Graphische Datenverarbeitung und Bildverarbeitung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Graphische Datenverarbeitung und Bildverarbeitung"

Transkript

1 Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Merkmale und Klassifikation Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 1 Einordnung in die Inhalte der Vorlesung Einführung mathematische und allgemeine Grundlagen Hardware für Graphik und Bildverarbeitung Graphische Grundalgorithmen (Zeichnen graphischer Primitive, Methoden für Antialaising, Füllalgorithmen) Bildaufnahme (Koordinatensysteme, Transformation) Durchführung der Bildverarbeitung und -analyse Fourier Transformation Bildrestauration Bildverbesserung (Grauwertmodifikation, Filterverfahren) Segmentierung Morphologische Operationen Merkmalsermittlung und Klassifikation Erzeugung von Bildern in der Computergraphik Geometrierepräsentationen Clipping in 2D und 3D Hidden Surface Removal Beleuchtungsberechnung Shading Schattenberechnung Volumenrendering als Beispiel für die Nutzung beider Gebiete Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 2

2 Wiederholung wichtiger Begriffe Erosion und Dilatation Opening und Closing Hit-or-Miss-Operatoren Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation Merkmale Die Klassifikation in Bildern erfolgt anhand von Merkmalen Merkmale können sein: - Eigenschaften des Bildpunktes - Eigenschaften von Segmenten Bildpunkt Bounding Box eines Segments Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 4

3 Entwurf eines Erkennungssystems Aufgabe: Einteilung der Segmente eines Bildes in Klassen Problemanalyse Merkmalsauswahl Auswahl des Klassifikationsverfahrens Qualitätsanalyse Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 5 Merkmal: Skalar, das einen bestimmten Aspekt des Segments beschreibt Merkmale des Segmentinneren Merkmale des Segmentrandes Merkmale über Abhängigkeiten zwischen benachbarten Segmenten Merkmalsvektor: lineare Anordnung von n quantitativen Merkmalen T m = m, m,.., ) ( 1 2 Merkmale m n Merkmalsraum: Zuordnung jedes Merkmals zu einer Achse des m n-dimensionalen Raumes 2 m = ( m1, m2, m3) m 3 Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 6 m 1

4 Anforderungen an die Merkmale Gute Unterscheidungsmöglichkeiten Hohe Zuverlässigkeit Unabhängigkeit Geringe Anzahl Gewinnung von Merkmalen häufig heuristisch mit anschließender systematischer Auswahl geeigneter Merkmale Nutzung von normierten Merkmalen Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 7 Postulate der numerischen Klassifikation Es steht eine repräsentative Stichprobe zur Verfügung. Ein Muster besitzt Merkmale, die für seine Zugehörigkeit zu seiner Klasse charakteristisch sind. Die Merkmale bilden für Muster einer Klasse einen einigermaßen kompakten Bereich im Merkmalsraum. Die Bereiche verschiedener Klassen sind getrennt. Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 8

5 16.2 Merkmale von Bildpunkten Grauwerte, Farbwerte Interessant für Segmentierung in mehrkanaligen Bildern, z.b. bilden Farbkanäle einen dreidimensionalen Merkmalsraum Originalbild Blauer Kanal Grüner Kanal Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation Merkmale von Segmenten Grauwertmerkmale: mittlerer Grauwert, Streuung der Grauwerte, minimaler und maximaler Grauwert Texturmerkmale: Merkmale aus der Co-Occurence-Matrix, Merkmale aus dem Frequenzspektrum Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 10

6 Merkmale von Segmenten Einfache Formbasierte Merkmale: Flächeninhalt F, Umfang U, Ausdehnung des Segmentes entlang seiner Hauptachsen, Größe des kleinsten umschließenden Rechtecks, Flächendifferenz zwischen der Segmentfläche und ihrer konvexer Hülle, Kreisähnlichkeit ( (4Fπ)/U 2 ) Längste Diagonale Bounding Box Differenz zur konvexen Hülle Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 11 Merkmale von Segmenten Kettencode: Berechnung von Krümmungsmerkmalen Relativer Kettencode: Abweichung der Richtung um ein Vielfaches von 45 im Uhrzeigersinn (-) oder entgegengesetzt (+) Fourierdeskriptoren: a r n n 2 n m= 1 2 n nm 2πi L 1 L 1 L = xme bn = y L 1 L 1 = a + b w n rn = r 1 m= 1 nm 2πi L 1 Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 12 m e

7 Merkmale von Segmenten Topologische Merkmale: Sie ändern sich auch dann nicht, wenn sich die Form des Objekt verändert, solange es nicht zerrissen oder geklebt wird. Beispiele: Anzahl der Löcher L Anzahl C der verbundenen Teile eines Objekts Eulerzahl: E=C-L E=0 E=-1 Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation Welche Merkmale sind geeignet? Merkmale dienen der Unterscheidung zwischen unterschiedlichen Segmenten. Falls möglich, sollten Merkmale aus den vermuteten Objekteigenschaften abgeleitet werden. Wenn n Objekttypen unterschieden werden sollen, dann muß das m- dimensionale Histogramm des Merkmalsraums wenigstens n unterscheidbare Häufungspunkte enthalten. Aus der Nähe im Merkmalsraum sollte auf Ähnlichkeit der Objekte geschlossen werden. Die Unterscheidbarkeit nach Merkmalswerten nimmt nicht ab, wenn die Dimension des Merkmalsraums erweitert wird. Je weniger Merkmale zur Unterscheidung notwendig sind, desto effektiver wird die Entscheidungsfindung sein. Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 14

8 16.5 Dimensionsreduktion im Merkmalsraum Klassifikation wird aufwendiger, je größer die Dimension des Merkmalsraumes ist. Vorhandene Information durch den höherdimensionalen Merkmalsraum wird reduziert Wann kann auf diese Information verzichtet werden? Wenn die Klassifizierung auch nach der Reduktion möglich ist. Durchschnittliche Abweichung von der Richtung der größten Ausdehnung des Merkmals Gesucht: Richtung der größten Ausdehnung durchschnittliche Abweichung davon Kovarianz im Merkmalsraum Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 15 Kovarianzmatrix im Merkmalsraum Die Kovarianzmatrix C ist eine quadratische, symmetrische Matrix bestehend aus allen Varianzen und Kovarianzen zwischen Vektoren m(x 1,...,x n ) im n-dimensionalen Merkmalsraum: c C = cn 1 c = ij M 1 m = i M 11 1 c M m k= 0 i, j... c ( )( ) ik nn m i m M: Anzahl der Trainingsdaten i,j: betrachtetes Merkmal i m j m j Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 16

9 m 1 Eigenvektoren und Eigenwerte der Kovarianzmatrix Eigenvektoren e und Eigenwerte λ einer Matrix M sind diejenigen, für die gilt: r r r r M e = λe λ = m 0 ( M λi) e = 0 det( M I) 0 Die Eigenwerte beschreiben die Varianz der Werte entlang der jeweiligen Achse Sortierung nach der Größe Die zu den Eigenwerten korrespondierenden Eigenvektoren der Kovarianzmatrix beschreiben in absteigender Reihenfolge eine Reihe von senkrecht aufeinander stehenden Achsen durch den Schwerpunkt des Systems Karhunen-Loeve-Transformation Hauptachsentransformation Hotelling-Transformation Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 17 Hauptachsentransformation Praktische Berechnung: 1. Berechnung der Kovarianzmatrix C der Merkmalsvektoren m der Testdaten 2. Berechnung der Eigenwerte λ und Eigenvektoren e von C 3. Umordnen der Eigenwerte, so dass gilt: λ λ gleichfalls Umordnung der Matrix E der Eigenvektoren e 4. Falls ein Eigenwert λ n =0 ist, kann die betreffende Hauptachse gestrichen werden. Falls ein Eigenwert λ n nahe Null liegt, kann sie unter Informationsverlust gestrichen werden 5. Berechnung der neuen unkorrelierten Merkmale: m r unkorr = m r korr E λ N 1 Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 18

10 Hauptachsentransformation Resultat der Hauptachsentransformation: Dimensionsreduktion, Dekorrelation der Merkmale m 2 m neu2 m 1 Achtung! m neu1 Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation Merkmalsbasierte Klassifikation Annahme: Wenn die Merkmale von Objekten aus unterschiedlichen Klassen sich unterscheiden, dann sollte dies im Merkmalsraum sichtbar sein Häufigkeit Fläche Klassifikation: Entscheidungsfunktion auf den Merkmalsvektoren D(m 1,...,m n ) = i Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 20

11 Merkmalsbasierte Klassifikation - Mehrdimensionaler Merkmalsraum Häufigkeit Häufigkeit Fläche Exzentrizität ,2 0.4,4 0.6,6 0.8,8 1 Exzentrizität 0,8 0,6 0,4 0,2 0 Zweidimensionale Verteilung Fläche Ziel: Cluster identifizieren, in denen sich die Merkmalsverktoren einzelner Klassen befinden Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 21 Varianten eines Klassifizierungssystems bekannte Stichprobe oder Clusteralgorithmus t Realisierungen k i der Klassen K i, i=0,..,t-1 Verbesserung von k j unbekannter Merkmalsvektor Minimum-Distance Bayes scher Klassifikator neuronale Netze Klassifizierung zur Klasse K j Strategien der numerischen Klassifikation: fest dimensionierte überwachte Klassifikation fest dimensionierte unüberwachte Klassifikation überwacht lernende Klassifikation unüberwacht lernende Klassifikation Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 22

12 Quadermethode Direkter Weg für zweidimensionale Merkmalsräume: Die Grenzen der Cluster um ein Clusterzentrum werden interaktiv bestimmt. Exzentrizität 0,8 0,6 0,4 0,2 0 Fläche Linsen Pfeffer Sonnenblumenkerne Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 23 Quadermethode Sonnenblumenkerne Linsen Pfeffer sonstiges Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 24

13 Minimum-Distanz-Klassifikator 0,8 0,6 Exzentrizität 0,4 0,2 0 Fläche Jeder Merkmalsvektor wird demjenigen Cluster zugeordnet, zu dessen Zentrum er am nächsten liegt. Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 25 Algorithmus Gegeben: klassifizierte Stichprobe Vorgehensweise: 1. Berechne die Klassenmittelpunkte im Merkmalsraum für alle in der Stichprobe vorkommenden Klassen. 2. Berechne für zu klassifizierende Objekte anhand des ermittelten Merkmalsvektors den Abstand zu allen Klassenmittelpunkten. 3. Ordne das Objekt der Klasse zu, zu der der kürzeste Abstand auftrat. Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 26

14 Gegeben: klassifizierte Stichprobe Regel: knn-klassifikation (k-nearest Neighbour Classification) Ordne das Muster der Klasse zu, zu der sein nächster Nachbar auch gehört bzw. die Mehrzahl seiner k nächsten Nachbarn Vorteil: Man erhält im allgemeinen relativ komplizierte nichtlineare Trennflächen Nachteil:hoher Speicher und Berechnungsaufwand knn - Klassifikator Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation Klassifikationsfehler Merkmal 2 Merkmal 1 Fehler 1. Art: Bereich, der zum Muster gehört, aber nicht in der Stichprobe erfaßt wurde Fehler 2. Art: Bereich, der nicht zum Muster gehört, aber in der Stichprobe erfaßt wurde Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 28

15 Clustering durch Agglomeration (Bottom-up, Merging) Annahmen: Die Anzahl der Cluster ist nicht bekannt. Distanz zum Cluster-Zentrum soll minimiert werden Gesucht: Anzahl der Cluster und Lage der Cluster-Zentren 1. Schritt: Jeder Merkmalsvektor bildet das Zentrum eines Clusters 2. Schritt: Suche die beiden am dichtesten liegende Clusterzentren und vereinige die beiden Cluster. Berechne ein neues Clusterzentrum Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 29 Clustering durch Agglomeration Wiederhole Schritt 2 solange, bis nur noch ein Cluster übrigbleibt. Speichere die Zusammenfassung der Cluster in einem Baum Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 30

16 Clustering durch Agglomeration Resultat der vorletzten Stufe der Clustering-Hierarchie Hierarchisches Clustering Verfahren: Auswahl der Anzahl der Cluster durch Wahl der Hierarchiestufe Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation Divisives Clustering Verfahren (Top-down, Splitting) Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 32

17 Partitional Clustering Annahmen: Gesucht: Die Anzahl der Cluster ist in der Regel bekannt. Distanz zum Cluster-Zentrum soll minimiert werden Lage der Cluster-Zentren (kein Aufbau einer Hierarchie) Initialisierung: Cluster-Zentren setzen (beliebig oder anhand von identifizierten Segmenten/Pixeln Iterationsschritt: Berechne für jeden Merkmalsvektor das am dichtesten liegende Clusterzentrum, klassifiziere es entsprechend, berechne neue Clusterzentren. Abbruchbedingung: keine Neu- oder Umklassifizierungen beim Iterationsschritt Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 33 Zusammenfassung Klassifikation Ziel einer Klassifikation ist die Zuordnung von Bedeutung anhand ausgewerteter Merkmale Quader-Methode, Minimum-Distanz- Klassifikation, knn-klassifikation Die Klassifikation ist umso einfacher, je geringer die Anzahl der Merkmale ist Eine Merkmalsreduktion kann mit Hilfe der Karhunen-Loeve-Transformation erfolgen, wobei zu beachten ist, daß nur die Repräsentation aller Klassen, nicht aber die Trennbarkeit der Klassen optimiert wird. Die Zuordnung nach Klassen kann auch durch einer Cluster-Analyse erfolgen. Cluster sind Gebiet im Merkmalsraum, in denen eine Häufung von Merkmalsvektoren vorliegt. Clustering-Verfahren können (müssen aber nicht) die Kenntnis der Anzahl der Klassen voraussetzen. Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 34

18 Stufen der Bildverarbeitung Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 35

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Morphologische Operatoren Graphische DV und BV, Regina Pohle, 5. Morphologische Operatoren Einordnung in die Inhalte der Vorlesung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Segmentierung Graphische DV und BV, Regina Pohle, 13. Segmentierung 1 Einordnung in die Inhalte der Vorlesung Einführung mathematische

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Grauwertmodifikation Graphische DV und BV, Regina Pohle, 10. Bildverbesserung - Grauwertmodifikation 1 Einordnung

Mehr

Technische Universität

Technische Universität Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Grundlagen der Klassifikation Proseminar Grundlagen der Bildverarbeitung Christina Katz Betreuer: Dr. Michael

Mehr

Bild-Erkennung & -Interpretation

Bild-Erkennung & -Interpretation Kapitel I Bild-Erkennung & -Interpretation FH Aachen / Jülich, FB 9 Prof. Dr. rer.nat. Walter Hillen (Dig Img I) 1 Einführung Schritte zur Bilderkennung und Interpretation: Bild-Erfassung Vorverarbeitung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Beleuchtungsberechnung Graphische DV und BV, Regina Pohle, 21. Beleuchtungsberechnung 1 Einordnung in die Inhalte der Vorlesung

Mehr

Grundlagen der Bildverarbeitung

Grundlagen der Bildverarbeitung Grundlagen der Bildverarbeitung Inhaltsverzeichnis Vorwort 9 Kapitel 1 Einführung 13 1.1 Anwendungen der digitalen Bildverarbeitung 16 1.2 Algorithmische Verarbeitung von Bildinformation 17 1.3 Zu diesem

Mehr

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV Regina Pohle. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Grundlagen der Bildverarbeitung Klaus D. Tönnies

Grundlagen der Bildverarbeitung Klaus D. Tönnies Grundlagen der Bildverarbeitung Klaus D. Tönnies ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Grundlagen der Bildverarbeitung

Mehr

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Was bisher geschah Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Punktoperationen (Farbtransformation) f : col1 col

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Übersicht der Vorlesung. Einführung. Bildverarbeitung. Morphologische Operationen 4. Bildsegmentierung 5. Merkmale von Objekten 6. Klassifikation 7. Dreidimensionale Bildinterpretation 8. Bewegungsanalyse

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Vorbereitungsaufgaben

Vorbereitungsaufgaben Praktikum Bildverarbeitung / Bildinformationstechnik Versuch BV 4 / BIT 3: Mustererkennung Paddy Gadegast, CV00, 160967 Alexander Opel, CV00, 16075 Gruppe 3 Otto-von-Guericke Universität Magdeburg Fakultät

Mehr

Übungen zu Multimedia-Datenbanken Aufgabenblatt 4 - Musterlösungen

Übungen zu Multimedia-Datenbanken Aufgabenblatt 4 - Musterlösungen Übungen zu Multimedia-Datenbanken Aufgabenblatt 4 - Musterlösungen Übung: Dipl.-Inf. Tina Walber Vorlesung: Dr.-Ing. Marcin Grzegorzek Fachbereich Informatik, Universität Koblenz Landau Ausgabe: 31.0.2010

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Graphische Grundalgorithmen Graphische DV und BV, Regina Pohle, 4. Algorithmen für graphische Primitive 1 Einordnung in die Inhalte

Mehr

Computergrafik 2: Klassifikation

Computergrafik 2: Klassifikation Computergrafik 2: Klassifikation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

4.Tutorium Multivariate Verfahren

4.Tutorium Multivariate Verfahren 4.Tutorium Multivariate Verfahren - Clusteranalyse - Hannah Busen: 01.06.2015 und 08.06.2015 Nicole Schüller: 02.06.2015 und 09.06.2015 Institut für Statistik, LMU München 1 / 17 Gliederung 1 Idee der

Mehr

Klassifikation und Ähnlichkeitssuche

Klassifikation und Ähnlichkeitssuche Klassifikation und Ähnlichkeitssuche Vorlesung XIII Allgemeines Ziel Rationale Zusammenfassung von Molekülen in Gruppen auf der Basis bestimmter Eigenschaften Auswahl von repräsentativen Molekülen Strukturell

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern Clustern Tet Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so daß: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen Clustern

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Regression Zweck: Vorhersage x Dimensionsreduktion x x Klassifizierung x x Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eigenschaften:

Mehr

Inhaltliche Planung für die Vorlesung

Inhaltliche Planung für die Vorlesung Vorlesung: Künstliche Intelligenz - Mustererkennung - P LS ES S ST ME Künstliche Intelligenz Miao Wang 1 Inhaltliche Planung für die Vorlesung 1) Definition und Geschichte der KI, PROLOG 2) Expertensysteme

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Bildanalyse Literatur David A. Forsyth: Computer Vision i A Modern Approach. Mark S. Nixon und Alberto S. Aguado: Feature Extraction and Image Processing. Ulrich Schwanecke:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt im Juni 2016 Themen: Digitale Bilder, Eigenschaften

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

Computergrafik 2: Morphologische Operationen

Computergrafik 2: Morphologische Operationen Computergrafik 2: Morphologische Operationen Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Universität Ulm 12. Juni 2007 Inhalt 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor- und Nachteile der SVM 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor-

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung 6 en 6 en (2) 1. Eigenschaften und Klassifikation 2. en auf Punkten Minkowski L m Gewichtete Minkowski L m w Quadratische d q Quadratische Pseudo Dynamical Partial Semi Pseudo Chi Quadrat Semi Pseudo Kullback

Mehr

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation 6 Distanzfunktionen 1. Eigenschaften und Klassifikation 2. Distanzfunktionen auf Punkten Minkowski Distanzfunktion L m Gewichtete Minkowski Distanzfunktion L m w Quadratische Distanzfunktion d q Quadratische

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 5. Juli 2011 Zunächst: PCA (Hauptkomponentenanalyse) ist eine mathematische Prozedur, die eine Anzahl von (möglicherweise korrelierten) Variablen

Mehr

Morphologische Filter

Morphologische Filter Morphologische Filter Industrielle Bildverarbeitung, Vorlesung No. 8 1 M. O. Franz 28.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Morphologische

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

Klassifikation im Bereich Musik

Klassifikation im Bereich Musik Klassifikation im Bereich Musik Michael Günnewig 30. Mai 2006 Michael Günnewig 1 30. Mai 2006 Inhaltsverzeichnis 1 Was ist eine Klassifikation? 3 1.1 Arten und Aufbau von Klassifikationen.................

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

4.4 Hierarchische Clusteranalyse-Verfahren

4.4 Hierarchische Clusteranalyse-Verfahren Clusteranalyse 18.05.04-1 - 4.4 Hierarchische Clusteranalyse-Verfahren Ablauf von hierarchischen Clusteranalyse-Verfahren: (1) Start jedes Objekt sein eigenes Cluster, also Start mit n Clustern (2) Fusionierung

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

GRUNDLAGEN DER INFORMATIONSTECHNIK / TEIL BILDVERARBEITUNG. Übungen

GRUNDLAGEN DER INFORMATIONSTECHNIK / TEIL BILDVERARBEITUNG. Übungen GRUNDLAGEN DER INFORMATIONSTECHNIK / TEIL BILDVERARBEITUNG Übungen Otto-von-Guericke-Universität Magdeburg Fakultät für Elektrotechnik und Informationstechnik Institut für Elektronik, Signalverarbeitung

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell Inhaltsbasierte Bildsuche J.P.E.G = Joint Photographic Expert Group Informatica Feminale Universität Bremen, Aug. 2005 Maja Temerinac Albert-Ludwigs-Universität Freiburg J.P.E.G. Standard Standard zur

Mehr

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Ziel der Clusteranalyse: Bilde Gruppen (cluster) aus einer Menge multivariater Datenobjekte (stat

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

k-nächste-nachbarn-schätzung

k-nächste-nachbarn-schätzung k-nächste-nachbarn-schätzung Mustererkennung und Klassifikation, Vorlesung No. 7 1 M. O. Franz 29.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

10. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 A =

10. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 A = O Alaya, S Demirel M Fetzer, B Krinn M Wied Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester /3 Dr M Künzer Prof Dr M Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 34 a Gegeben ist

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte

Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte Baumverfahren Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte B-Baum eindimensional Abbildung eines mehrdimensionalen Raums auf eine Dimension im Allgemeinen nicht distanzerhaltend möglich

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Sommersemester 213 Übersicht Vektoren elementar Information Retrieval

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

5.Tutorium Multivariate Verfahren

5.Tutorium Multivariate Verfahren 5.Tutorium Multivariate Verfahren - Hauptkomponentenanalyse - Nicole Schüller: 27.06.2016 und 04.07.2016 Hannah Busen: 28.06.2016 und 05.07.2016 Institut für Statistik, LMU München 1 / 18 Gliederung 1

Mehr

Graphische Datenverarbeitung und Bildverarbeitung WS 2005 / 2006 Hochschule Niederrhein

Graphische Datenverarbeitung und Bildverarbeitung WS 2005 / 2006 Hochschule Niederrhein Graphische Datenverarbeitung und Bildverarbeitung WS 2005 / 2006 Hochschule Niederrhein Regina Pohle Graphische DV und BV, Regina Pohle, 1. Einführung 1 Organisatorisches Dozent: Regina Pohle Büro: H321

Mehr

Mehrdimensionale Skalierung

Mehrdimensionale Skalierung Mehrdimensionale Skalierung Datenanalyse Dietmar Maringer Abteilung für Quantitative Methoden, WWZ der Universität Basel Herbstsemester 2010 D Maringer: Datenanalyse Mehrdimensionale Skalierung (1) Problemstellung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Ähnlichkeits- und Distanzmaße

Ähnlichkeits- und Distanzmaße Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8-1 - Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8 -

Mehr

8. Clusterbildung, Klassifikation und Mustererkennung

8. Clusterbildung, Klassifikation und Mustererkennung 8. Clusterbildung, Klassifikation und Mustererkennung Begriffsklärung (nach Voss & Süße 1991): Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 39 Definitheit von Bilinearformen Wir möchten die symmetrischen Bilinearformen über den reellen Zahlen klassifizieren.

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Statistik in Geodäsie, Geoinformation und Bauwesen

Statistik in Geodäsie, Geoinformation und Bauwesen Wilhelm Benning Statistik in Geodäsie, Geoinformation und Bauwesen 2., überarbeitete und erweiterte Auflage Herbert Wichmann Verlag Heidelberg Matrix-Theorie 1 1.1 Matrizen und Vektoren 1 1.2 Matrixverknüpfungen

Mehr

Seminar zum Thema Künstliche Intelligenz:

Seminar zum Thema Künstliche Intelligenz: Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Übersicht der Vorlesung 1. Einführung 2. Bildverarbeitung 3. orphologische Operationen 4. Bildsegmentierung 5. erkmale von Objekten 6. Klassifikation 7. Dreidimensionale Bildinterpretation 8. Bewegungsanalyse

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Oliver Muthmann 31. Mai 2007 Gliederung 1 Einführung 2 Varianzanalyse (MANOVA) 3 Regressionsanalyse 4 Faktorenanalyse Hauptkomponentenanalyse 5 Clusteranalyse 6 Zusammenfassung Komplexe

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2008/2009 Musterlösung für das 7. Übungsblatt Aufgabe 1: Evaluierung und Kosten Gegeben sei ein Datensatz mit 300 Beispielen, davon 2 /3 positiv

Mehr