Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit"

Transkript

1 Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung: Zufallsstichprobe z.b. Häufigkeiten, statistische Kennzahlen, Grafiken, z.b. Konfidenzintervall, Signifikanztests 1

2 Stichprobenziehung Auswahl eines Teils der Grundgesamtheit GRUND- GESAMTHEIT (GRUPPE VON PERSONEN, ÜBER DIE EINE AUSSAGE GETROFFEN WERDEN SOLL) STICHPROBE (GRUPPE VON PERSONEN, DIE EMPIRISCH UNTERSUCHT WIRD) Schluss von der Stichprobe auf die Grundgesamtheit Logik der schließenden Statistik Vorstellung: Ziehen von unendlich vielen Stichproben Merkmale werden unendlich oft erfasst nehmen unterschiedliche Wert an => Stichprobenkennwertverteilung (NV) Standardabweichung dieser Verteilung > 2

3 Beispiel Wie hoch ist der Frauenanteil unter den Soziologie-Studierenden? 1. Stichprobe: 65% 2. Stichprobe: 73% 3. Stichprobe: 71% 30. Stichprobe: 69% 31. Stichprobe: 61% 500. Stichprobe: 64% 501. Stichprobe: 72% 502. Stichprobe: 71%. Usw. nach 100 gezogenen Stichproben Bei unendlich oft gezogenen Stichproben = Annäherung an eine Normalverteilung! MW Standardabw. MW+ Standardabw. MW - 2x Standardabw. MW + 2x Standardabw. = ,5 167,5 177,5 187,5 197,5 Körpergröße in cm 67% (ca. 2/3) aller Fälle 95% aller Fälle 3

4 S T I C H P R O B E N MW MW 1,96 x MW+ 67% (ca. 2/3) aller Fälle MW + 1,96 x 157,5 167,5 177,5 187,5 197,5 Durchschnittliche Körpergröße in cm = 10 95% aller Fälle Durchschnittliche Anzahl gerauchter Zigaretten bei Frauen in der Stichprobe: 14 Stück pro Tag (Stichprobe: Gesundheitssurvey Statistik Austria Befragte) Wie viele Zigaretten rauchen Frauen in der Grundgesamtheit (Österreichische Bevölkerung im Jahr 2006) im Durchschnitt pro Tag??? Die Ermittlung eines genauen Wertes für die Grundgesamtheit ist nur bei einer Vollerhebung möglich! Solange eine Stichprobe gezogen wird kann der WAHRE WERT immer nur GESCHÄTZT werden! Diese Schätzung erfolgt in Form eines INTERVALLS! 4

5 MW 1,96 x MW + 1,96 x 14 Zigaretten 13,6 Zigaretten 14,4 Zigaretten Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert der durchschnittlich gerauchten Zigaretten bei den Frauen in der Grundgesamtheit zwischen 13,6 und 14,4. Wenn ich unendliche oft die durchschnittliche Anzahl der Zigaretten erheben würde, würde die Verteilung einer Normalverteilung ähneln. STANDARDFEHLER DES MITTELWERTES (STICHPROBENSCHÄTZFEHLER) Je größer die Stichprobe, desto kleiner der Schätzfehler. => Je größer die Stichprobe, desto kleiner das Schätzintervall! des Mittelwertes = Standardabweichung Wurzel der Fallzahl 5

6 BERECHNUNG DES KONFIDENZINTERVALLS FÜR DEN MITTELWERTE (SCHÄTZINTERVALL DES WAHREN MITTELWERTES ) 95% 1,96 95% 1,96 95% 1,96 99% 2,58 99% 2,58 99% 2,58 BEISPIEL ZIGARETTENKONSUM (QUELLE: STATISTIK AUSTRIA GESUNDHEITSERHEBUNG 2006) Männer Frauen 9, ,215 7,9 0, Obergrenze 18,2 1,96 0,215 18, ,96 0,198 14,4 Mittelwert 18,2 14,0 Fallzahl n Standardabweichung 9,1 7,9 Untergrenze U 18,2 1,96 0,215 17,81 U 14 1,96 0,198 13,63 Konfidenzintervall 17,81 18,65 13,63 14,40 Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert der gerauchten Zigaretten bei den Männern in der Grundgesamtheit zwischen 17,8 und 18,7 Zigaretten. Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert der gerauchten Zigaretten bei den Frauen in der Grundgesamtheit zwischen 13,6 und 14,4 Zigaretten. 6

7 Gilt der vorliegende Geschlechterunterschied in der Anzahl der durchschnittlich gerauchten Zigaretten auch für die Grundgesamtheit oder nur für die die gezogene Stichprobe? Kann der Zigarettenunterschied zwischen den Geschlechtern als signifikant bezeichnet werden? 17,81 KI 95 18,65 18,2 Männer Frauen 13,6 KI 95 14,4 Die beiden Intervalle überschneiden sich nicht! Das bedeutet, dass es auch in der Grundgesamtheit mit 95%iger Sicherheit einen Unterschied der Mittelwerte geben wird! Es gibt einen signifikanten Unterschied der durchschnittlich gerauchten Zigaretten! KI 95% = [Mittelwert 1,96 des Mittelwertes ] KI 95% = ,96 21, ,92 [1318 ; 1404] Untergrenze Obergrenze Mit 95%iger Wahrscheinlichkeit liegt der Mittelwert des monatlichen Nettoeinkommens in der österreichischen Bevölkerung ab dem 16. Lebensjahr im Jahr 2003 zwischen 1318 und 1404 Euro. 7

8 Anteil der chronisch kranken Frauen in der Stichprobe: 41,3 % (Stichprobe: Gesundheitssurvey Statistik Austria Befragte) Wie hoch ist der Anteil der chronisch kranken Frauen in der Grundgesamtheit?? (Österreichische Bevölkerung im Jahr 2006) Die Ermittlung eines genauen Wertes für die Grundgesamtheit ist nur bei einer Vollerhebung möglich! Solange eine Stichprobe gezogen wird kann der WAHRE WERT immer nur GESCHÄTZT werden! Diese Schätzung erfolgt in Form eines INTERVALLS! p 1,96 x p+ 1,96 x 41,3 % 40,3 % 42, 3% Mit 95%iger Wahrscheinlichkeit liegt der wahre Anteil er chronisch kranken Frauen in der Grundgesamheit zwischen 40,3% und 42,3%. 8

9 STANDARDFEHLER DES ANTEILSWERTES (STICHPROBENSCHÄTZFEHLER) 1 Je größer die Stichprobe, desto kleiner der Schätzfehler. => Je größer die Stichprobe, desto kleiner das Schätzintervall! Anteilswert = Wurzel aus Rel. Häufigkeit * (1 rel. Häufigkeit) Fallzahl Stichprobenschätzfehler Je größer die Stichprobe, desto kleiner der Schätzfehler. z.b. 20% in meiner Stichprobe sind ausländerfeindlich eingestellt. n = 100 Stichprobenfehler 4% KI95% = 0,2 1,96 x 0,04 = [0,12;0,28] [12 28%] n = 500 Stichprobenfehler 2% KI95% = 0,2 1,96 x 0,02 = [0,16;0,23] [16 23%] n = 2000 Stichprobenfehler 1% KI95% = 0,2 1,96 x 0,01 = [0,18;0,22] [18 22%] 9

10 BERECHNUNG DES KONFIDENZINTERVALLS FÜR DEN ANTEILSWERT (PROZENTWERT) (SCHÄTZINTERVALL DES WAHREN ANTEILS ) 95% 1,96 95% 1,96 95% 1,96 99% 2,58 99% 2,58 99% 2,58 BEISPIEL CHRONISCHE ERKRANKUNGEN (QUELLE: STATISTIK AUSTRIA GESUNDHEITSERHEBUNG 2006) Männer Frauen Prozentwert 36,6 % 41,3 % Anteilswert p 0,366 0,413 Fallzahl n , ,366 0, , ,413 0, Obergrenze 0,366 1,96 0,0058 0,377 0,413 1,96 0,0054 0,423 Untergrenze U 0,366 1,96 0,0058 0,355 U 0,413 1,96 0,0054 0,403 Konfidenzintervall 35,5 % 37,7 % 40,3 % 42,3 % Mit 95%iger Wahrscheinlichkeit liegt der Anteil der chronisch erkrankten Männer in der Grundgesamtheit zwischen 35,5% und 37,7%. Mit 95%iger Wahrscheinlichkeit liegt der Anteil der chronisch erkrankten Frauen in der Grundgesamtheit zwischen 40,3% und 42,3%. 10

11 Gilt der vorliegende Geschlechterunterschied im Anteil der chronisch Kranken auch für die Grundgesamtheit oder nur für die die gezogene Stichprobe? Kann Unterschied zwischen den Geschlechtern als signifikant bezeichnet werden? 40,3 KI 95 42,3 41 Frauen Männer 35,5 KI 95 37,7 Die beiden Intervalle überschneiden sich nicht! Das bedeutet, dass es auch in der Grundgesamtheit mit 95%iger Sicherheit einen Unterschied der Prozentwerte geben wird! Es gibt einen signifikanten Unterschied des Anteils der chronisch Kranken zwischen Männern und Frauen! Beispiel Parteipräferenz Männer des Anteilswertes KI 95% = [Anteilswert 1,96 ] Untergrenze KI 95% = 0,467 1,96 0,467 1,96 0,0203 0,467 0,040 [0,427 ; 0,507] Obergrenze 0,467 x (1 0,467) 591 Mit 95%iger Wahrscheinlichkeit liegt der Anteil der Parteipräferenz für die SPÖ bei den Männern in der Grundgesamtheit zwischen 42,7 und 50,7%. 11

12 Beispiel Parteipräferenz Frauen des Anteilswertes KI 95% = [Anteilswert 1,96 ] Untergrenze KI 95% = 0,429 1,96 0,429 1,96 0,0205 0,429 0,040 [0,389 ; 0,469] Obergrenze 0,429 x (1 0,429) 581 Mit 95%iger Wahrscheinlichkeit liegt der Anteil der Parteipräferenz für die SPÖ bei den Frauen in der Grundgesamtheit zwischen 38,9 und 46,9%. Vertrauenswahrscheinlichkeit 090% KI 095% KI 099% KI Je höher die Vertrauenswahrs cheinlichkeit, desto breiter das Intervall 12

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall..

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Kapitel : Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Mittelwert = Summe aller Einzelwerte / n = durchschnittliche Ausprägung, wenn alle gleich viel hätten. Streuung =

Mehr

Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie

Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie Konfidenzintervall Statistische Analyse von Stichproben Der Datensatz aus der Übung (social survey 2003) besteht

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Bundesweite Volksabstimmung

Bundesweite Volksabstimmung Bundesweite Volksabstimmung Eine repräsentative Umfrage von infratest dimap im Auftrag von OMNIBUS für Direkte Demokratie und Mehr Demokratie / April 2017 Bundesweite Volksabstimmung Untersuchungsanlage

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Deutscher Hanf Verband Legalisierung von Cannabis KW 46/2015

Deutscher Hanf Verband Legalisierung von Cannabis KW 46/2015 Deutscher Hanf Verband Legalisierung von Cannabis KW 46/2015 Ergebnisse einer repräsentativen Erhebung - Tabellarische Übersichten Eine Studie von Infratest dimap im Auftrag des Deutschen Hanfverbandes

Mehr

Univ.-Prof. Dr. Georg Wydra

Univ.-Prof. Dr. Georg Wydra Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, FB 1, Fach Soziologie Das Problem SozialwissenschaftlerInnen erheben sehr oft Daten aus Stichproben. Es

Mehr

Bewertung der gesetzlichen Regelung zu Beschneidungen

Bewertung der gesetzlichen Regelung zu Beschneidungen Ergebnisse einer repräsentativen Erhebung - Tabellarische Übersichten Eine Studie von Infratest dimap im Auftrag von MOGiS e.v. Berlin, 20. Dezember 2012 67.10.126707 Untersuchungsanlage Grundgesamtheit:

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Noémie Becker & Dirk Metzler 15. April 2016 Inhaltsverzeichnis 1 Der Standardfehler 1 1.1 Ein Versuch............................................

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Inhaltsbereich Wahrscheinlichkeit und Statistik

Inhaltsbereich Wahrscheinlichkeit und Statistik Inhaltsbereich Wahrscheinlichkeit und Statistik AG Mathematik, Sankt Pölten 11.11.2009 Markus Binder Modell für die zentrale srp im Schulversuch Teil I: Aufgaben mit 15-25 Items Teil II: 6-8 Aufgaben,

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Statistiktutorium (Kurs Frau Jacobsen)

Statistiktutorium (Kurs Frau Jacobsen) Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Population und Stichprobe

Population und Stichprobe Inhaltsverzeichnis Population und Stichprobe... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-13)... 3 1. Fragestellung... 4 2. Definitionen und Notation... 4 3. "Dilemma" der Stichprobenziehung... 6

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Alkohol und Schwangerschaft - KW 35/2014

Alkohol und Schwangerschaft - KW 35/2014 Ergebnisse einer repräsentativen Erhebung - Tabellarische Übersichten Eine Studie von TNS Infratest Politikforschung im Auftrag der Fachstelle für Suchtprävention Berlin ggmbh Berlin, 1. September 2014

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Legalisierung von Cannabis Eine Studie im Auftrag des Deutschen Hanfverbands (DHV) Tabellarische Übersichten

Legalisierung von Cannabis Eine Studie im Auftrag des Deutschen Hanfverbands (DHV) Tabellarische Übersichten Legalisierung von Cannabis Eine Studie im Auftrag des Deutschen Hanfverbands (DHV) Tabellarische Übersichten Untersuchungsanlage Grundgesamtheit: Stichprobe: Erhebungsverfahren: Fallzahl: Wahlberechtigte

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Wolf-Gert Matthäus. Lösungen für die Statistik mit Excel 97

Wolf-Gert Matthäus. Lösungen für die Statistik mit Excel 97 Wolf-Gert Matthäus Lösungen für die Statistik mit Excel 97 Vorwort 9 Einleitung 11 1 Excel 97 - Zusammenstellung einiger Möglichkeiten 13 1.1 Begriffe und Bedienung 13 1.2 Niveaustufen der Arbeit mit Excel

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

1.2 Stichprobenarten. 20 Elementare Definitionen

1.2 Stichprobenarten. 20 Elementare Definitionen 20 Elementare Definitionen 1.2 Stichprobenarten In der Empirie (wissenschaftlich gewonnene Erfahrung) werden unterschiedliche Zugänge zur Auswahl einer repräsentativen Stichprobe verfolgt. Mittels eines

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik rof. Dr. Günter Hellmig Aufgabenskript Induktive Statistik Inhalt:.Kombinatorik: Variation und Kombination, jeweils ohne Wiederholung 2.Rechnen mit Wahrscheinlichkeiten: Additions- und Multiplikationssätze

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Untersuchungsarten im quantitativen Paradigma

Untersuchungsarten im quantitativen Paradigma Untersuchungsarten im quantitativen Paradigma Erkundungsstudien / Explorationsstudien, z.b.: Erfassung der Geschlechterrollenvorstellungen von Jugendlichen Populationsbeschreibende Untersuchungen, z.b.:

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Außenpolitik Eine Studie von Kantar Public im Auftrag der Körber-Stiftung

Außenpolitik Eine Studie von Kantar Public im Auftrag der Körber-Stiftung Außenpolitik Eine Studie von Kantar Public im Auftrag der Körber-Stiftung Tabellenbericht Berlin, 22.November 2016 315 111400 Untersuchungsanlage Grundgesamtheit: Stichprobe: Erhebungsverfahren: Fallzahl:

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

VII. Inhaltsverzeichnis

VII. Inhaltsverzeichnis VII Inhaltsverzeichnis Vorwort XIII Teil 1 Datentypen 1 Datentypen 3 1.1 Kommt es wirklich darauf an? 3 1.2 Daten auf einer Intervallskala 3 1.3 Daten auf einer Ordinalskala 4 1.4 Daten auf einer Nominalskala

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

3 Evaluation als Beschreibung von Zuständen

3 Evaluation als Beschreibung von Zuständen Evaluation als Beschreibung von Zuständen 1 Sind die folgenden Aussagen richtig oder falsch? 1.1 In einer Klumpenstichprobe werden systematisch anfallende Cluster von Personen vollständig untersucht. Die

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

Vorlesung Stichproben WS 2009/2010

Vorlesung Stichproben WS 2009/2010 Institut für Statistik Statistisches Beratungslabor Prof. Dr. Helmut Küchenhoff WS 2009/2010 http://www.stat.uni-muenchen.de/~helmut/stichproben_0910.html Übung: Monia Mahling donnerstags 08:00 bis 10:00

Mehr

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Konfidenzintervalle Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Münzspiel Experiment 100 Münzwürfe: Stefan gewinnt bei "Kopf" Hypothesen H 0 : Stefan wird so oft gewinnen

Mehr

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Törichte Annahmen über den Leser 19 Wie dieses Buch aufgebaut ist 19 Teil I: Kopfüber eintauchen indie Statistik 19 Teil II: Von Wahrscheinlichkeiten,

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur Gesamtpunktzahl der Statistik I-Klausur: 12 Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur 03.07.2015 Name, Vorname: Matrikelnr.: Um die volle Punktzahl zu erhalten, müssen Sie bei den Berechnungen

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516 Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15:45 3067 Türcode: 1516 Deskriptive Statistik Maße der Zentraltendenz Deskriptive Statistik Maße der Zentraltendenz arithmetischer Mittewert klassenorientierter

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle Aufgabe 11.1 NewYorkTimes, Monday, May17,2010:

Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle Aufgabe 11.1 NewYorkTimes, Monday, May17,2010: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle

Mehr

Statistik für Dummies

Statistik für Dummies Bearbeitet von Deborah Rumsey, Reinhard Engel 3. aktualisierte Auflage 2015. Buch. 368 S. Softcover ISBN 978 3 527 71156 7 Format (B x L): 17,6 x 24 cm Wirtschaft > Betriebswirtschaft: Theorie & Allgemeines

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Umfrage in Baden-Württemberg zu Stuttgart 21 Januar 2017 Eine bevölkerungsrepräsentative Studie im Auftrag v. Prof.Peter Grottian Tabellarische

Umfrage in Baden-Württemberg zu Stuttgart 21 Januar 2017 Eine bevölkerungsrepräsentative Studie im Auftrag v. Prof.Peter Grottian Tabellarische Umfrage in Baden-Württemberg zu Stuttgart 21 Januar 2017 Eine bevölkerungsrepräsentative Studie im Auftrag v. Prof.Peter Grottian Tabellarische Übersichten 317100373 Umfrage in Baden-Württemberg Studieninformation

Mehr

Teil 3: Schließende Statistik

Teil 3: Schließende Statistik Teil 3: Schließende Statistik Grundfragen der schließenden Statistik 1. Welcher Parameter passt am besten zu den Beobachtungen? 2. Welche Parameterwerte sind mit den Beobachtungen vereinbar? 3. Sind die

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS tfü. Springer Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R 3 1.1 Installieren und Starten von R 3 1.2 R-Befehle

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Beispiele aus dem täglichen Leben Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Voraussetzung für die Anwendung von Stichproben: Stichproben müssen repräsentativ sein, d.h. ein verkleinertes

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder Formelsammlung Beschreibende Statistik Univariate Häufigkeitsverteilungen X ist ein diskretes Merkmal, mit k Ausprägungen TR: Mode 2 1 = AC absolute relative Häufigkeit Häufigkeiten Bivariate Häufigkeitsverteilungen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr