Neues Gesetz zur Auflösung in der Lichtmikroskopie ermöglicht. New law in light microscopy allows for unprecedented resolution

Größe: px
Ab Seite anzeigen:

Download "Neues Gesetz zur Auflösung in der Lichtmikroskopie ermöglicht. New law in light microscopy allows for unprecedented resolution"

Transkript

1 Neues Gesetz zur Auflösung in der Lichtmikroskopie ermöglicht Bilder in New law in light microscopy allows for unprecedented resolution Hell, Stefan W. Max-Planck-Institut für biophysikalische Chemie, Göttingen Korrespondierender Autor Zusammenfassung Mikroskopie mit fokussiertem sichtbaren Licht unterlag üblicherweise der Abbeschen Beugungsgrenze: Strukturen, die feiner sind als etwa die halbe Lichtwellenlänge, können nicht aufgelöst werden. Arbeiten am Göttinger MPI haben aber gezeigt, dass in der Fluoreszenzmikroskopie, die für die Biologie eminent wichtig ist, die Beugungsgrenze aufgehoben werden kann. Das erste Beispiel dafür ist die Stimulated Emission Depletion (STED)-Mikroskopie, die zur Zeit Auflösungen von 50 nm (1/12 der Wellenlänge) liefert und kürzlich sogar experimentell die Fähigkeit unter Beweis stellte, 16 nm aufzulösen. Summary Light microscopy has continually played a key role in science, but diffraction has limited the imaging of details that are smaller than about half the wavelength of light. For the important contrast mode of fluorescence, which is crucial to modern cell and molecular biology, the diffraction barrier has now been broken. In spite of relying on focused visible light, stimulated emission depletion (STED) microscopy is not limited by diffraction. To date, current schemes of STED-microscopy have delivered 50 nm (1/12 of the wavelength) resolution on cell membranes. Seit dem 17. Jahrhundert war das Lichtmikroskop wie kaum ein anderes Instrument ein Schlüssel zur wissenschaftlichen Erkenntnis. Das gilt insbesondere für die Biologie, da die Beobachtung von lebenden Zellen auf nicht-invasive optische Verfahren wie die Lichtmikroskopie angewiesen ist. Doch die Verwendung von sichtbarem Licht unterliegt der Beugungsgrenze, die von Ernst Abbe entdeckt wurde, dessen Todestag sich im Jahr 2005 zum hundertsten Mal jährte. Sie besagt, dass sich mit Licht in der Bildebene (x,y) nur Objekte trennen lassen, die mindestens um den Abstand Δd = λ/(2n sin α) voneinander entfernt sind, weil der am Fokuspunkt entstehende Durchmesser des Lichtflecks (Spot) nicht kleiner als dieser Abstand Δd sein kann. Dabei bedeutet λ die Wellenlänge des Lichts, n der Brechungsindex der Probe und der halbe Öffnungswinkel des fokussierten Lichtkegels. Da Wellenlänge und Öffnungswinkel auf λ= nm bzw. auf α z) beträgt die Auflösung sogar nur λ. Zwar konnte die z-auflösung durch die kohärente Verwendung zweier gegenüberliegender Objektive im 4Pi-Mikroskop deutlich erhöht werden (siehe MPG-Jahrbuch 1999), jedoch ist auch das 4Pi-Mikroskop der Beugungsgrenze unterworfen, und das gilt auch für die Fokalebene Max-Planck-Gesellschaft 1/8

2 Abbes Formel, etabliertes Lehrbuchwissen und in einer Jenaer Gedenkstätte in Stein gemeißelt, galt für mehr als ein Jahrhundert als praktisch unüberwindbar (Abb. 1). Nur ein neues physikalisches Konzept konnte eine radikale Auflösungserhöhung leisten. Die Erstellung solcher Konzepte, deren experimentelle Verifizierung und Umsetzung sind zentrale Forschungsaufgabe der Abteilung NanoBiophotonik am Göttinger MPI für biophysikalische Chemie. Ziel ist auch deren Nutzbarmachung für die biologische Grundlagenforschung und die Nanotechnologie. Abbes Form el zur m axim alen Auflösung eines Lichtm ikroskops an einem von der Universität Jena errichteten Denkm al (vor dem Physiologischen Institut, Am Fürstengraben) Auflösung jenseits der Beugungsgrenze Die Fluoreszenzmikroskopie spielt in den Lebenswissenschaften eine herausragende Rolle. Die Gründe dafür sind vielfach. Die charakteristische Wellenlänge (Farbe) der Fluoreszenzemission eignet sich hervorragend, Zellbestandteile spezifisch zu markieren. So können beispielsweise Proteine bei vernachlässigbarem Untergrund gezielt in der Zelle erfasst werden. Hinzu kommt, dass die Bedeutung der Fluoreszenzmikroskopie durch Fortschritte auf dem Gebiet der Fluoreszenzmarker selbst enorm beschleunigt wurde. So ist es durch genetische Modifikation möglich, die Zelle dazu zu bewegen, ihren eigenen Fluoreszenzmarker in der Gestalt eines grün, gelb oder rot fluoreszierenden Proteins zu liefern und zwar so, dass das Markerprotein schon bei der Entstehung genau mit dem Zielprotein verknüpft ist. Die Zelle bleibt dabei fast immer physiologisch intakt. Es ist daher nicht überraschend, dass circa 80 % aller Mikroskopie-Untersuchungen in der Biologie auf die Fluoreszenzmikroskopie fallen. Glücklicherweise eröffnet aber gerade die Interaktion zwischen Licht und Fluoreszenzmarker eine Reihe von Ansätzen, die Beugungsgrenze radikal zu überwinden. In der Fluoreszenzmikroskopie werden die Marker in einen Zustand angeregt, der bei der Rückkehr in den Grundzustand Fluoreszenzlicht emittiert. Weil das anregende Licht der Beugung unterliegt, kann der räumliche Fleck fluoreszierender Moleküle (Spot) gemäß Abbe aber nicht feiner als Δd = 200 nm werden. Es sei denn, man verwendet einen physikalischen Trick. Dieser Trick besteht nun darin, dass die Forscher den Fluoreszenzmarker vorübergehend und lokal in einen nicht-fluoreszierenden Zustand überführen, und zwar so, dass die Fluoreszenz am Ende aus einem räumlichen 2005 Max-Planck-Gesellschaft 2/8

3 nicht-fluoreszierenden Zustand überführen, und zwar so, dass die Fluoreszenz am Ende aus einem räumlichen Bereich stammt, der enger als der Lichtfleck des Anregungslichts ist. Auflösungen jenseits der Beugungsgrenze erreicht man einfach dadurch, dass man die Probe mit diesem schärferen Spot abrastert und das Bild Punkt für Punkt erstellt, indem man die jeweils registrierte Fluoreszenzintensität mittels eines Rechners aneinanderreiht. Dieses allgemeine Konzept ist in verschiedenen Realisierungen denkbar. Zum vorübergehenden Versetzen in einen nicht-fluoreszierenden Zustand eignen sich optisch sättigbare Übergänge, die entscheidend an der Fluoreszenz beteiligt sind. Sie müssen reversibel sein, damit der Marker dabei nicht unwiederbringlich verändert wird und das entstehende Bild somit verfälscht. Bei diesem neuen Konzept, genannt RESOLFT (von e ng l. reversible saturable optical fluorescent transitions), sind für die Auflösung keine prinzipiellen Grenzen gesetzt; sie hängt nur von dem erreichbaren Sättigungsgrad ab. Im Grunde genommen sind damit molekulare Auflösungen möglich. Der erste Repräsentant des RESOLFT-Konzepts ist die STED-Mikroskopie (von engl.: stimulated emission depletion), die im Folgenden etwas detaillierter dargestellt wird. STED-Mikroskopie Mit Licht kann man nicht nur ein Molekül anregen, sondern auch ein angeregtes Molekül schlagartig abregen und zwar durch 'stimulierte Emission'. Bei diesem von Einstein vorhergesagten Prozess (Abb. 2 a) wird die Energie des ehemals angeregten Moleküls als ein weiteres Photon des stimulierenden Lichtstrahls mitgeführt. Dabei ist das neu entstandene Photon identisch mit den stimulierenden Photonen, die sich wiederum deutlich in Wellenlänge und Ausbreitungsrichtung von denjenigen des Fluoreszenzlichts unterscheiden. Damit lässt sich Fluoreszenzlicht sehr gut von dem stimulierten oder dem stimulierenden Licht trennen. Abgeregte Moleküle können sofort wieder angeregt und von neuem abgeregt werden; der Prozess ist reversibel. Entscheidend für die Überwindung der Auflösungsgrenze ist aber nicht das Abregen an sich, sondern die Tatsache, dass das Abregen übersättigt wird. Letzteres ist möglich, weil es zum fast gänzlichen Abregen eines Moleküls nur einer endlichen Intensität bedarf. Übersättigen der Abregung bedeutet also, dass eine höhere Intensität verwendet wird als die zu einer weitgehenden Abregung des Markers gebrauchte. Eine genaue Betrachtung zeigt, dass die Population des angeregten Zustands und somit die Fluoreszenz weitgehend exponentiell mit der Intensität des stimulierenden Lichtstrahls abnimmt. Wenn nun eine bestimmte Schwellenintensität überschritten ist, so ist der Restterm vernachlässigbar gering und das Abregen quasi komplett (Abb. 2 b). Dies ist in der in Abbildung 2 gezeigten Messung bei Intensitätswerten über 1 GigaWatt/cm 2 der Fall Max-Planck-Gesellschaft 3/8

