbestimmung nach dem Prinzip von GAUSS, Methode von VEITHEN - MERTON Problem Aus der beobachteten scheinbaren Bahn ist die räumliche Bahn

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Die Marsbahn (mit Lösungen) 1 Einleitung Planeten fallen durch ihre große und veränderliche

Mehr

2) Trage im Erdmittelpunkt an der zum HN zeigenden Drehachse den Winkel der geographischen Breite ab, hier für Schwäbisch Gmünd = 49

2) Trage im Erdmittelpunkt an der zum HN zeigenden Drehachse den Winkel der geographischen Breite ab, hier für Schwäbisch Gmünd = 49 Bestimmung der Tageslänge und des Auf- und Untergangspunkts der Sonne zur Zeit der Sommersonnenwende mit Hilfe einer Konstruktion im Himmelskugelmodell. 1) Zeichne die Himmelskugel mit dem Mittelpunkt

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13

c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13 Lineare Algebra / Analytische Geometrie Grundkurs Aufgabe 9 U-Boot Während einer Forschungsfahrt tritt ein U-Boot am Punkt P(100 0 540) alle Angaben in m in den Überwachungsbereich seines Begleitschiffes

Mehr

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2 Übungen zur Einführung in die Astrophysik I Musterlösung Blatt 2 Aufgabe 1(a) Das Gravitationspotential der Erde ist ein Zentralpotential. Es gilt somit: γ Mm r 2 = m v2 r wobei γ die Gravitationskonstante,

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Wo finde ich die Planeten?

Wo finde ich die Planeten? Das Sonnensystem Wo finde ich die Planeten in einer Sternkarte? Tabellen mit Koordinatenangaben für alle Planeten Wo finde ich die Planeten? Ephemeridentabellen für alle Planeten bis ins Jahr 2030 Diese

Mehr

Orientierung am Himmel

Orientierung am Himmel Astronomie im Chiemgau e.v. www.astronomie-im-chiemgau.de Vortragsreihe Einführung in die Astronomie der VHS Haag i. Obb., Traunreut und Trostberg Orientierung am Himmel Himmelspole, Himmelsäquator und

Mehr

= (1 τ ) + ()( ) τ = (1 τ) + 1 τ := 1 = (1 τ ) ()/ + ()( )/ := (1 τ) = () ()( ) { (1 τ ) + ( ) = α()( ) (1 τ ) + ( ) α()( ) < lifetime wealth 24 26 28 30 32 34 V (1 t)w ERA NRA SRA 55 56 57 58 59 60 61

Mehr

3. Übung Astronomie Positionsbestimmung mit Hilfe des Standlinienverfahrens. Andreas Maus

3. Übung Astronomie Positionsbestimmung mit Hilfe des Standlinienverfahrens. Andreas Maus 3. Übung Astronomie Positionsbestimmung mit Hilfe des Standlinienverfahrens Andreas Maus 23. Juni 1999 Aufgabe: Es sind die Koordinaten (Länge λ und Breite φ) des Beobachtungsstandortes durch Messung von

Mehr

Der Sonne auf der Spur: Unser globaler "Sonnenstand-Anzeiger"

Der Sonne auf der Spur: Unser globaler Sonnenstand-Anzeiger Der Sonne auf der Spur: Unser globaler "Sonnenstand-Anzeiger" Ingo Mennerich, März 2018 Wo und wann steht die Sonne wie hoch und wo am Himmel? Wie hängt die Tages-/Nachtlänge mit dem Standort und der Jahreszeit

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 14. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 14. 07.

Mehr

Koordinatentransformationen

Koordinatentransformationen Koordinatentransformationen 2 Bis jetzt haben wir gelernt, die Bahnparameter und eine Anzahl von Kenngrößen, welche die Umlaufbahn eines Planeten um die Sonne beschreiben, zu berechnen. Wir kennen neben

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Berechnung und Messung der Sonnenscheindauer. auf einer Dachschrägen

Berechnung und Messung der Sonnenscheindauer. auf einer Dachschrägen Didaktik der Physik Frühjahrstagung Wuppertal 2015 Berechnung und Messung der Sonnenscheindauer auf beliebigen Dachschrägen Tran Ngoc Chat*, Adrian Weber* *Universität Siegen, Didaktik der Physik, Adolf-Reichwein-Straße

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017 Test 2 Musterlösung Brückenkurs Physik donat.adams@fhnw.ch www.adams-science.org Name, Nummer: Datum: 17. Juni 2017 1. Citroën 2CV C5H817 Ein elektrifizierter Döschwo (Citroën 2CV) überholt mit 202.73

Mehr

Lösung zur Übung 3 vom

Lösung zur Übung 3 vom Lösung zur Übung 3 vom 28.0.204 Aufgabe 8 Gegeben ist ein Dreieck mit den nachfolgenden Seiten- und Winkelbezeichnung. Der Cosinussatz ist eine Verallgemeinerung des Satzes des Pythagoras: a) c 2 = a 2

Mehr

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik Lehre von den geo- Metrischen Bewegungsverhältnissen von Körpern. Dynamik Lehre von den Kräften Kinetik Lehre von den Bewegungen

Mehr

B 1a Basisgrößen. Physikalisches Praktikum für Maschinenbauer. Fachbereich Maschinenbau und Verfahrenstechnik

B 1a Basisgrößen. Physikalisches Praktikum für Maschinenbauer. Fachbereich Maschinenbau und Verfahrenstechnik Physikalisches Praktikum für Maschinenbauer Fachbereich Maschinenbau und Verfahrenstechnik Lehrstuhl für Messtechnik & Sensorik Prof. Dr.-Ing. Jörg Seewig Aufgabenstellung Der Versuch soll mit den SI-Basiseinheiten

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Sphärische Astronomie

Sphärische Astronomie Sphärische Astronomie 2 Inhaltsverzeichnis 2.1 Koordinatensysteme... 6 2.2 Die Zeit... 12 2.3 Sternpositionen... 18 2.4 Orts- und Zeitbestimmung... 29 2.5 Aufgaben... 32 Zur Untersuchung der Verteilung

Mehr

Ingenieurmathematik I Lernstandserhebung 2 24./

Ingenieurmathematik I Lernstandserhebung 2 24./ Ingenieurmathematik I Lernstandserhebung 4./5..7 Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:............................................................................ Vorname:.........................................................................

Mehr

Technische Berufsmaturitätsprüfung Baselland 2007 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen

Technische Berufsmaturitätsprüfung Baselland 2007 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen Technische Berufsmaturitätsprüfung Baselland 007 Aufgabe 1 Pt. Ein Baum steht auf einem Hang, der um 10 gegenüber der Waagrechten geneigt ist. Die Länge des Schattens, der auf die Falllinie fällt, beträgt

Mehr

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie 1 Einleitung U. Backhaus, Universität Duisburg-Essen Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Mehr

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 ) Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr