Didaktik der Analysis

Größe: px
Ab Seite anzeigen:

Download "Didaktik der Analysis"

Transkript

1 Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 4.1

2 Inhalt Didaktik der Analysis 0 Organisatorisches 1 Ziele und Inhalte 2 Folgen und Vollständigkeit in R 3 Ableitungsbegriff 4 Integralbegriff 4.2

3 Greefrath et al. (2016). Didaktik der Analysis. Heidelberg: Springer Spektrum, S Danckwerts, R.; Vogel, D. (2006). Analysis verständlich unterrichten. Heidelberg: Spektrum Akad. Verlag Büchter, A.; Henn, H.-W. (2010). Elementare Analysis. Heidelberg: Spektrum Akademischer Verlag Didaktik der Analysis Kapitel 4: Integralbegriff 4.3

4 Integral-Quiz Anleitung Klaus-Dieter Arndt (1995). Integral-Quiz. In: Die etwas andere Aufgabe. mathematik lehren 72, S. 67 Reihen Sie die Kennbuchstaben der richtigen Aussagen aneinander. Es ergibt sich ein Lösungsspruch auf sprachlich eher mäßigem Niveau. Wichtig: Bei jeder Frage sind mehrere richtige Antworten möglich. Aufgabe 1: Was bedeutet die Aussage f ist auf [a, b] integrierbar genau? E f ist im Intervall [a, b] differenzierbar. K f ist im Intervall [a, b] stetig. O f hat im Intervall [a, b] eine Stammfunktion. M Obersummengrenzwert = Untersummengrenzwert 4.4

5 Integral-Quiz Aufgabe 2: Klaus-Dieter Arndt (1995). Integral-Quiz. In: Die etwas andere Aufgabe. mathematik lehren 72, S. 67 Unter welchen Bedingungen gilt: a b f x dx a b g x dx A Z D T Es ist a b und f x g(x) auf [a, b]. Es ist a > b und f x g(x) auf [a, b]. Es ist a < b und f x g(x) auf [a, b]. Es ist a > b und f x g(x) auf [a, b]. Aufgabe 3: Unter welchen Bedingungen gilt: a b f x dx = b a f x dx (f sein integrierbar.) H E I T Falls f(x) 0 auf [a, b] ist. Falls a = b ist. Falls f eine ungerade Funktion und a = b ist. Falls f eine gerade Funktion und a = b ist. 4.5

6 Integral-Quiz Klaus-Dieter Arndt (1995). Integral-Quiz. In: Die etwas andere Aufgabe. mathematik lehren 72, S. 67 Aufgabe 4: a Unter welchen Bedingungen gilt: a f x dx = 0 (f sein integrierbar; a 0) A Falls f x = x 2 ist. Z Falls f x = 1 ist. x S Falls f(x) 0 ist. M Falls f eine gerade Funktion ist. Aufgabe 5: a a Unter welchen Bedingungen gilt: a f x dx = 2 0 f x dx (f sein integrierbar und a > 0.) T Falls f(x) 0 auf [ a, a] ist. G Falls f auf [ a, a] eine gerade Funktion ist. O Falls f auf [ a, a] eine ungerade Funktion ist. E Falls f x = x auf [ a, a] ist. 4.6

7 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Integral-Quiz Klaus-Dieter Arndt (1995). Integral-Quiz. In: Die etwas andere Aufgabe. mathematik lehren 72, S. 67 Aufgabe 6: I Berechnen Sie L du, und geben Sie an: [ ] ist der Minuend des Ergebnisses. [ ] ist der Subtrahend des Ergebnisses. Lösungsspruch MATHE IST GEIL 4.7

8 Grundvorstellungen zum Integralbegriff Orientierter Flächeninhalt Rekonstruktion der Wirkung bzw. des Gesamteffekts Mittelung Kummulation 4.8

9 zunehmende Abstraktion Entwicklung des Integralbegriffs Integral als Grenzwert von Produktsummen Produktsummen analytisch-exakt geometrisch-naiv allgemeine Rekonstruktion f I a (Hauptsatz) Mittelwert einer Funktion (konkrete) Rekonstruktion f f Rekonstruieren (diskretes) arithmetisches Mittel Mitteln 4.9

10 Inhalte 4 Integralbegriff 4.1 Integrieren als Bestimmen eines orientierten Flächeninhalts 4.2 Integrieren als Rekonstruieren 4.3 Integrieren als Mitteln 4.4 Integrieren als Kummulieren 4.4 Hauptsatz der Differential- und Integralrechnung (HDI) 4.10

11 Kapitel 4: Integralbegriff 4.1 Integrieren als Bestimmen eines orientierten Flächeninhalts 4.11

12 TIMSS-Aufgabe Baumert et al. (Hrsg.) (1999). Testaufgaben zu TIMSS/III. Mathematisch-naturwissenschaftliche Grundbildung und voruniversitäre Mathematik und Physik der Abschlussklassen der Sekundarstufe II (Population 3). Berlin: Max-Planck-Institut für Bildungsforschung. S 1 ist der Inhalt der Fläche, die vom Graphen G f der Funktion f, von der x-achse und der Geraden x = a eingeschlossen wird. S 2 ist der Inhalt der Fläche, die vom Graphen G f der Funktion f, von der x-achse und der Geraden x = b eingeschlossen wird. Es ist a < b und 0 < S 2 < S 1. Der Wert des Integrals a b f x dx ist dann: a) S 1 + S 2 b) S 1 S 2 c) S 2 S 1 d) S 1 S 2 e) 1 2 S 1 + S

13 Wert des Integrals 4.13

14 Orientierter Flächeninhalt und Kummulation 4.14

15 Komplementarität von Flächeninhalt und Integral naiver Standpunkt Flächeninhalt Integral theoretischer (analytischer) Standpunkt 4.15

16 Kapitel 4: Integralbegriff 4.2 Integrieren als Rekonstruieren 4.16

17 Integrieren als Rekonstruieren Badewannenbeispiel In eine leere Badewanne wird 1 Minute lang Wasser eingelassen, dann die Wasserzufuhr gestoppt und gleichzeitig der Abfluss geöffnet. Nach weiteren 1,5 Minuten wird der Abfluss wieder geschlossen. Wie lässt sich aus der Zuflussgeschwindigkeit auf die Wassermenge V in der Wanne zum Zeitpunkt t schließen? 4.17

18 Integrieren als Rekonstruieren Badewannenbeispiel Zuflussphase 10 Liter min t min = 10 t Liter Also: V t = 10 t für 0 t 1 Nach einer Minute sind 10 Liter 1 min = 10 Liter min in der Wanne. Abflussphase 10 5 t 1 Liter V t = 10 5 t 1 für 1 < t 2,5 Nach zweieinhalb Minuten sind also ,5 1 Liter = 2,5 Liter in der Wanne. 10 t für 0 t 1 V t = ቐ10 5 (t 1) für 1 < t 2,5 2,5 für t > 2,5 10 t und 5 t 1 sind Rechteckinhalte. V t ist die Summe vorzeichenbehafteter Rechteckinhalte, also ein orientierter Flächeninhalt. 4.18

19 Integrieren als Rekonstruieren 10 t für 0 t 1 V t = ቐ10 5 (t 1) für 1 < t 2,5 2,5 für t > 2,5 4.19

20 Integrieren als Rekonstruieren V t = 1 t 10t 2 für 0 t (t 1) 2 für t >

21 Integrieren als Rekonstruieren Rückblick Aus der Zuflussgeschwindigkeit des Wasser zu jedem Zeitpunkt wurde die Wassermenge V(t) zu jedem Zeitpunkt rekonstruiert. Die Zuflussgeschwindigkeit ist die Ableitung V (t) (momentane Änderungsrate der Wassermenge in der Wanne). Aus der Änderungsrate V wurde die Funktion V wiederhergestellt. [wiederherstellen = integrare (lat.)] Vorteile des Beispiels Fokussiert auf das Grundverständnis Integrieren als Rekonstruieren. Unterstützt die Vorstellung Integral als orientierter Flächeninhalt. 4.21

22 Nichtlinearer Zufluss Zuflussgeschwindigkeit V (t) in Liter/Minute t Zeit t in Minuten 4.22

23 Nichtlinearer Zufluss Idee Die Zuflussgeschwindigkeit ist im Kleinen, d. h. bei genügend kleinen Zeitintervallen t, t + Δt nahezu konstant. In jedem Zeitintervall t, t + Δt kann man wie oben vorgehen. V V Was trägt V im Zeitintervall t, t + Δt zum Gesamteffekt bei? Da V die momentane Änderungsrate von V ist, gilt für kleine Δt in guter Näherung V t ΔV also ΔV V t Δt. Δt Dies ist der Zuwachs der Wassermenge im Zeitintervall Δt, geometrisch zu deuten als kleiner (orientierter) Rechteckinhalt. t Δt t 4.23

24 Nichtlinearer Zufluss Zur Rekonstruktion der Wassermenge zu einem beliebigen Zeitpunkt t sind die Zuwächse längs aller Teilintervalle aufzusummieren, in die das Intervall [0, t] zerlegt gedacht war. Geometrisch gedeutet, ist der rekonstruierte Wert V(t) die Summe aller dieser kleinen (orientierten) Rechteckinhalte. Diese unterscheidet sich bei genügend kleiner Streifenbreite beliebig wenig von dem (orientierten) Inhalt der Fläche unter V. V t V t Grundverständnis Integrieren als Rekonstruieren stützt sich auf die Vorstellungen vom Kumulieren und vom Gesamteffekt. 4.24

25 Integralfunktion Bemerkung Der Übergang zum orientierten Inhalt ist nicht daran gebunden, dass die berandende Funktion Ableitung einer anderen ist. Es liegt nahe, den Übergang von dieser Voraussetzung zu lösen. a + + f I a x (Summe der Inhalte aller oberhalb der x- Achse gelegenen Flächenstücke zwischen a und x) (Summe der Inhalte aller unterhalb der x-achse gelegenen Flächenstücke zwischen a und x) x b Definition Zu einer Berandung f: a, b R gehört die Integralfunktion I a, die jedem x [a, b] den orientierten Inhalt der Flächen zuordnet, die f mit der x-achse zwischen a und x einschließt. Die Funktionswerte der Integralfunktion heißen Integrale. 4.25

26 Kapitel 4: Integralbegriff 4.3 Integrieren als Mitteln 4.26

27 Mittelwertbildung bei linearen Funktionen Inhaltlich als Geschwindigkeits-Zeit-Diagramm deuten Gesucht Mittelwert einer linearen Funktion in einem Intervall [a, b]. Der Mittelwert wird in der Mitte des Intervalls angenommen. Der mittlere Funktionswert kann genutzt werden, um den Flächeninhalt I a (b) unter dem Graph von f als Rechteck zu realisieren. Damit gilt: I a b = b a f x 0 f(x 0 ) a x 0 b f f Für den Mittelwert f x 0 f x 0 = 1 I b a a b folgt: f(x 0 ) a x 0 b 4.27

28 Mittelwertbildung einer Messreihe Gesucht: Mittelwert einer Messreihe aus n Messwerten y 1, y 2,, y n zu äquidistanten Zeitpunkten x 1, x 2,, x n. Ergebnis: Der gesuchte Mittelwert ist das arithmetische Mittel der Messwerte y 1, y 2,, y n n y 1 y 2 y n തy = 1 n y y n = 1 n i=1 y i. Messwerte als diskrete Realisierung eines stetigen Funktionsverlaufs f. Algebraische Umformung der arithmetischen Mittels liefert: n n x 1 x 2 x n 1 x n f തy = 1 n i=1 y i = 1 n i=1 f x i y 1 y 2 y n = 1 n b a f x i i=1 b a n 1 b a I a b a x 1 x 2 x n 1 x n = b 4.28

29 Mittelwert einer Funktion f im Intervall [a, b] Bemerkung Aus den Beispielen folgt, dass es sinnvoll ist, unter der Zahl μ f = 1 b a I a(b) den Mittelwert einer Funktion f im Intervall [a, b] zu verstehen. Es gilt: Speziell: x I a x = න f t dt a b b I a b = න f t dt = න f x dx a a 4.29

30 Kapitel 4: Integralbegriff 4.4 Integrieren als Kummulieren 4.30

31 Idee des Integrieren als Kummulieren Integral als Prozess des Aufsummierens von Teilprodukten zu einer Produktsumme. 4.31

32 Integrieren als Rekonstruieren 10 t für 0 t 1 V t = ቐ10 5 (t 1) für 1 < t 2,5 2,5 für t > 2,5 4.32

33 Kapitel 4: Integralbegriff 4.4 Hauptsatz der Differentialund Integralrechnung (HDI) 4.33

34 Auf dem Weg zum Hauptsatz Behauptung Die Ableitung der Integralfunktion ist die Berandungsfunktion. Begründung a x x + h Der absolute Zuwachs von I a, das Flächenstück I a x + h I a (x), lässt sich durch Rechteckflächen abschätzen: f x h I a x + h I a x f x + h h Für den relativen Zuwachs von I a (mittl. Änderungsrate ΔI a h ) folgt: f x I a x+h I a x h f x + h (*) Die Integralfunktion I a hat an der Stelle x die Eigenschaft I a = f, wenn f(x + h) für h 0 gegen f(x) strebt (d. h. f stetig in x ist). Dann folgt aus (*): I f x lim a x+h I a x h 0 h f x I a x = f x f I a x + h I a (x) 4.34

35 Genauer: Auf dem Weg zum Hauptsatz Behauptung Die Ableitung der Integralfunktion ist die Berandungsfunktion. Begründung a x x + h Der absolute Zuwachs von I a, das Flächenstück I a x + h I a (x), lässt sich durch Rechteckflächen abschätzen: min f x, f x + h h I a x + h I a x max f x, f x + h h Für den relativen Zuwachs von I a (mittl. Änderungsrate ΔI a ) folgt: h min f x, f x + h max f x, f x + h (*) I a x+h I a x h Die Integralfunktion I a hat an der Stelle x die Eigenschaft I a = f, wenn f(x + h) für h 0 gegen f(x) strebt (d. h. f stetig in x ist). Dann folgt aus (*): f x lim I a x+h I a x h 0 h f x I a x = f x f I a x + h I a (x) 4.35

36 Hauptsatz der Differentialund Integralrechnung (HDI) Vorstellung Wenn man die von f berandete Fläche mit Farbe streicht und dabei gleichmäßig von a nach rechts läuft, dann ist der Verbrauch an Farbe proportional zum Funktionswert von f an der Stelle, an der man sich gerade befindet. a x f Hauptsatz der Differential- und Integralrechnung Ist f: a, b R in x [a, b] stetig, dann ist die Integralfunktion I a dort differenzierbar und es gilt: I a x = f(x) Kurz: Die Integralfunktion ist eine Stammfunktion der Berandungsfunktion. 4.36

37 Hauptsatz der Differentialund Integralrechnung (HDI) Bemerkung Die auf Folie 4.36 angegebene Formulierung des HDI, kann nur voll durchschaut werden, wenn Stetigkeit, Differenzierbarkeit und Integrierbarkeit als analytisch definierte Begriffe verfügbar sind. Dies wird im Analysisunterricht der Oberstufe nicht erreicht. Die schulische Bedeutung des HDI liegt darin, dass er ein Instrument zur Berechnung von Integralen zur Verfügung stellt. Hauptsatz der Differential- und Integralrechnung Integralfunktionen zu einer Funktion f lassen sich finden, wenn man irgendeine Stammfunktion F von f sucht und die Differenz berechnet. I a x = F x F a mit x a, b 4.37

38 Differenzieren und Integrieren sind Umkehroperationen Übergang zur lokalen Änderungsrate g g I a = g Differenzieren Übergang zur Integralfunktion Integrieren ( Rekonstruieren ) Übergang zur Integralfunktion f I a I a = f Integrieren ( Rekonstruieren ) Übergang zur lokalen Änderungsrate Differenzieren 4.38

39 Wasserhahn-Applets vernetzen Grundvorstellungen

40 Wasserhahn-Applets vernetzen Grundvorstellungen

41 Wasserhahn-Applets vernetzen Grundvorstellungen

42 Integralbegriff: Inhaltliche Aspekte und Vorstellungen Stammfunktion Aspekte Rekonstruieren Mitteln Unterliegende Vorstellungen Kumulieren (Prozess) Gesamteffekt (Produkt) Flächeninhalt 4.42

Prof. Dr. Jürgen Roth. Jürgen Roth Grundvorstellungen zur Integral- und Differentialrechnung

Prof. Dr. Jürgen Roth. Jürgen Roth Grundvorstellungen zur Integral- und Differentialrechnung Prof. Dr. Jürgen Roth Grundvorstellungen zur Integral- und Differentialrechnung Landau 19.05.2016 1 Inhalt Danckwerts, R.; Vogel, D. (2006): Analysis verständlich unterrichten. Heidelberg: Spektrum Akademischer

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/

Mehr

Zugänge zum Integral Überblick Integration als Rekonstruktion von Beständen

Zugänge zum Integral Überblick Integration als Rekonstruktion von Beständen Neumann/Rodner 1 Didaktik der Mathematik der Sekundarstufe II Der Integralbegriff/ Integralrechnung Zugänge zum Integral Überblick Integration als Rekonstruktion von Beständen Neumann/Rodner 2 Mögliche

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/

Mehr

Mathematik Q1 - Analysis INTEGRALRECHNUNG

Mathematik Q1 - Analysis INTEGRALRECHNUNG Mathematik Q1 - Analysis INTEGRALRECHNUNG ZIELE Einführung der neuen Begrifflichkeiten orientierter Flächeninhalt Integral Integralfunktion anhand der Badetag-Aufgabe Berechnung von Integralen mittels

Mehr

Prof. Dr. Jürgen Roth. Grundvorstellungen. zur Differenzial- und Integralrechnung. Jürgen Roth Grundvorstellungen zur Analysis

Prof. Dr. Jürgen Roth. Grundvorstellungen. zur Differenzial- und Integralrechnung. Jürgen Roth Grundvorstellungen zur Analysis Landau 15.10.2015 1 Prof. Dr. Jürgen Roth Grundvorstellungen zur Differenzial- und Integralrechnung Inhalt Grundvorstellungen zur Differenzial- und Integralrechnung 1 Grundvorstellungen 2 Ableitungsbegriff

Mehr

Didaktik der Analysis

Didaktik der Analysis Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 3.1 Inhalt Didaktik der Analysis 0 Organisatorisches 1 Ziele und Inhalte 2 Folgen und Vollständigkeit in R 3 Ableitungsbegriff 4 Integralbegriff

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 5 Folie 1 /38 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 5. Integralrechnung A. Filler

Mehr

Ausarbeitung zum Seminarvortrag. Integralrechnung

Ausarbeitung zum Seminarvortrag. Integralrechnung Humboldt-Universität zu Berlin Lehrveranstaltung: HS Didaktik Wintersemester 2009 / 2010 Dozenten: Fr. Warmuth, Hr. Giese Ausarbeitung zum Seminarvortrag Integralrechnung Selçuk Yazıcı selcuk.yazici@web.de

Mehr

Referat Integralrechnung. Kathrin Amme (für Rückfragen:

Referat Integralrechnung. Kathrin Amme (für Rückfragen: Referat Integralrechnung Kathrin Amme (für Rückfragen: kathrin_amme@web.de) Gliederung (1) Was muss vermittelt werden? (2) Einstieg in die Integralrechnung - Klassisches Vorgehen und Alternativen (3) Eine

Mehr

Didaktik der Analysis

Didaktik der Analysis Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 2.1 Inhalt Didaktik der Analysis 0 Organisatorisches 1 Ziele und Inhalte 2 Folgen und Vollständigkeit in R 3 Ableitungsbegriff 4 Integralbegriff

Mehr

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der

Mehr

Der Begriff des bestimmten Integrals

Der Begriff des bestimmten Integrals Der Begriff des bestimmten Integrals Das ursprüngliche Problem, das zum Begriff des bestimmten Integrals führte, war ein geometrisches, die Bestimmung von Flächeninhalten. 1-E Archimedes von Syrakus Infinite

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Kapitel 8 Einführung der Integralrechnung über Flächenmaße

Kapitel 8 Einführung der Integralrechnung über Flächenmaße 8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb

Mehr

Momentane Änderungsrate

Momentane Änderungsrate Momentane Änderungsrate Der freie Fall (im Vakuum) eines Körpers wird durch die Funktion f(x) = gx beschrieben, ist die Fallstrecke in m, x die Zeit in sec, g = 9,8. Die Ableitung an der Stelle x 0 f (x

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Drei Aspekte des Differenzierbarkeitsbegriffs

Drei Aspekte des Differenzierbarkeitsbegriffs 1. Dezember 2010 Gliederung 1 Rahmenplan und zu beobachtende Kriterien 2 3 Grenzwertproblematik Modellierungsbeispiel Ausblick 4 Rahmenplan Fundamentalbereich Diffenzialrechnung (2. Halbjahr Einführungsphase)

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /41 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 4. Ableitungen von Funktionen

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Einstieg in die Differential- und Integralrechnung mit Technologie

Einstieg in die Differential- und Integralrechnung mit Technologie Helmut Heugl, Hubert Langlotz Einstieg in die Differential- und Integralrechnung mit Technologie 1. Didaktische Voraussetzungen Gerade beim Begriffsbildungsprozess kann Technologie als Visualisierungswerkzeug

Mehr

Integralrechnung. Mit der Integralrechnung können Flächen unterhalb eines Graphen in festgelegten Grenzen, hier 1 und 2, exakt berechnet werden.

Integralrechnung. Mit der Integralrechnung können Flächen unterhalb eines Graphen in festgelegten Grenzen, hier 1 und 2, exakt berechnet werden. Integralrechnung Mit der Integralrechnung können Flächen unterhalb eines Graphen in festgelegten Grenzen, hier und, eakt berechnet werden. 3 f() = Wir betrachten zunächst Flächeninhalte, die elementar

Mehr

Didaktik der Analysis

Didaktik der Analysis Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 0.1 FundaMINT Lehramtsstipendium 0.2 Materialien zur Veranstaltung Internetseite zur Veranstaltung und Skript www.juergen-roth.de/lehre/did_analysis/

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Bezüge zu den Bildungsstandards

Bezüge zu den Bildungsstandards Differentialrechnung Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik In Anlehnung an Prof. Dr. Bernd Zimmermanns Seminarpräsentationen Inhalt Bezüge zu den Bildungsstandards

Mehr

Anwendung der Integralrechnung

Anwendung der Integralrechnung Anwendung der Integralrechnung Positive Verständnisentwicklung des Lehrplans oder erschwerende Verkomplizierung? Didaktik der Analysis Oliver Passon Carolin Henke Gerrit Hübner 1 Fragestellung: Positive

Mehr

Hauptsatz der Differential- und Integralrechnung (HDI)

Hauptsatz der Differential- und Integralrechnung (HDI) Hauptsatz der Differential- und Integralrechnung (HDI) Thema Stoffzusammenhang Jahrgangsstufe 12 Einführung des HDI Verbinden von Differentiation und Integration Inhaltsbezogene Kompetenzbereiche Funktionale

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Didaktik der Analysis

Didaktik der Analysis Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 0.1 FundaMINT Lehramtsstipendium 0.2 Materialien zur Veranstaltung Internetseite zur Veranstaltung und Skript www.juergen-roth.de/lehre/did_analysis/

Mehr

3 Integralrechnung. 3.1 Stammfunktion: In der Differentialrechnung:

3 Integralrechnung. 3.1 Stammfunktion: In der Differentialrechnung: 1 Rechenverfahren für THP (WS 2002) 3 Integralrechnung 3.1 Stammfunktion: In der Differentialrechnung: Gegeben: Funktion Gesucht: Ableitung Problem der Differentialrechnung: Bestimmung der Steigung vom

Mehr

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Einführung des Integrals 15

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell

Mehr

Grundkompetenzen vs. Lehrplan

Grundkompetenzen vs. Lehrplan Grundkompetenzen vs. Lehrplan eine Gegenüberstellung am Beispiel Analysis AG-Tagung St. Pölten, 11.11.2009 Grundlagen Lehrplan Grundkompetenzen Notendefinition Mit GENÜGEND sind Leistungen zu beurteilen,

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Einführung Differenzialrechnung

Einführung Differenzialrechnung Einführung Differenzialrechnung Beispiele: (1 Ein Auto fährt fünf Sekunden lang mit konstanter Geschwindigkeit Wertetabelle: Zeit in Sekunden 1 2 3 4 5 Strecke in Meter 28 56 84 112 14 Graph (s-t-diagramm:

Mehr

Hauscurriculum Q1 Analysis II Grundkurs März 2017

Hauscurriculum Q1 Analysis II Grundkurs März 2017 Hauscurriculum Q1 Analysis II Grundkurs März 2017 Übersicht: verbindlich: 1 3 sowie ein weiteres aus den n 4 6, durch Erlass festgelegt; Es können innerhalb dieser im Erlass Schwerpunkte ausgewiesen werden.

Mehr

7. Integralrechnung. Literatur: [SH, Kapitel 9]

7. Integralrechnung. Literatur: [SH, Kapitel 9] 7. Integralrechnung Literatur: [SH, Kapitel 9] 7.. Was sind Integrale? 7.2. Unbestimmte Integrale 7.3. Flächen und bestimmte Integrale 7.4. Eigenschaften und bestimmte Integrale 7.5. Partielle Integration

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Station USA ein Land der unbegrenzten Möglichkeiten Teil 2. Arbeitsheft. Schule. Klasse. Tischnummer. Teilnehmercode

Station USA ein Land der unbegrenzten Möglichkeiten Teil 2. Arbeitsheft. Schule. Klasse. Tischnummer. Teilnehmercode Station USA ein Land der unbegrenzten Teil 2 Arbeitsheft Schule Klasse Tischnummer Teilnehmercode Mathematik-Labor USA ein Land der unbegrenzten Liebe Schülerinnen und Schüler! Im 2. Teil der Station fahren

Mehr

stellt eine fallende Gerade dar mit Nullstelle bei x = 5/3. 1/3

stellt eine fallende Gerade dar mit Nullstelle bei x = 5/3. 1/3 Aufgabe 4) Gegeben sind die Funktionen f mit f (x)= 4 x2 + 2 x+ 4 und g mit 3 g ( x)= 4 x2 + 5 2 x 3 4. a) Weisen Sie rechnerisch nach, dass der Graph Gf folgende Eigenschaften besitzt: Der Scheitelpunkt

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name:

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell

Mehr

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen

Mehr

Ein roter Faden durch die Schulanalysis mit CAS

Ein roter Faden durch die Schulanalysis mit CAS Ein roter Faden durch die Schulanalysis mit CAS AG-Tagung Mathematik St.Pölten 23.10.2008 Josef Lechner ( lejos@aon.at ) BG/BRG Amstetten Beispiel 1: Eine typische Reifeprüfungsaufgabe Um den Punkt B(0/b)

Mehr

Exaktifizierung des Ableitungsbegriffs Zugänge und Umsetzungsmöglichkeiten in der Schule

Exaktifizierung des Ableitungsbegriffs Zugänge und Umsetzungsmöglichkeiten in der Schule Didaktik der Mathematik der Sekundarstufe II Ableitung von Funktionen Exaktifizierung des Ableitungsbegriffs Zugänge und Umsetzungsmöglichkeiten in der Schule Anstieg einer Kurve in einem Punkt/ Tangentenproblem

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg,

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg, Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg, 08.10.2010 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ].

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. 73. a) dx = d x = [x] = = b) sin x dx = [ cos x] = cos + cos ( ) = ( ) + ( ) = Hinweis: Dieses Ergebnis folgt auch aus der Punktsmmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. e

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Wir wünschen viel Erfolg!

Wir wünschen viel Erfolg! Dr. Felix Schwenninger WS 2018/2019 Bergische Universität Wuppertal Probeklausur Analysis II Name: Vorname: Matrikelnummer: Studiengang: Wichtige Hinweise: Sofern nicht anders angegeben, müssen alle Rechnungen,

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 31.1.2017 Definition 2.2 (uneigentliches Riemann-Integral) Sei I = [a, b) mit a < b. Die Funktion f : I R sei Riemann-integrierbar auf [a, b ] für alle b < b. Falls x lim x b a f(ξ)

Mehr

Erste Schularbeit Mathematik Klasse 8A G am

Erste Schularbeit Mathematik Klasse 8A G am Erste Schularbeit Mathematik Klasse 8A G am 23.11.216 KORREKTUREN und HINWEISE Aufgabe 1. (2P) Funktionsklassen ihren Eigenschaften zuordnen. In der linken Tabelle sind vier Eigenschaften von Funktionen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Aufgaben zu Ableitung und Integral der ln-funktion

Aufgaben zu Ableitung und Integral der ln-funktion Aufgaben zu Ableitung und Integral der ln-funktion. Bilden Sie von folgenden Funktionen jeweils die. Ableitung. a) f(x) = x+lnx b) f(x) = (lnx) c) f(x) = x(lnx) xlnx+x d) f(x) = e) f) x (lnx ) f(x) = x

Mehr

Erfolg im Mathe-Abi. Trainingsheft Analysis wissenschaftlicher Taschenrechner

Erfolg im Mathe-Abi. Trainingsheft Analysis wissenschaftlicher Taschenrechner Gruber I Neumann Erfolg im Mathe-Abi Trainingsheft Analysis wissenschaftlicher Taschenrechner 18 Aufgaben aus der Analysis zur Bearbeitung mit dem wissenschaftlichen Taschenrechner Inhaltsverzeichnis Erfolg

Mehr

5.15 Einführung in die Integralrechnung Jahrgangsstufe 11 12

5.15 Einführung in die Integralrechnung Jahrgangsstufe 11 12 Kopiervorlage Schülerarbeitsblatt 5.15 Jahrgangsstufe 11 12 100 MBits/s Zwei zentrale Grundvorstellungen der Integralrechnung sind Kumulation und Gesamteffekt. Diese Ideen werden im Rahmen der vorliegenden

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

Verstehensorientierter Analysisunterricht von der Anschauung zur Theorie

Verstehensorientierter Analysisunterricht von der Anschauung zur Theorie Verstehensorientierter Analysisunterricht von der Anschauung zur Theorie Innsbruck, 27 September 2013 Hans-Wolfgang Henn TU Dortmund, Fakultät für Mathematik, IEEM Enzensberger beim ICM 1998 in Berlin

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Oktober 2018 Mathematik Kompensationsprüfung 1 Angabe für Prüfer/innen Hinweise

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Alexander Riegel.

Alexander Riegel. Alexander Riegel riegel@uni-bonn.de 2 9 10 Ordinatenachse ( y-achse ) f x Gerade Ordinatenabschnitt f x = 0 Ursprungsgerade Nullstelle f x = x 0 = 0 0 Ursprung (0 0) Abszissenachse ( x-achse ) x f(x 1

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

Schulcurriculum Mathematik Kursstufe November 2011

Schulcurriculum Mathematik Kursstufe November 2011 Schulcurriculum Mathematik Kursstufe November 2011 Inhalte Leitidee / Kompetenzen Bemerkungen Die Schülerinnen und Schüler können Analysis Bestimmung von Extrem- und Wendepunkten: Höhere Ableitungen Bedeutung

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Integralrechnung und das Riemannintegral

Integralrechnung und das Riemannintegral Integralrechnung und das Riemannintegral Vorlesung zur Didaktik der Analysis Oliver Passon Oliver Passon Integralrechnung 1 Inhalt Historisches Archimedes (Parabel) Hippokrates ( Möndchen ) Cavalerie Aktuell

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

5. DIFFERENZIEREN UND INTEGRIEREN

5. DIFFERENZIEREN UND INTEGRIEREN 5. DIFFERENZIEREN UND INTEGRIEREN 1 Sei f eine auf R oder auf einer Teilmenge B R definierte Funktion: f : B R Die Funktion heißt differenzierbar in x 0 in B, falls sie in diesem Punkt x 0 lokal linear

Mehr

f(x) dx = A 1 A 2 + A 3

f(x) dx = A 1 A 2 + A 3 Was ist anschaulich Integralrechnung? Berechnung von Flächeninhalten zwischen (i. A. krummlinigen) Kurven und der Rechtsachse, wobei Flächen unterhalb der Rechtsachse negativ in die Berechnung eingehen.

Mehr

Fachdidaktik Mathematik. Universität Ulm

Fachdidaktik Mathematik. Universität Ulm Fachdidaktik Mathematik Universität Ulm Veranstaltungen: Fachdidaktisches Seminar Mathematik SS Böhm Schülerseminar Mathematik WS Lamche/Böhm Ausgewählte Kapitel aus der Mathematik im Gymnasium WS Beckmann

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Lösungsblatt Aufgabe 1.32

Lösungsblatt Aufgabe 1.32 Aufgabenstellung: Die Geschwindigkeit eines Körpers ist für t 1 durch v t = 10 10 gegeben. t 1. Schätze die Länge des im Zeitintervall [1 4] zurückgelegten Weges durch Ober- und Untersumme ab, wobei das

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Integrierbare Funktionen

Integrierbare Funktionen Integrierbare Funktionen 1 E Integrierbarkeit von Funktionen Bisher haben wir nie die Frage gestellt, ob die betrachteten Funktionen integrierbar sind. Die Frage nach der Existenz des bestimmten Integrals

Mehr

Lösungen 0.1. g) x 1 = 1,82; x 2 = 1,9. + q = 0 x 2 p

Lösungen 0.1. g) x 1 = 1,82; x 2 = 1,9. + q = 0 x 2 p Lösungen 0.1 c) Gleichungen lösen Quadratische Gleichungen: (Buch 11. Klasse) 98/1 a) x 1, = 1,3 b) x 1, = 3,5 c) x 1, = k d) x 1, =,5 e) x 1, = a f) x 1, = t 8 56 98/ a) x 1 = 3; x = 4 b) x 1 = 3; x =

Mehr

Nachklausur zur Analysis 1, WiSe 2016/17

Nachklausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL 04.04.7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis, WiSe 06/7 Aufgabe

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=.

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=. Lösungen zu Übungsblatt (Integralrechnung) Zu Aufgabe ) Berechnen Sie das Integral e x dx n! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! näherungsweise nach der rapezformel für n, n5, Wir zerlegen

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3 SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 3 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

für Pharmazeuten und Lehramtskandidaten WS 2016/2017

für Pharmazeuten und Lehramtskandidaten WS 2016/2017 für Pharmazeuten und Lehramtskandidaten WS 2016/2017 Alexander Riegel riegel@uni-bonn.de 2 3 4 Ordinatenachse ( -Achse ) Gerade Ordinatenabschnitt Ursprungsgerade Nullstelle 0 Ursprung (0 0) Abszissenachse

Mehr