4 Fluoreszenzlöschung durch stim ulierte Em ission. (a) Energieschem a eines Fluoreszenzm oleküls: Licht geeigneter Wellenlänge kann den ansonsten fluoreszierenden, angeregten Zustand S 1 m ittels stim ulierter Em ission in den Grundzustand S 0 abregen. (b) Mit zunehm ender Intensität I STED des stim ulierenden Lichts verringert sich die Fluoreszenz aus S 1 exponentiell. Über der ersten eingezeichneten Schwelle ist die Abregung fast kom plett, d.h. gesättigt, und die Fluoreszenz weitgehend gelöscht (STED, engl.: stim ulated em ission depletion). Weiter zunehm ende Intensität des stim ulierenden Lichts bedeutet einen höheren Sättigungsgrad I/I sat. Anregung und anschließende Abregung lassen sich am besten mit Lichtpulsen von 1 ps bzw. 300 ps bewerkstelligen. So wird in einem typischen STED-Mikroskop das gepulste Anregungslicht und das Abregungslicht gleichzeitig in das Mikroskopobjektiv eingekoppelt (Abb. 3 a). Während das Anregungslicht erwartungsgemäß einen Lichtfleck (Spot) von > 200 nm im Durchmesser hervorbringt, wird das zur Abregung stimulierende Licht so modifiziert, dass es einen Ring im Außenbereich des Anregungsspots ausbildet, der in der Mitte über eine Nullstelle verfügt (Abb. 3 b). Fluoreszenz aus dem Randbereich des beugungsbegrenzten Anregungs-Spots wird durch den Abregungslichtpuls verhindert, während sie in der Nullstelle erhalten bleibt. Der Bereich, in dem die Fluoreszenz noch möglich ist, wird bei zunehmend intensiverem Licht immer weiter eingeschnürt (Abb. 3 b). Rastert man den derart verkleinerten Spot durch die Probe, dann liefert das punktweise registrierte Fluoreszenzlicht ein deutlich schärferes Bild als ein Mikroskop, das mit einem beugungsbegrenzten und daher größeren Spot abbilden würde. Die Fähigkeit, das Bild durch Rastern zu gewinnen, ist durch die Reversibilität des Prozesses gewährleistet. Moleküle, die einmal abgeregt wurden, können vom nächsten Anregungspuls wieder angeregt werden, um anschließend zu fluoreszieren oder doch wieder abgeregt zu werden. Fluoreszenz findet statt, wenn der rasternde Nullpunkt sich gerade an ihrer Stelle befindet, sonst wird die Fluoreszenz unterdrückt. Berechnungen zeigen, dass die Größe des Spots und damit die Auflösung einem neuen Gesetz folgt: Δd λ/2n sin α 1+ I/I sat. Dabei ist I sat die so genannte Sättigungsintensität, d.h. eine Art Schwelle, bei der die Fluoreszenz eines Moleküls mit einer gewissen Wahrscheinlichkeit (50%) verhindert wird. I sat ist charakteristisch für den verwendeten Farbstoff. Erhöht man den Wert I/I sat, so verbessert sich auch die Auflösung kontinuierlich. Lässt man die stimulierte Emission weg (I=0), so erhält man wie bisher die von Abbe vorhergesagte klassische Auflösungsgrenze Max-Planck-Gesellschaft 4/8

5 STED-Mikroskopie: (a) Typisches Schem a eines STED- Mikroskops m it Anregungs- und Abregungsstrahl, Phasenplatte, Detektor und Objektiv. In der Fokalebene (x,y) des Objektivs bildet der Anregungslichtpuls (grün) eine Scheibe m it ca. 250 nm Durchm esser aus (b, rechts oben), die m it dem zeitlich synchronisierten Abregungslichtpuls überlappt (b, rechts m ittig). Die Phasenplatte bildet den stim ulierenden Abregestrahl so um, dass er nicht ebenfalls eine Scheibe, sondern eine zentrale Nullstelle ausbildet. Das Abregungslicht wird bei niedriger STED-Sättigung nur im äußeren Bereich des Anregungsfokus wirksam. Mit zunehm ender Intensität bleibt jedoch nur ein im m er kleinerer Bereich von der Abregung durch stim ulierte Em ission ausgenom m en (b, rechts unten), sodass der Fokalbereich, in dem Fluoreszenz noch m öglich ist, also der Fluoreszenzspot, weit unterhalb die Beugungsgrenze gedrückt wird. (a) Abrastern in x,y eines fluoreszenzm arkierten Objekts m it diesem kleineren Spot liefert Bilder m it Auflösungen weit unterhalb der Beugungsgrenze. Entscheidend anders ist aber nun, dass im Gegensatz zu Abbes Formel (Abb. 1) Δd nicht nach unten (auf ca. 200 nm) begrenzt ist. Im Gegenteil, für I/I sat folgt Δd 0. Durch Steigerung von I/I sat kann also die Größe des Spots beliebig verkleinert werden, was die Auflösung beliebig vergrößert. Abbildung 4 vergleicht den herkömmlichen Fluoreszenz-Spot (rechts) mit dem durch STED verschärften (links). Bei der hier verwendeten Intensität I wurde der Durchmesser Δd des Spots von beugungsbegrenzten 254 nm auf 48 nm verkleinert, das heißt der Lichtfleck wurde in x- und y-richtung um das Fünffache verschärft. Der Vergleich zeigt eindrucksvoll, wie die Beugungsgrenze mit Hilfe eines (reversiblen) sättigbaren Übergangs hier der stimulierten Emission überwunden wurde. Dabei behält das STED-Mikroskop so gut wie alle Vorteile des konfokalen Fluoreszenzmikroskops bei. Es ist grundsätzlich 3D-fähig und funktioniert unter normalen Umgebungsbedingungen Max-Planck-Gesellschaft 5/8

6 Gem essene Fluoreszenzspots: Beugungsbedingte Standardgröße (rechts) und 5-m al feiner m it dem STED- Verfahren (links). Die drastische Verringerung des Spots von 254 nm auf 48 nm Durchm esser bedeutet einen Faktor 25 in der Fläche. Das Messprofil in der Mitte belegt die Verschärfung dieses effektiven Fokus quantitativ. Anwendungen finden sich sowohl bei der Erforschung nanoskaliger Bestandteile der Zelle als auch bei künstlich nanostrukturierten Materialien. Beispiele für die vielseitige Anwendbarkeit zeigt Abbildung 5. Die beiden oberen Bilder zeigen die räumliche Verteilung eines fluoreszenzmarkierten Proteins auf der Zellmembran. Die Aufnahme mit dem STED-Verfahren (rechts) weist eine wesentlich größere Detailfülle auf als das herkömmlich aufgelöste Referenzbild. Das dabei abgebildete Protein Syntaxin, dessen Verteilung hier erstmals auf der Nanoskala aufgelöst ist, spielt eine wichtige Rolle bei der Verschmelzung von Vesikeln mit der Zellmembran. Das Beispiel in der unteren Reihe demonstriert den Auflösungsgewinn an einer lithographischen Nanostruktur, wie sie als Zwischenschritt bei der Herstellung von Computerschaltkreisen üblich ist. Die mit einem Elektronenstrahl in einem Photolack hergestellten Linienmuster können selbst bei Strukturfeinheiten 2005 Max-Planck-Gesellschaft 6/8

7 Bilder m it Schärfe jenseits der Beugungsgrenze. (a) Der Vergleich zeigt die Verteilung des Proteins Syntaxin1A in der Mem bran einer Säugerzelle m it norm aler Auflösung (links) und m it Überauflösung durch STED (rechts). Syntaxin liegt nicht-hom ogen verteilt in der Mem bran vor. Es spielt eine zentrale Rolle bei der Fusion von Vesikeln m it der Plasm am em bran, deren besseres Verständnis einen genaueren Einblick in den Ablauf intrazellulärer Transportprozesse erlauben wird. Die durch STED erzielte Auflösung von 75 nm erm öglicht eine viel aussagekräftigere Erfassung der lokalen Verteilung von Syntaxin-Clustern. (b) Elektronenstrahllithographisch gefertigte Nanostrukturen in fluoreszenzgefärbtem Photolack (PMMA) zunächst m it herköm m licher Auflösung und dann m it STED aufgenom m en; beide Bilder wurden anschließend auf gleiche Weise m athem atisch entfaltet. Das STED-Mikroskop löst Linien m it bis zu 80 nm Breite und 40 nm Zwischenräum en auf (rechts). Das herköm m lich aufgenom m ene Vergleichsbild kann selbst nach Anwendung der m athem atischen Bildverarbeitungsroutine nur die Um risse der Linienm uster wiedergeben (links). Dam it rückt die optische Abbildung in Bereiche vor, die bislang dem Elektronenm ikroskop vorbehalten waren. Da prinzipiell nichts gegen eine weitere Auflösungssteigerung durch Optimierung der Abbildungsparameter spricht, kann in Zukunft mit noch schärferen Bildern der STED-Mikroskopie gerechnet werden. In der Tat ist es den Göttinger Wissenschaftlern kürzlich gelungen zu zeigen, dass unter realistischen experimentellen Bedingungen die Spotgröße sogar bis zu λ/ 50 reduziert werden kann, was in diesem Fall 16 nm betrug. Die Fähigkeit, Auflösungen dieser Größenordnung zu erzielen, wurden bisher fast nur der Elektronenmikroskopie und der Rastersondenmikroskopie zugeschrieben. STED ist aber nur eine wenn auch die erste und zurzeit die am besten erforschte Variante des RESOLFT- Konzepts. Andere Varianten, die etwa den Farbstoff sättigend in einen Dunkelzustand überführen, z. B. in einen Triplett-Zustand oder in einen dunklen Konformationszustand, zeigen laut Berechnungen ein ebenso 2005 Max-Planck-Gesellschaft 7/8

8 hohes Potential, die Beugungsgrenze zu durchbrechen. Das Gleiche gilt auch für Varianten, die optisch bistabile Moleküle reversibel von einem ersten in einen zweiten Zustand schalten. Mehr noch, weil ihre zu e rw arte nde n I sat -Werte um Größenordnungen niedriger sind als bei STED, sind selbst bei um 4-8 Größenordnungen geringeren Intensitäten Auflösungen von einigen wenigen Nanometern zu erwarten. Ein Beispiel dafür sind fluoreszierende Proteine, welche eine vollständige Kontrolle des sättigbaren Übergangs vorausgesetzt sogar bei Beleuchtung der Probe mit herkömmlichen Lampen Auflösungen im Nanometerbereich versprechen. In der Lichtmikroskopie ist damit in den letzten Jahren unerwartet ein Fenster aufgestoßen worden, das in Zukunft einen beugungsunbegrenzten Blick in die Nanowelt eröffnen wird Max-Planck-Gesellschaft 8/8

Neues Gesetz zur Auflösung in der Lichtmikroskopie ermöglicht Bilder in bisher ungekannter Schärfe

Neues Gesetz zur Auflösung in der Lichtmikroskopie ermöglicht Bilder in bisher ungekannter Schärfe Hochenergie- und Plasmaphysik/Quantenoptik Neues Gesetz zur Auflösung in der Lichtmikroskopie ermöglicht Bilder in bisher ungekannter Schärfe Hell, Stefan W. Max-Planck-Institut für biophysikalische Chemie,

Mehr

Detaillierte Information mit Abbildungen. Auflösung jenseits der Beugungsgrenze

Detaillierte Information mit Abbildungen. Auflösung jenseits der Beugungsgrenze Detaillierte Information mit Abbildungen Auflösung jenseits der Beugungsgrenze Die Fluoreszenzmikroskopie spielt in den Lebenswissenschaften eine herausragende Rolle. Die Gründe dafür sind vielfach. Die

Mehr

STimulated Emission Depletion (STED) Mikroskopie

STimulated Emission Depletion (STED) Mikroskopie STimulated Emission Depletion (STED) Mikroskopie STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis Seminar: Physikalische Messtechniken in der Biophysik Gliederung

Mehr

Entwicklung und Anwendungen der hochauflösenden STED-Mikroskopie

Entwicklung und Anwendungen der hochauflösenden STED-Mikroskopie Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/entwicklung-undanwendungen-der-hochaufloesenden-sted-mikroskopie/ Entwicklung und Anwendungen der hochauflösenden

Mehr

Mikroskopie II. Szilvia Barkó 2016

Mikroskopie II. Szilvia Barkó 2016 Mikroskopie II. Szilvia Barkó 2016 Zusammenfassung der Vorlesung Fluoreszenzmikroskopie Fluorophoren Aufbau eines Epifluoreszenzmikroskops Konfokalmikroskopie Evaneszentfeldmikroskopie Multiphotonenmikroskopie

Mehr

Anmerkungen zur Herleitung der optischen Auflösungsgrenze

Anmerkungen zur Herleitung der optischen Auflösungsgrenze 1 von 12 Frühjahrstagung der DPG, Hannover, 1. 3. 2016 Anmerkungen zur Herleitung der optischen Auflösungsgrenze Oliver Passon und Johannes Grebe-Ellis Bergische Universität Wuppertal Physik und ihre Didaktik

Mehr

Super-auflösende Fluoreszenzmikroskopie mit einzelnen Molekülen Autor: Carsten Forthmann*, Jürgen Schmied* und Philip Tinnefeld *

Super-auflösende Fluoreszenzmikroskopie mit einzelnen Molekülen Autor: Carsten Forthmann*, Jürgen Schmied* und Philip Tinnefeld * Fluoreszenzmikroskopie Super-auflösende Fluoreszenzmikroskopie mit einzelnen Molekülen 20.09.2011 Autor: Carsten Forthmann*, Jürgen Schmied* und Philip Tinnefeld * Das Auflösungsvermögen der optischen

Mehr

Freie und Hansestadt Hamburg

Freie und Hansestadt Hamburg Freie und Hansestadt Hamburg Erster Bürgermeister Verleihung des Körber-Preises für die Europäische Wissenschaft 7. September 2011 Sehr geehrter Herr Wriedt, sehr geehrter Herr Prof. Hell, sehr geehrte

Mehr

Fluorescence-Correlation-Spectroscopy (FCS)

Fluorescence-Correlation-Spectroscopy (FCS) Fluorescence-Correlation-Spectroscopy () 05.03.2012 Überblick 1 2 3 4 5 Fluoreszenz-Korrelations-Spektroskopie: Entwicklung in den 70er Jahren sehr empfindliche Methode ( sehr geringer Konzentrationen)

Mehr

Stochastic Optical Reconstruction Microscopy (STORM)

Stochastic Optical Reconstruction Microscopy (STORM) Stochastic Optical Reconstruction Microscopy (STORM) Fluoreszenzmikroskopie Funktionsweise von STORM Nutzen von STORM Auswertung Experimente Ausblick Fazit Quellen Aufbau: Fluoreszenzmikroskopie Fluoreszenzmikroskopie

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Mit 4Pi in die Nanowelt der Zellen

Mit 4Pi in die Nanowelt der Zellen Pressekonferenz 25.April 2005: Mit 4Pi in die Nanowelt der Zellen Christoph Cremer Kirchhoff Institut für Physik/Netzwerk BioMolekulare Maschinen, Universität Heidelberg Institute for Molecular Biophysics

Mehr

Fluoreszenzmikroskopie

Fluoreszenzmikroskopie Fluoreszenzmikroskopie MICHAEL DÖNGI 27.01.2016 Fluoreszenz Jablonski Diagramm Emittiertes Licht ist in der Regel energieärmer (langwelliger) als absorbiertes Licht (Stokessche Regel)! Auflösungsgrenze

Mehr

OnlinePlus-Material zum Titel Borlinghaus, Die Lichtblattmikroskopie, Springer Spektrum

OnlinePlus-Material zum Titel Borlinghaus, Die Lichtblattmikroskopie, Springer Spektrum Abb. 1.1: Sonnenlicht fällt durch ein metallenes Gitter in eine staubige Scheune. Die Staubpartikel streuen das Licht in alle Richtungen und können deshalb von außerhalb des Strahlverlaufes wahrgenommen

Mehr

Das Auflösungsvermögen optischer Mikroskope - wo liegt die Grenze?

Das Auflösungsvermögen optischer Mikroskope - wo liegt die Grenze? Titelheadlines sollten nicht zu lang sein, auf keinen Fall länger als diese zwei Zeilen Das Auflösungsvermögen optischer Mikroskope - wo liegt die Grenze? Abteilung Halbleiterspektroskopie Institut für

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Physik des Lebens- Biomoleküle bei der Arbeit betrachtet

Physik des Lebens- Biomoleküle bei der Arbeit betrachtet Physik des Lebens- Biomoleküle bei der Arbeit betrachtet Petra Schwille Die Zelle ist nichts anderes als eine große Fabrik.....mit Zugmaschinen Motoren.....und Generatoren Pumpen... Komplexe Biomoleküle

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Fluoreszenz von Silberclustern

Fluoreszenz von Silberclustern Fluoreszenz von Silberclustern Unter Fluoreszenz versteht man die Emission von Licht durch Hüllenelektronen, wenn diese aus einem angeregten Zustand (energetisch höher liegend) in einen energetisch niedrigeren

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #24 02/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Frage des Tages wie kann man CD von DVD unterscheiden? λ=532 nm (grüner Laser) 633 nm (roter Laser)

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

Wie Neurobiologen helfen, unser Gehirn besser zu verstehen

Wie Neurobiologen helfen, unser Gehirn besser zu verstehen Blick über den Tellerrand Fraunhofer Institut ITWM Kaiserslautern Eckhard Friauf Tierphysiologie Biologie TU Kaiserslautern Wie Neurobiologen helfen, unser Gehirn besser zu verstehen 1 Alternativ Titel

Mehr

Mikrobiologisches Praktikum. Mikroskopie I. Tag 1. Mikroskopieren im Hellfeld. C. Linkenheld

Mikrobiologisches Praktikum. Mikroskopie I. Tag 1. Mikroskopieren im Hellfeld. C. Linkenheld Mikrobiologisches Praktikum Mikroskopie I Tag 1 Mikroskopieren im Hellfeld C. Linkenheld C. Linkenheld H. Petry-Hansen Lichtmikroskopie: Hellfeld Hellfeld-Mikroskopie: Für kontrastreiche Präparate Objekte

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 5 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Farbstoffmoleküle In der Spektroskopie unterscheidet man zwei grundsätzliche Typen von Spektren: Emissionsspektren, wie sie

Mehr

Studieneinheit II Lichtmikroskopie WMechanik & -Prüfung; LMW Uni BT; R. Völkl Aufbau eines Lichtmikroskops

Studieneinheit II Lichtmikroskopie WMechanik & -Prüfung; LMW Uni BT; R. Völkl Aufbau eines Lichtmikroskops .04.008.. Lichtmikroskopie Studieneinheit II... ufbau eines Lichtmikroskops... Die uflösung des Lichtmikroskops... Einteilung der Lichtmikroskope..4. Beleuchtungsarten..5. Kontrastarten.. Lichtmikroskopie...

Mehr

Technische Raytracer

Technische Raytracer University of Applied Sciences 05. Oktober 2016 Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Licht und Spektrum 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale:

Mehr

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Experimente mit Interferometern Im Mittelpunkt der in den Aufgaben 1 und 2 angesprochenen Fragestellungen steht das Michelson-Interferometer. Es werden verschiedene Interferenzversuche mit Mikrowellen

Mehr

Stefan Hell - Nobelpreis für einen Querdenker

Stefan Hell - Nobelpreis für einen Querdenker Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/stefan-hell-nobelpreis-fuereinen-querdenker/ Stefan Hell - Nobelpreis für einen Querdenker Stefan Hell erhält für

Mehr

Biomaterialien. Vorlesung Sommersemester 2009 HTW Dresden

Biomaterialien. Vorlesung Sommersemester 2009 HTW Dresden 18.03.2008 Vorlesung Sommersemester 2009 HTW Dresden - in der Nanotechnologie - 1. Einführung 2. Zelluläre Maschinen und die ingenieurtechnische Verwendung 3. DNA basierte Nanotechnologie - Ein Beispiel

Mehr

Braunschweigische Wissenschaftliche Gesellschaft. Jahrbuch Sonderdruck Seiten

Braunschweigische Wissenschaftliche Gesellschaft. Jahrbuch Sonderdruck Seiten 1 Braunschweigische Wissenschaftliche Gesellschaft Jahrbuch 2015 Sonderdruck Seiten 187 193 J. C r a m e r Verlag Braunschweig 2016 Klassensitzungen Lasermikroskope sehen Moleküle ziemlich scharf 187 Lasermikroskope

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Physikalische Grundlagen des Sehens.

Physikalische Grundlagen des Sehens. Physikalische Grundlagen des Sehens. Medizinische Physik und Statistik I WS 2016/2017 Tamás Marek 30. November 2016 Einleitung - Lichtmodelle - Brechung, - Bildentstehung Gliederung Das Sehen - Strahlengang

Mehr

XV. ERFTGESPRÄCHEN. Freitag, 21. August 2015

XV. ERFTGESPRÄCHEN. Freitag, 21. August 2015 XV. ERFTGESPRÄCHEN Freitag, 21. August 2015 Elektronenmikroskopie eine Schlüsseltechnologie, Einführung in die Elektronenmikroskopie, Einblicke in eine faszinierende Welt Dr. Dieter Wagner Motivation Mikroskopie

Mehr

Transiente Ultraschallfelder an Festkörperoberflächen - Wellenphysikalische Grundlagen einer neuen Ultraschall- Nahfeldmikroskopie

Transiente Ultraschallfelder an Festkörperoberflächen - Wellenphysikalische Grundlagen einer neuen Ultraschall- Nahfeldmikroskopie DGZfP-Jahrestagung 2013 Mo.2.B.2 Transiente Ultraschallfelder an - Wellenphysikalische Grundlagen einer neuen Ultraschall- Nahfeldmikroskopie Frank SCHUBERT*, Martin BARTH*, Bernd KÖHLER* * Fraunhofer-Institut

Mehr

SCHWEIZER JUGEND FORSCHT. Chemie und Materialwissenschaften

SCHWEIZER JUGEND FORSCHT. Chemie und Materialwissenschaften SCHWEIZER JUGEND FORSCHT Chemie und Materialwissenschaften Studie einer ultraschnellen Fotochemischen Reaktion mit Laserspektroskopie Gianluca Schmoll Widmer Betreuer: Dr. Sandra Mosquera Vazquez, Dr.

Mehr

Einzelmolekülstudien

Einzelmolekülstudien Einzelmolekülstudien Motivation Ensemble-Messung: - Bestimmung eines Mittelwertes des Ensembles (z.b. gemittelte Struktur von 10 13 Proteinmolekülen in einem Proteinkristall) - gute Statistik: verlässlicher

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

6.1.7 Abbildung im Auge

6.1.7 Abbildung im Auge 6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper

Mehr

Einführung in die Biophysik - Übungsblatt 7 - mit Lösungen

Einführung in die Biophysik - Übungsblatt 7 - mit Lösungen Einführung in die Biophysik - Übungsblatt 7 - mit Lösungen July 2, 2015 Allgemeine Informationen: Die Übung ndet immer montags in Raum H030, Schellingstr. 4, direkt im Anschluss an die Vorlesung statt.

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

4. Elektromagnetische Wellen

4. Elektromagnetische Wellen 4. Elektromagnetische Wellen 4.1. elektrische Schwingkreise Wir haben gesehen, dass zeitlich veränderliche Magnetfelder elektrische Felder machen und zeitlich veränderliche elektrische Felder Magnetfelder.

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Welleneigenschaften von Elektronen

Welleneigenschaften von Elektronen Seite 1 von 7 Welleneigenschaften von Elektronen Nachdem Robert Millikan 1911 die Ladung des Elektrons bestimmte, konnte bald auch seine Ruhemasse gemessen werden. Zahlreiche Experimente mit Elektronenstrahlen

Mehr

Auflösung optischer Instrumente

Auflösung optischer Instrumente Aufgaben 12 Beugung Auflösung optischer Instrumente Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 7 Abiturprüfung 2011 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Der Doppelspalt 1.1 Interferenzen bei Licht In einem ersten Experiment untersucht man Interferenzen von sichtbarem Licht,

Mehr

Ausdehnung des Nahfeldes nur durch Strukturgrösse limitiert

Ausdehnung des Nahfeldes nur durch Strukturgrösse limitiert 6.2.2 Streulicht- Nahfeldmikroskop Beleuchtung einer sub-wellenlängen grossen streuenden Struktur (Spitze) Streulicht hat Nahfeld-Komponenten Detektion im Fernfeld Vorteile: Ausdehnung des Nahfeldes nur

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr.

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum I Versuchsprotokoll Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr. 1 0. Inhaltsverzeichnis 1. Einleitung.

Mehr

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie Grundlagen Vorlesung basiert auf Material von Prof. Rick Trebino (Georgia Institute of Technology, School of Physics) http://www.physics.gatech.edu/gcuo/lectures/index.html Interaktive Plattform Femto-Welt

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

Einführung in die Technik. Mikroskopie. Kleines betrachten

Einführung in die Technik. Mikroskopie. Kleines betrachten Einführung in die Technik Mikroskopie griechisch µικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Th. Beyer / Lungenklinik Ballenstedt Carl Zeiss Center for Microscopy / Jörg Steinbach

Mehr

PRISMEN - SPEKTRALAPPARAT

PRISMEN - SPEKTRALAPPARAT Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes

Mehr

Gliederung. Wofür Fluoreszenzmikroskopie? Geschichtliches. Fluoreszenz: Drei Mechanismen. Das Fluoreszenzmikroskop. LED-Auflichtfluoreszenz (LED-AFL)

Gliederung. Wofür Fluoreszenzmikroskopie? Geschichtliches. Fluoreszenz: Drei Mechanismen. Das Fluoreszenzmikroskop. LED-Auflichtfluoreszenz (LED-AFL) Gliederung Wofür Fluoreszenzmikroskopie? Geschichtliches Fluoreszenz: Drei Mechanismen Das Fluoreszenzmikroskop LED-Auflichtfluoreszenz (LED-AFL) Beispiele Fluoreszenzmikroskopie? Hellfeldmikroskop: Beobachtet

Mehr

Optische Systeme. Physikalisches Grundpraktikum III

Optische Systeme. Physikalisches Grundpraktikum III Physikalisches Grundpraktikum III Universität Rostock :: Fachbereich Physik 11 Optische Systeme Name: Daniel Schick BetreuerIn: Dr. Enenkel Versuch ausgeführt: 01.12.04 Protokoll erstellt: 02.12.04 1 Ziel:

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

Ringvorlesung B Fluoreszenz und Anwendung in Molekularer Biotechnologie

Ringvorlesung B Fluoreszenz und Anwendung in Molekularer Biotechnologie Ringvorlesung B Fluoreszenz und Anwendung in Molekularer Biotechnologie Inhalt: Physikalische Grundlagen Eigenschaften von Fluorophoren Ruprecht-Karls-Universität Heidelberg Institut für Pharmazie and

Mehr

Versuch Fluoreszenz-Quenching

Versuch Fluoreszenz-Quenching Versuch Fluoreszenz-Quenching Zielstellung: 1.) Aufnahme des UV-Vis-Spektrums eines Fluoreszenzfarbstoffes 2.) Aufnahme der Kennlinie des verwendeten Photon-Counting-Moduls (PCM) im Bereich von 1,9 2,9

Mehr

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie Photochemie 1 PC 2 2016 Photochemie 2 PC 2 2016 1 Wichtige photophysikalische Prozesse 3 PC 2 2016 Der Grundzustand Boltzmann Verteilung: Alle Moleküle sind im elektronischen Grundzustand (0) chwingungsgrundzustand

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

Zellulose-Synthese. künstlich: enzymatische Polymerisation von Zellobiose-Fluorid

Zellulose-Synthese. künstlich: enzymatische Polymerisation von Zellobiose-Fluorid 18 Zellulose-Synthese künstlich: enzymatische Polymerisation von Zellobiose-Fluorid biologisch: Enzymkomplexe in der Zellmembran (terminal complexes, TCs) sphärulitische Kristalle außen S. Kobayashi et

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Versuch P2-18: Laser und Wellenoptik Teil A

Versuch P2-18: Laser und Wellenoptik Teil A Versuch P2-18: Laser und Wellenoptik Teil A Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Physikalische Grundlagen... 2 1.1 Funktionsweise eines Lasers... 2 2 Versuchsbeschreibungen...

Mehr

Die Abbildung zeigt eine handelsübliche Röntgenröhre

Die Abbildung zeigt eine handelsübliche Röntgenröhre Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl

Mehr

Einfaches Spektroskop aus alltäglichen Gegenständen

Einfaches Spektroskop aus alltäglichen Gegenständen Illumina-Chemie.de - Artikel Physik aus alltäglichen Gegenständen Im Folgenden wird der Bau eines sehr einfachen Spektroskops aus alltäglichen Dingen erläutert. Es dient zur Untersuchung von Licht im sichtbaren

Mehr

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Experimentatoren: Thomas Kunze und Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 19.10.04 Inhaltsverzeichnis 1 Ziel des Versuches

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Anwendung: Biologische Motoren

Anwendung: Biologische Motoren Anwendung: Biologische Motoren Motorproteine Myosin Kinesin Dynein Aktinfilament Mikrotubuli Weitere Motorproteine: ATPasen Polymerasen Helikasen gerichtete Translokation entlang eines Transportweges (Filamente)

Mehr

Optik in Smartphones. Proseminar Technische Informatik Fabio Becker 9. Juli 2014

Optik in Smartphones. Proseminar Technische Informatik Fabio Becker 9. Juli 2014 Optik in Smartphones Proseminar Technische Informatik Fabio Becker 9. Juli 2014 1 Gliederung Die Kamera Grundidee für das Smartphone Grundlagen zur Optik Skalierung Aufbau Ziele/Trend in Zukunft Zusammenfassung

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Fluoreszenz. Abb. 1: Möglicher Versuchsaufbau

Fluoreszenz. Abb. 1: Möglicher Versuchsaufbau Fluoreszenz Abb. 1: Möglicher Versuchsaufbau Geräteliste: UV-Lampe Geldscheintester, Schwarzlicht-Leuchtstofflampe, Halogenlampe, UV- Bandpass, Granulat mit fluoreszierendem Farbstoff, Fluoreszenzproben,

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die 5. Optik 5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die Lichtgeschwindigkeit! In Materie ergibt sich eine andere Geschwindikeit

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Konstruktive Interferenz dsinθ = λ = 0, ± 1, ± 2... Destruktive Interferenz asinθ = λ = 0, ± 1, ± 2... Kohärent vs. inkohärent

Mehr

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 15: Mikroprojektion

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 15: Mikroprojektion Optisches Institut der TU Berlin Technische Optik Optisches Praktikum, Aufgabe 15: Mikroprojektion 1. Ziel der Aufgabe Kennenlernen der Grundlagen von Abbildungs- und Beleuchtungsstrahlengängen und deren

Mehr

INAUGURAL - DISSERTATION

INAUGURAL - DISSERTATION INAUGURAL - DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich - Mathematischen Gesamtfakultät der Ruprecht - Karls - Universität Heidelberg vorgelegt von Dipl.-Phys. Michael Hofmann

Mehr

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Titel 33. I. Klassifizierung der mikroskopischen Methoden. II. Lichtmikroskop. Bildentstehung des Mikroskops. Haupterfordernisse der Bildentstehung. III. Auflösungsvermögen

Mehr

» Pioneering bedeutet für mich Prof. Stefan Hell

» Pioneering bedeutet für mich Prof. Stefan Hell » Pioneering bedeutet für mich Prof. Stefan Hell Unser Interviewpartner zum Thema Pioneering, Prof. Dr. Stefan Hell, ist wissenschaftliches Mitglied der Max- Planck-Gesellschaft und Direktor am Max-Planck-Institut

Mehr

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1

Mehr

dp E [W m -2 ] da 1 von 9

dp E [W m -2 ] da 1 von 9 1 von 9 ANHANG B zur Verordnung optische Strahlung Kohärente optische Strahlung (LASER) Definitionen, Expositionsgrenzwerte, Ermittlung und Beurteilung nach Klassen für Laser Definitionen Kohärente Strahlung

Mehr

Lichtmikroskopie. 30. April 2015

Lichtmikroskopie. 30. April 2015 Lichtmikroskopie 30. April 2015 1 Gliederung Einführung in die klassische Lichtmikroskopie mechanischer und optischer Aufbau Anwendungsbereiche der Polarisationsmikroskopie Einführung in die Polarisationsmikroskopie

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A3 - Atomspektren - BALMER-Serie» Martin Wolf Betreuer: DP Emmrich Mitarbeiter: Martin Helfrich

Mehr

Versuch 413. Abbesche Theorie. 1. Aufgaben. 2. Grundlagen

Versuch 413. Abbesche Theorie. 1. Aufgaben. 2. Grundlagen Versuch 413 Abbesche Theorie 1. Aufgaben 1.1 Untersuchen Sie das Auflösungsvermögen des Mikroskops für drei verschiedene Objektive jeweils für rotes und blaues Licht. Vergleichen Sie die kleinsten experimentell

Mehr

L e b e n i n d e r Z w e r g e n d i m e n s i o n

L e b e n i n d e r Z w e r g e n d i m e n s i o n EINSICHTEN 28 N E W S L E T T E R 3 l e b e n s w i s s e n s c h a f t e n Susanne Wedlich L e b e n i n d e r Z w e r g e n d i m e n s i o n Die Rätsel der Zelle besser auflösen das gelingt nun dank

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr