Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit"

Transkript

1 Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung: Zufallsstichprobe z.b. Häufigkeiten, statistische Kennzahlen, Grafiken, z.b. Konfidenzintervall, Signifikanztests 1

2 Stichprobenziehung Auswahl eines Teils der Grundgesamtheit GRUND- GESAMTHEIT (GRUPPE VON PERSONEN, ÜBER DIE EINE AUSSAGE GETROFFEN WERDEN SOLL) STICHPROBE (GRUPPE VON PERSONEN, DIE EMPIRISCH UNTERSUCHT WIRD) Schluss von der Stichprobe auf die Grundgesamtheit Logik der schließenden Statistik Vorstellung: Ziehen von unendlich vielen Stichproben Merkmale werden unendlich oft erfasst nehmen unterschiedliche Wert an => Stichprobenkennwertverteilung (NV) Standardabweichung dieser Verteilung > 2

3 Beispiel Wie hoch ist der Frauenanteil unter den Soziologie-Studierenden? 1. Stichprobe: 65% 2. Stichprobe: 73% 3. Stichprobe: 71% 30. Stichprobe: 69% 31. Stichprobe: 61% 500. Stichprobe: 64% 501. Stichprobe: 72% 502. Stichprobe: 71%. Usw. nach 100 gezogenen Stichproben Bei unendlich oft gezogenen Stichproben = Annäherung an eine Normalverteilung! MW Standardabw. MW+ Standardabw. MW - 2x Standardabw. MW + 2x Standardabw. = ,5 167,5 177,5 187,5 197,5 Körpergröße in cm 67% (ca. 2/3) aller Fälle 95% aller Fälle 3

4 S T I C H P R O B E N MW MW 1,96 x MW+ 67% (ca. 2/3) aller Fälle MW + 1,96 x 157,5 167,5 177,5 187,5 197,5 Durchschnittliche Körpergröße in cm = 10 95% aller Fälle Durchschnittliche Anzahl gerauchter Zigaretten bei Frauen in der Stichprobe: 14 Stück pro Tag (Stichprobe: Gesundheitssurvey Statistik Austria Befragte) Wie viele Zigaretten rauchen Frauen in der Grundgesamtheit (Österreichische Bevölkerung im Jahr 2006) im Durchschnitt pro Tag??? Die Ermittlung eines genauen Wertes für die Grundgesamtheit ist nur bei einer Vollerhebung möglich! Solange eine Stichprobe gezogen wird kann der WAHRE WERT immer nur GESCHÄTZT werden! Diese Schätzung erfolgt in Form eines INTERVALLS! 4

5 MW 1,96 x MW + 1,96 x 14 Zigaretten 13,6 Zigaretten 14,4 Zigaretten Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert der durchschnittlich gerauchten Zigaretten bei den Frauen in der Grundgesamtheit zwischen 13,6 und 14,4. Wenn ich unendliche oft die durchschnittliche Anzahl der Zigaretten erheben würde, würde die Verteilung einer Normalverteilung ähneln. STANDARDFEHLER DES MITTELWERTES (STICHPROBENSCHÄTZFEHLER) Je größer die Stichprobe, desto kleiner der Schätzfehler. => Je größer die Stichprobe, desto kleiner das Schätzintervall! des Mittelwertes = Standardabweichung Wurzel der Fallzahl 5

6 BERECHNUNG DES KONFIDENZINTERVALLS FÜR DEN MITTELWERTE (SCHÄTZINTERVALL DES WAHREN MITTELWERTES ) 95% 1,96 95% 1,96 95% 1,96 99% 2,58 99% 2,58 99% 2,58 BEISPIEL ZIGARETTENKONSUM (QUELLE: STATISTIK AUSTRIA GESUNDHEITSERHEBUNG 2006) Männer Frauen 9, ,215 7,9 0, Obergrenze 18,2 1,96 0,215 18, ,96 0,198 14,4 Mittelwert 18,2 14,0 Fallzahl n Standardabweichung 9,1 7,9 Untergrenze U 18,2 1,96 0,215 17,81 U 14 1,96 0,198 13,63 Konfidenzintervall 17,81 18,65 13,63 14,40 Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert der gerauchten Zigaretten bei den Männern in der Grundgesamtheit zwischen 17,8 und 18,7 Zigaretten. Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert der gerauchten Zigaretten bei den Frauen in der Grundgesamtheit zwischen 13,6 und 14,4 Zigaretten. 6

7 Gilt der vorliegende Geschlechterunterschied in der Anzahl der durchschnittlich gerauchten Zigaretten auch für die Grundgesamtheit oder nur für die die gezogene Stichprobe? Kann der Zigarettenunterschied zwischen den Geschlechtern als signifikant bezeichnet werden? 17,81 KI 95 18,65 18,2 Männer Frauen 13,6 KI 95 14,4 Die beiden Intervalle überschneiden sich nicht! Das bedeutet, dass es auch in der Grundgesamtheit mit 95%iger Sicherheit einen Unterschied der Mittelwerte geben wird! Es gibt einen signifikanten Unterschied der durchschnittlich gerauchten Zigaretten! KI 95% = [Mittelwert 1,96 des Mittelwertes ] KI 95% = ,96 21, ,92 [1318 ; 1404] Untergrenze Obergrenze Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert des monatlichen Nettoeinkommens in der österreichischen Bevölkerung ab dem 16. Lebensjahr im Jahr 2003 zwischen 1318 und 1404 Euro. 7

8 Anteil der chronisch kranken Frauen in der Stichprobe: 41,3 % (Stichprobe: Gesundheitssurvey Statistik Austria Befragte) Wie hoch ist der Anteil der chronisch kranken Frauen in der Grundgesamtheit?? (Österreichische Bevölkerung im Jahr 2006) Die Ermittlung eines genauen Wertes für die Grundgesamtheit ist nur bei einer Vollerhebung möglich! Solange eine Stichprobe gezogen wird kann der WAHRE WERT immer nur GESCHÄTZT werden! Diese Schätzung erfolgt in Form eines INTERVALLS! p 1,96 x p+ 1,96 x 41,3 % 40,3 % 42, 3% Mit 95%iger Wahrscheinlichkeit liegt der wahre Anteil er chronisch kranken Frauen in der Grundgesamheit zwischen 40,3% und 42,3%. 8

9 STANDARDFEHLER DES ANTEILSWERTES (STICHPROBENSCHÄTZFEHLER) 1 Je größer die Stichprobe, desto kleiner der Schätzfehler. => Je größer die Stichprobe, desto kleiner das Schätzintervall! Anteilswert = Wurzel aus Rel. Häufigkeit * (1 rel. Häufigkeit) Fallzahl Stichprobenschätzfehler Je größer die Stichprobe, desto kleiner der Schätzfehler. z.b. 20% in meiner Stichprobe sind ausländerfeindlich eingestellt. n = 100 Stichprobenfehler 4% KI95% = 0,2 1,96 x 0,04 = [0,12;0,28] [12 28%] n = 500 Stichprobenfehler 2% KI95% = 0,2 1,96 x 0,02 = [0,16;0,23] [16 23%] n = 2000 Stichprobenfehler 1% KI95% = 0,2 1,96 x 0,01 = [0,18;0,22] [18 22%] 9

10 BERECHNUNG DES KONFIDENZINTERVALLS FÜR DEN ANTEILSWERT (PROZENTWERT) (SCHÄTZINTERVALL DES WAHREN ANTEILS ) 95% 1,96 95% 1,96 95% 1,96 99% 2,58 99% 2,58 99% 2,58 BEISPIEL CHRONISCHE ERKRANKUNGEN (QUELLE: STATISTIK AUSTRIA GESUNDHEITSERHEBUNG 2006) Männer Frauen Prozentwert 36,6 % 41,3 % Anteilswert p 0,366 0,413 Fallzahl n , ,366 0, , ,413 0, Obergrenze 0,366 1,96 0,0058 0,377 0,413 1,96 0,0054 0,423 Untergrenze U 0,366 1,96 0,0058 0,355 U 0,413 1,96 0,0054 0,403 Konfidenzintervall 35,5 % 37,7 % 40,3 % 42,3 % Mit 95%iger Wahrscheinlichkeit liegt der Anteil der chronisch erkrankten Männer in der Grundgesamtheit zwischen 35,5% und 37,7%. Mit 95%iger Wahrscheinlichkeit liegt der Anteil der chronisch erkrankten Frauen in der Grundgesamtheit zwischen 40,3% und 42,3%. 10

11 Gilt der vorliegende Geschlechterunterschied im Anteil der chronisch Kranken auch für die Grundgesamtheit oder nur für die die gezogene Stichprobe? Kann Unterschied zwischen den Geschlechtern als signifikant bezeichnet werden? 40,3 KI 95 42,3 41 Frauen Männer 35,5 KI 95 37,7 Die beiden Intervalle überschneiden sich nicht! Das bedeutet, dass es auch in der Grundgesamtheit mit 95%iger Sicherheit einen Unterschied der Prozentwerte geben wird! Es gibt einen signifikanten Unterschied des Anteils der chronisch Kranken zwischen Männern und Frauen! Beispiel Parteipräferenz Männer des Anteilswertes KI 95% = [Anteilswert 1,96 ] Untergrenze KI 95% = 0,467 1,96 0,467 1,96 0,0203 0,467 0,040 [0,427 ; 0,507] Obergrenze 0,467 x (1 0,467) 591 Mit 95%iger Wahrscheinlichkeit liegt der Anteil der Parteipräferenz für die SPÖ bei den Männern in der Grundgesamtheit zwischen 42,7 und 50,7%. 11

12 Beispiel Parteipräferenz Frauen des Anteilswertes KI 95% = [Anteilswert 1,96 ] Untergrenze KI 95% = 0,429 1,96 0,429 1,96 0,0205 0,429 0,040 [0,389 ; 0,469] Obergrenze 0,429 x (1 0,429) 581 Mit 95%iger Wahrscheinlichkeit liegt der Anteil der Parteipräferenz für die SPÖ bei den Frauen in der Grundgesamtheit zwischen 38,9 und 46,9%. Vertrauenswahrscheinlichkeit 090% KI 095% KI 099% KI Je höher die Vertrauenswahrs cheinlichkeit, desto breiter das Intervall 12

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall..

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Kapitel : Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Mittelwert = Summe aller Einzelwerte / n = durchschnittliche Ausprägung, wenn alle gleich viel hätten. Streuung =

Mehr

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall..

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Kapitel : Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Mittelwert = Summe aller Einzelwerte / n = durchschnittliche Ausprägung, wenn alle gleich viel hätten. Streuung =

Mehr

Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie

Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie Konfidenzintervall Statistische Analyse von Stichproben Der Datensatz aus der Übung (social survey 2003) besteht

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Dr. H. Grunert Schließende Statistik Vorlesungscharts. Vorlesung 7. Schätzverfahren

Dr. H. Grunert Schließende Statistik Vorlesungscharts. Vorlesung 7. Schätzverfahren Vorlesungscharts Vorlesung 7 Schätzverfahren Konstruktion von Konfidenzintervallen Konfidenzintervalle für den Erwartungswert normalverteilter Grundgesamtheiten Konfidenzintervalle für Anteilswerte Seite

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

Bundesweite Volksabstimmung

Bundesweite Volksabstimmung Bundesweite Volksabstimmung Eine repräsentative Umfrage von infratest dimap im Auftrag von OMNIBUS für Direkte Demokratie und Mehr Demokratie / April 2017 Bundesweite Volksabstimmung Untersuchungsanlage

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Übungs-Klausur zur Vorlesung Statistik II

Übungs-Klausur zur Vorlesung Statistik II Universität Siegen, FB 1, Fach Soziologie Prof. Dr. Wolfgang Ludwig-Mayerhofer Übungs-Klausur zur Vorlesung Statistik II Bei jeder Frage ist die Anzahl der zu erzielenden Punkte vermerkt. Insgesamt können

Mehr

Statistik I. Methodologie der Psychologie

Statistik I. Methodologie der Psychologie Statistik I Methodologie der Psychologie Thomas Schmidt & Lena Frank Wintersemester 2003/2004 Georg-Elias-Müller-Institut für Psychologie Uni Göttingen Literatur: Glantz, S.A. (2002). Primer of Biostatistics.

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Medizinische Statistik

Medizinische Statistik Medizinische Statistik Angewandte Biometrie für Ärzte und Gesundheitsberufe Bearbeitet von Wilhelm Gaus, Rainer Muche 1. Auflage 2013. Buch. 640 S. Hardcover ISBN 978 3 7945 2931 5 Format (B x L): 16,5

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Deutscher Hanf Verband Legalisierung von Cannabis KW 46/2015

Deutscher Hanf Verband Legalisierung von Cannabis KW 46/2015 Deutscher Hanf Verband Legalisierung von Cannabis KW 46/2015 Ergebnisse einer repräsentativen Erhebung - Tabellarische Übersichten Eine Studie von Infratest dimap im Auftrag des Deutschen Hanfverbandes

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

Inzidenz = Penetration: Welche Stichprobe ist realistisch?

Inzidenz = Penetration: Welche Stichprobe ist realistisch? Inzidenz = Penetration: Welche Stichprobe ist realistisch? Vor jeder Entscheidung für ein Stichprobenverfahren stellt sich die Frage: Findet man die Stichprobenmitglieder? Beispiel: Man sucht nach VerwenderInnen

Mehr

Biostatistik, WS 2017/18 Der Standardfehler

Biostatistik, WS 2017/18 Der Standardfehler 1/70 Biostatistik, WS 2017/18 Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1718/ 24.11.2017 3/70 Ein Versuch Hirse Bild: Panicum miliaceum 4/70 Ein Versuch Ein Versuch Versuchsaufbau:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Univ.-Prof. Dr. Georg Wydra

Univ.-Prof. Dr. Georg Wydra Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4

Mehr

Bewertung der gesetzlichen Regelung zu Beschneidungen

Bewertung der gesetzlichen Regelung zu Beschneidungen Ergebnisse einer repräsentativen Erhebung - Tabellarische Übersichten Eine Studie von Infratest dimap im Auftrag von MOGiS e.v. Berlin, 20. Dezember 2012 67.10.126707 Untersuchungsanlage Grundgesamtheit:

Mehr

Statistik-Klausur vom 6. Februar 2007

Statistik-Klausur vom 6. Februar 2007 Statistik-Klausur vom 6. Februar 2007 Bearbeitungszeit: 90 Minuten Aufgabe 1 Bei einer Besucherumfrage in zwei Museen wurden die Besuchsdauern (gemessen in Stunden) festgestellt: Besuchsdauer Anteil der

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, FB 1, Fach Soziologie Das Problem SozialwissenschaftlerInnen erheben sehr oft Daten aus Stichproben. Es

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Noémie Becker & Dirk Metzler 15. April 2016 Inhaltsverzeichnis 1 Der Standardfehler 1 1.1 Ein Versuch............................................

Mehr

Umfrage zum Thema Beteiligung der DFL an Polizeikosten bei Risikospielen Eine Studie im Auftrag des WDR / Sport inside

Umfrage zum Thema Beteiligung der DFL an Polizeikosten bei Risikospielen Eine Studie im Auftrag des WDR / Sport inside Umfrage zum Thema Beteiligung der DFL an Polizeikosten bei Risikospielen Eine Studie im Auftrag des WDR / Sport inside Umfrage zum Thema Beteiligung der DFL an Polizeikosten bei Risikospielen Studieninformation

Mehr

Wie liest man Konfidenzintervalle? Teil I. Premiu m

Wie liest man Konfidenzintervalle? Teil I. Premiu m Wie liest man Konfidenzintervalle? Teil I Premiu m Was sind Konfidenzintervalle? Ein Konfidenzintervall (KI) ist ein Maß für die Unsicherheit bezüglich einer Schätzung eines Effekts. Es ist ein Intervall

Mehr

Inhaltsbereich Wahrscheinlichkeit und Statistik

Inhaltsbereich Wahrscheinlichkeit und Statistik Inhaltsbereich Wahrscheinlichkeit und Statistik AG Mathematik, Sankt Pölten 11.11.2009 Markus Binder Modell für die zentrale srp im Schulversuch Teil I: Aufgaben mit 15-25 Items Teil II: 6-8 Aufgaben,

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1

Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1 Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1 Aufgabe 1: Von 2 gleichartigen Maschinen eines pharmazeutischen Betriebes stellt die erste 40% und die zweite 60% der Produkte her. Dabei verursacht

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

Statistiktutorium (Kurs Frau Jacobsen)

Statistiktutorium (Kurs Frau Jacobsen) Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 9. Vorlesung - 2017 Monte Carlo Methode für numerische Integration Sei g : [0, 1] R stetige Funktion; man möchte 1 0 g(t)dt numerisch approximieren mit Hilfe von Zufallszahlen: Sei (U n ) n eine Folge

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Alkohol und Schwangerschaft - KW 35/2014

Alkohol und Schwangerschaft - KW 35/2014 Ergebnisse einer repräsentativen Erhebung - Tabellarische Übersichten Eine Studie von TNS Infratest Politikforschung im Auftrag der Fachstelle für Suchtprävention Berlin ggmbh Berlin, 1. September 2014

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Legalisierung von Cannabis Eine Studie im Auftrag des Deutschen Hanfverbands (DHV) Tabellarische Übersichten

Legalisierung von Cannabis Eine Studie im Auftrag des Deutschen Hanfverbands (DHV) Tabellarische Übersichten Legalisierung von Cannabis Eine Studie im Auftrag des Deutschen Hanfverbands (DHV) Tabellarische Übersichten Untersuchungsanlage Grundgesamtheit: Stichprobe: Erhebungsverfahren: Fallzahl: Wahlberechtigte

Mehr

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

Verjährung von Sexualstraftaten an Minderjährigen

Verjährung von Sexualstraftaten an Minderjährigen Eine Umfrage von infratest dimap im Auftrag von netzwerkb Netzwerk Betroffener von sexualisierter Gewalt e.v. Grafische Darstellungen Untersuchungsanlage Grundgesamtheit Wahlberechtigte Bevölkerung im

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

Population und Stichprobe

Population und Stichprobe Inhaltsverzeichnis Population und Stichprobe... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-13)... 3 1. Fragestellung... 4 2. Definitionen und Notation... 4 3. "Dilemma" der Stichprobenziehung... 6

Mehr

Wolf-Gert Matthäus. Lösungen für die Statistik mit Excel 97

Wolf-Gert Matthäus. Lösungen für die Statistik mit Excel 97 Wolf-Gert Matthäus Lösungen für die Statistik mit Excel 97 Vorwort 9 Einleitung 11 1 Excel 97 - Zusammenstellung einiger Möglichkeiten 13 1.1 Begriffe und Bedienung 13 1.2 Niveaustufen der Arbeit mit Excel

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Legalisierung Cannabis Eine Studie von infratest dimap im Auftrag des Deutschen Hanfverbandes

Legalisierung Cannabis Eine Studie von infratest dimap im Auftrag des Deutschen Hanfverbandes Eine Studie von infratest dimap im Auftrag des Deutschen Hanfverbandes Tabellenbericht Berlin, 5. November 2018 317400212 Kunden- Logo Studieninformation Grundgesamtheit Wahlberechtigte in Deutschland

Mehr

Methoden empirischer Sozial- und Wirtschaftsforschung

Methoden empirischer Sozial- und Wirtschaftsforschung Dr. sc. Siassi HTW Berlin Januar 2017 Klausur Methoden empirischer Sozial- und Wirtschaftsforschung Aufgabe 1 40 Punkte Fallzusammenfassung Fälle Gültig Fehlend Gesamt N Prozent N Prozent N Prozent $Verkehrsmittel

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

1.2 Stichprobenarten. 20 Elementare Definitionen

1.2 Stichprobenarten. 20 Elementare Definitionen 20 Elementare Definitionen 1.2 Stichprobenarten In der Empirie (wissenschaftlich gewonnene Erfahrung) werden unterschiedliche Zugänge zur Auswahl einer repräsentativen Stichprobe verfolgt. Mittels eines

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik rof. Dr. Günter Hellmig Aufgabenskript Induktive Statistik Inhalt:.Kombinatorik: Variation und Kombination, jeweils ohne Wiederholung 2.Rechnen mit Wahrscheinlichkeiten: Additions- und Multiplikationssätze

Mehr

Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse. Lösungsblatt zu Nr. 2

Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse. Lösungsblatt zu Nr. 2 Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie Dr. Wolfgang Langer 1 Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse Lösungsblatt zu Nr. 2 1. a) Je

Mehr

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 5

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 5 Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie Dr. Wolfgang Langer 1 Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik Lösungsblatt zu Nr. 5 1.a) Um diese

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Untersuchungsarten im quantitativen Paradigma

Untersuchungsarten im quantitativen Paradigma Untersuchungsarten im quantitativen Paradigma Erkundungsstudien / Explorationsstudien, z.b.: Erfassung der Geschlechterrollenvorstellungen von Jugendlichen Populationsbeschreibende Untersuchungen, z.b.:

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

Außenpolitik Eine Studie von Kantar Public im Auftrag der Körber-Stiftung

Außenpolitik Eine Studie von Kantar Public im Auftrag der Körber-Stiftung Außenpolitik Eine Studie von Kantar Public im Auftrag der Körber-Stiftung Tabellenbericht Berlin, 22.November 2016 315 111400 Untersuchungsanlage Grundgesamtheit: Stichprobe: Erhebungsverfahren: Fallzahl:

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Einführung in die schliessende Statistik Oktober 212 Prof. Dr. Jürg Schwarz Folie 2 Programm 31. Oktober 212: Vormittag (9.15 12.3) Vorlesung - Einführung,

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

3. Wahrscheinlichkeitsrechnung und Wahrscheinlichkeitsverteilungen

3. Wahrscheinlichkeitsrechnung und Wahrscheinlichkeitsverteilungen 3. Wahrscheinlichkeitsrechnung und Wahrscheinlichkeitsverteilungen Beispiel Eine 1-Euro-Münze wird 1000 mal geworfen und die beiden möglichen Versuchsausgänge "Kopf" oder "Zahl" registriert. 500 mal 500

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr