Graphische Datenverarbeitung und Bildverarbeitung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Graphische Datenverarbeitung und Bildverarbeitung"

Transkript

1 Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung mathematische und allgemeine Grundlagen Hardware für Graphik und Bildverarbeitung Graphische Grundalgorithmen (Zeichnen graphischer Primitive, Methoden für Antialaising, Füllalgorithmen) Bildaufnahme (Koordinatensysteme, Transformation) Durchführung der Bildverarbeitung und -analyse Fourier Transformation Bildrestauration Bildverbesserung (Grauwertmodifikation, Filterverfahren) Segmentierung Morphologische Operationen Merkmalsermittlung und Klassifikation Erzeugung von Bildern in der Computergraphik Geometrierepräsentationen Transformationen in OpenGL Clipping in 2D und 3D Hidden Surface Removal Beleuchtungsberechnung Shading Volumenrendering als Beispiel für die Nutzung beider Gebiete Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 2

2 19.1 Einleitung Motivation und Anwendung: Clippen: Einleitung Abschneiden einer geometrischen Beschreibung an einem Clipkörper. Anwendungen: Fenstersysteme: Abschneiden der dargestellten Geometrie an den Fenstergrenzen (Bestandteil des Graphiksystems von Fenstersystemen) Abschneiden von 3d-Geometrien am Sichtkörper (Pyramidenstumpf bzw. Quader) Abschneiden eines verdeckten Polygons an einem davor liegenden Polygon (HSR) Exploration von Daten mit einer Clipebene Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 3 Einleitung Anwendungen von Clipping: Links: Clippen am Sichtkörper Mitte: Clippen bei der Bestimmung verdeckter Kanten Rechts: Clippen am Viewport Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 4

3 Was heißt Clippen? Einleitung 1. Entscheiden, welche Graphikprimitive komplett gezeichnet werden. 2. Entscheiden, welche Teile von Graphikprimitiven gezeichnet werden Schnittpunktberechnungen zwischen Graphikprimitiven und Clipgeometrie Geschlossene Polygone bzw. Polyeder sind nach dem Abschneiden nicht mehr geschlossen. Berechnung von verbindenden Kanten/Flächen. Beim Rendering muss das Clippen für jedes Polygon in 3d und für die sichtbaren Polygone nach Projektion in 2d durchgeführt werden. Zahl der Schnittpunktberechnungen minimieren. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D Clippen von Liniensegmenten an Rechtecken Lagebeziehungen zwischen Linie (p 1, p 2 ) und Rechteck: 1. p 1 und p 2 innerhalb (AB) Linie komplett innerhalb (accept) 2. p 1 und p 2 außerhalb und jenseits der gleichen Kante (CD) Linie komplett außerhalb (reject) Bei 1. und 2. nutzt man Konvexität einer Linie 3. p 1 und p 2 außerhalb aber in Bezug auf verschiedene Kanten -> testen, ob es zwei Schnittpunkte gibt (GH) 4. p 1 innerhalb p 2 außerhalb (EF) Berechne Schnittpunkt zwischen p 1; p 2 und dem Rechteck 5. p 1 außerhalb und p 2 innerhalb Vertauschen von p 1 und p 2 und dann vorgehen wie Fall 4 Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 6

4 Clippen von Liniensegmenten an Rechtecken Test, ob Punkt p im achsenparallelen Rechteck (xmin, xmax, ymin, ymax): If (p(x)>=xmin && p(x)<=xmax && p(y)>=ymin && p(y)<=ymax) inside = true; Schnittpunktberechnungen: 1. Identifizieren der geschnittenen Rechteckkante Tests separat durchführen, ggf. kommen zwei Kanten in Frage (siehe EF) 2. Schnittpunktberechnung mit dieser (diesen) Kante(n) Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 7 Clippen von Liniensegmenten an Rechtecken Cohen-Sutherland-Algorithmus: Bestimme für jeden Eckpunkt (x;y) ein Bitfeld, das angibt, ob Eckpunkt jenseits des entsprechenden Wertes ist. 1. Bit: y > ymax, 2. Bit: y < ymin, 3. Bit: x > xmax, 4. Bit: x < xmin Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 8

5 Clippen von Liniensegmenten an Rechtecken Cohen-Sutherland-Algorithmus: outcode (p1) und outcode (p2) seien die Bitfelder der Eckpunkte: if (outcode (p1) == 0000 && outcode (p2) == 0000) accept; if (outcode (p1) & outcode (p2)!= 0000) // bitweises und reject; if (outcode (p1) outcode (p2)!= 0000) calculate_intersection (p1, p2, x_min, x_max, y_min, y_max) Schnittpunktberechnung hängt von der Linienrepräsentation ab. Parametrische Darstellung günstig, weil keine Sonderfälle (z.b. vertikale Linien) auftreten. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 9 Clippen von Liniensegmenten an Rechtecken Cohen-Sutherland-Algorithmus: A (0000) B (0000) o1 o2 = 0 ACCEPT C (0110) D (0010) o1 & o2 <> 0 REJECT E (0000) F (1010) o1 = 0, o2 <> 0 ACCEPT (Linie verkürzen) G (0001) H (1000) o1 & o2 = 0? (Schnittpunkttest mit den Seiten des Fensters) Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 10

6 Clippen von Liniensegmenten an Rechtecken Parametrische Liniendarstellung: p(t) = (1-t) p 1 + t p 2. Für t 0 und t 1 Linie von p 1 zu p 2. Wenn es einen Schnittpunkt zwischen (p 1 ; p 2 ) und einer Rechteckkante (r 1 ; r 2 ) gibt, dann gibt es Parameter s und t, mit s in (0,1) und t in (0,1) so dass r(s) = (1-s) r 1 + s r 2 = p(t). Lösung: Gleichungen für x und y-komponente der Punkte aufstellen und gleichsetzen (2 Gleichungen; 2 Unbekannte) Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 11 Clippen von Liniensegmenten an Rechtecken Beispiel: Schnittpunktberechnung mit der unteren Rechteckkante (x min ;y min ) (x max ; y min ) Schnittpunktberechnung an horizontalen und vertikalen Kanten vereinfacht sich. I. (1-t) x 1 + t x 2 = (1-s)x min + s x max II. (1-t) y 1 + t y 2 = (1-s)y min + s y min (1-t) y 1 + t y 2 = y min -t y 1 + t y 2 = y min - y 1 ymin y1 t = y y 2 1 Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 12

7 Clippen von Liniensegmenten an Rechtecken Zusammenfassung: Clipprozedur für eine Linie (x 1 ;y 1 ) (x 2 ; y 2 ) an einem Rechteck erzeugt neue Linie (x 3 ;y 3 ) (x 4 ; y 4 ), wobei (x 3 ;y 3 ) und (x 1 ;y 1 ) sowie (x 2 ; y 2 ) und (x 4 ; y 4 ) gleich sein könnten. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D Clippen von Polygonen an Rechtecken Grundsätzlich kann das Clippen von Polygonen (p 1 ;p 2 ; ; p n ) an Rechtecken durch sukzessives Clippen der Linien (p i ;p i+1 ) durchgeführt werden. Problem: Konkave Polygone Durch Clippen kann ein konkaves Polygon in mehrere Polygone zerfallen. Lösungsmöglichkeiten: Unterteilung des Polygons in konvexe Polygone (z.b. Triangulierung) oder Einführen von zusätzlichen Kanten. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 14

8 Clippen von Polygonen an Rechtecken Einfügen von zusätzlichen Kanten, um geschlossenes Polygon zu repräsentieren Triangulierung eines konkaven Polygons. Zusammenhang zwischen Dreiecken und Polygon muss repräsentiert werden. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 15 Clippen von Polygonen an Rechtecken Clippen in einer Pipeline-Architektur: sukzessive an den 4 Rändern clippen. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 16

9 Sutherland-Hodgman Clipping Zuschneiden eines gegebenen Polygons schrittweise an den vier Geraden des Darstellungsfensters Entscheidung, welche Eckpunkte übernommen und welche neuen Punkte hinzugefügt werden Vier Fälle können dabei auftreten: Beide Punkte außerhalb des Fensters kein Punkt wird übernommen (A B) Kante von außen nach innen (B C) Übernahme von Schnittpunkt S 1 und Endpunkt C Beide Punkte liegen innerhalb des Fensters (C D) Übernahme des Endpunktes D Kante von innen nach außen (D A) Übernahme des Schnittpunktes S 2 Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 17 Sutherland-Hodgman Clipping Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 18

10 Sutherland-Hodgman Clipping Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D Clippen in 3D Wesentlicher Unterschied zwischen 2D und 3D: 2D: Schnittpunktberechnungen zwischen zwei Linien (Clipgeometrie durch Begrenzungslinien charakterisiert) 3D: Schnittpunkte liegen i. a. nicht auf den Kanten der Clipgeometrie. Schnittpunktberechnungen zwischen Linien und Flächen. Linie: p 1 p 2 Ebene: p 0 und n (Normale, senkrecht) (I) p(t) = (1-t) p 1 + t p 2 (II) n (p(t) p 0 ) =0 n t = n ( p0 p1 ) ( p p ) 2 1 Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 20

11 Clippen in 3D Erweiterung des Cohen-Sutherland-Algorithmus durch Ergänzen der Bitfelder pro Eckpunkt (2 zusätzliche Bits repräsentieren Vergleich mit z min und z max ) Für Schnittpunktberechnung in parametrischer Form wird eine 3. Gleichung ergänzt, die sich auf die z-koordinaten bezieht. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 21 Clippen in 3D Clippen von Linien gegen achsenparallele Quader (Sichtbereich bei der Parallelprojektion). Vereinfachung wie im 2D-Fall. Clippen von Linien gegen Pyramidenstumpf (perspekt. Projektion): Scherung des Sichtkörpers achsenparalleler Quader entsteht. Bei einer Pipeline-Architektur wird sukzessive gegen die 6 Begrenzungsflächen eines Quaders getestet. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 22

12 19.5 Effizientes Clippen komplexer geometrischer Objekte Schnittpunktberechnungen sind sehr aufwändig für - Große Polygone - Parametrische Kurven - Text Intern wird Text häufig durch parametrische Kurven repräsentiert (Skalierbarkeit) und diese werden wiederum in Polygone umgewandelt. Schnittpunktberechnungen sind sehr effizient für einfache Formen (Kugeln, Quader). Effiziente Verfahren nutzen einfache (konvexe) Formen als Hüllkörper und testen, ob Hüllkörper geclippt werden muss. Nur wenn Hüllkörper teilweise innerhalb und teilweise außerhalb der Clipgeometrie ist, werden aufwändigere Tests durchgeführt. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 23 Effizientes Clippen komplexer geometrischer Objekte Clippen von großen Polygonen mit Bounding Boxen Clippen von komplexeren Geometrien Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 24

13 19.6 Clipebenen zur Exploration von 3D-Daten Einschränkung der dargestellten Daten durch Bewegung einer Clipebene Bewegung einer Schnittebene durch 3D-Daten unterstützt z.b. die medizinische Diagnostik von Computertomographiedatensätzen. Kombination mehrerer Clipebenen möglich (Hardwareunterstützung für bis zu 6 Clipebenen) Slab Rendering: Kopplung von 2 Schnittebenen (vordere und hintere Begrenzung), wobei der Abstand gleich bleibt. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 25 Clipebenen zur Exploration von 3D-Daten Selektives Clippen: Die Clipebene wirkt sich nur auf bestimmte Objekte aus. Quelle: Höhne et al. 96 Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 26

14 Zusammenfassung Clippen ist eine wichtige Aufgabe im Renderingprozess. Clippen der Geometrie in 3D am Sichtkörper. Clippen der transformierten und projizierten Polygone an den Viewportgrenzen Clippen von komplexeren Geometrien wird auf Clippen von Polygonen und schließlich von Linien zurückgeführt. Clippen ist aufwändig, weil Schnittpunktberechnungen (Linie- Linie bzw. Linie-Fläche) nötig sind. Effiziente Verfahren reduzieren die Zahl der notwendigen Schnittpunktberechnungen, z.b. durch Bounding Box-Tests. Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 27

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen VII. Clipping und Culling Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Definition und Anwendung von Clipping 2. Sichtbarleitsbestimmung

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.4 2.5 Perspektivische 2.6 Parallele 2.7 Umsetzung der Zentralprojektion 2.8 Weitere 2.9 Koordinatensysteme, Frts. 2.10 Window to Viewport 2.11 Clipping 3 Repräsentation

Mehr

Algorithmen und Datenstrukturen Bereichsbäume

Algorithmen und Datenstrukturen Bereichsbäume Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Morphologische Operatoren Graphische DV und BV, Regina Pohle, 5. Morphologische Operatoren Einordnung in die Inhalte der Vorlesung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Segmentierung Graphische DV und BV, Regina Pohle, 13. Segmentierung 1 Einordnung in die Inhalte der Vorlesung Einführung mathematische

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen XI. Rasterung Füllen von Polygonen Prof. Stefan Schlechtweg Hochschule nhalt Fachbereich Informatik Inhalt Lernziele 1. Zu lösendes Problem 2. Füllen von Pixelmengen 1. Rekursiver

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Shading-Verfahren Graphische DV und BV, Regina Pohle, 22. Shading-Verfahren Einordnung in die Inhalte der Vorlesung Einführung mathematische

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Rastergrafikalgorithmen

Rastergrafikalgorithmen Rastergrafikalgorithmen Sebastian Kurfürst Proseminar Computergrafik Institut für Software-und Multimediatechnik TU Dresden 10. Juli 2008 Zusammenfassung Es wird eine Einführung in Basisalgorithmen der

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Beleuchtungsberechnung Graphische DV und BV, Regina Pohle, 21. Beleuchtungsberechnung 1 Einordnung in die Inhalte der Vorlesung

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Raytracing und Computergraphik Überblick Raytracing Typen von Raytracern z-buffer Raytracing Lichtstrahlen-Verfolgung (engl. ray tracing): Berechnung von Lichtstrahlen

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Graphische Grundalgorithmen Graphische DV und BV, Regina Pohle, 4. Algorithmen für graphische Primitive 1 Einordnung in die Inhalte

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

"rendern" = ein abstraktes geometrisches Modell sichtbar machen

rendern = ein abstraktes geometrisches Modell sichtbar machen 3. Grundlagen des Rendering "rendern" = ein abstraktes geometrisches Modell sichtbar machen Mehrere Schritte: Sichtbarkeitsberechnung Beleuchtungsrechnung Projektion Clipping (Abschneiden am Bildrand)

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung t.jung@fhtw-berlin.de Heute Volumenrepräsentationen Thomas Jung Generierung von Volumenrepräsentationen Rendering von Volumenrepräsentationen Konvertierung in Oberflächenrepräsentationen Weitere Geometrische

Mehr

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal.

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal. 11/4/10 lausthal omputergraphik I Scan onversion of Lines. Zachmann lausthal University, ermany zach@tu-clausthal.de Einordnung in die Pipeline Rasterisierung der Objekte in Pixel Ecken-Werte interpolieren

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Grauwertmodifikation Graphische DV und BV, Regina Pohle, 10. Bildverbesserung - Grauwertmodifikation 1 Einordnung

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

Computer Graphik I Polygon Scan Conversion

Computer Graphik I Polygon Scan Conversion 11/23/09 lausthal omputer raphik I Polygon Scan onversion. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Klassifikation der Polygone Konvex Für jedes Punktepaar in einem konvexen Polygon

Mehr

Füllen von Primitiven

Füllen von Primitiven Füllen von Primitiven Basisproblem der 2D-Graphik Anwendung: füllen beliebiger Flächen (Polygone, Freiformkurven) Darstellung von Buchstaben dicke Primitive (Linien, Kreise, Kurven), Teilproblem in der

Mehr

Mathematik LK 12 M1, 3. Kursarbeit Analytische Geometrie Lösung

Mathematik LK 12 M1, 3. Kursarbeit Analytische Geometrie Lösung Mathematik LK M,. Kursarbeit Analytische Geometrie Lösung 7..4 Aufgabe : Wandle die Gleichungen der folgenden Geraden und Ebenen in die angegebene Form um.. g : x= +t 6 4 =+6t II. x =+4t in die Koordinatenform.

Mehr

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle CAD Ebenes Zeichnen (2D-CAD) und die ersten Befehle Schnellzugriff-Werkzeugkasten (Quick Access Toolbar) Registerkarten (Tabs) Gruppenfenster (Panels) Zeichenfläche Befehlszeile: für schriftl. Eingabe

Mehr

Featurebasierte 3D Modellierung

Featurebasierte 3D Modellierung 1 Featurebasierte 3D Modellierung Moderne 3D arbeiten häufig mit einer Feature Modellierung. Hierbei gibt es eine Reihe von vordefinierten Konstruktionen, die der Reihe nach angewandt werden. Diese Basis

Mehr

Kapitel 4: Schattenberechnung

Kapitel 4: Schattenberechnung Kapitel 4: Schattenberechnung 1 Überblick: Schattenberechnung Motivation Schattenvolumen Shadow Maps Projektive Schatten 2 Motivation Wesentlich für die Wahrnehmung einer 3D-Szene Eigentlich ein globaler

Mehr

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)

Mehr

Rastergrafikalgorithmen

Rastergrafikalgorithmen Rastergrafikalgorithmen Vortrag über Rastergrafikalgorithmen im Rahmen des Proseminars Computergrafik Vortragender: Christian Vonsien Dienstag, 18. Mai 2010 Proseminar Computergrafik SS2010 - Rastergrafikalgorithmen

Mehr

(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (1) Geometrie Vorlesung Computergraphik 3 S. Müller KOBLENZ LANDAU KOBLENZ LANDAU Organisatorisches Vorlesung CG 2+3 Die Veranstaltung besteht aus 2 Teilen, wobei in der Mitte und am Ende eine Klausur

Mehr

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung Objekte und ihre Beschreibung Einleitung Computergraphik: 3D sehr wichtig photo-realistic rendering Computer-Animation, Modellierung Visualisierung, Virtual Reality Ansatz: per rendering wird eine 3D-Szene

Mehr

Koordinatensysteme und Clipping

Koordinatensysteme und Clipping Koordinatensysteme und Clipping Michael Olp Inhaltsverzeichnis 1 Einführung in die perspektivische Projektion 1 1.1 Projektion von Liniensegmenten....... 1 2 Koordinatensysteme 2 2.1 Modeling....................

Mehr

Formen und Pfade. Rechteck, Quadrat

Formen und Pfade. Rechteck, Quadrat Rechteck, Quadrat Formen und Pfade Die am häufigsten genutzte Form in der Vektorgrafik ist das Rechteck. Es wird aufgezogen wie oben beschrieben. Wird die STRG-Taste beim Aufziehen gedrückt, entsteht ein

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Vektorobjekte auf der Formebene zeichnen. Form-Werkzeug wählen und über die Optionsleiste die Formeigenschaften festlegen

Vektorobjekte auf der Formebene zeichnen. Form-Werkzeug wählen und über die Optionsleiste die Formeigenschaften festlegen Vektorobjekte Besonderheiten von Vektorobjekten Was sind Vektorobjekte? Vektorobjekte bestehen aus Linien oder Kurven, die mathematisch berechnet werden. Die Konturen von Vektorobjekten werden als Pfade

Mehr

Kapitel 9. Kombination von Vektor- und Rasterdaten. Rasterdaten. 3. Transformationen des Formats. 4. Kombinierte Auswertungen

Kapitel 9. Kombination von Vektor- und Rasterdaten. Rasterdaten. 3. Transformationen des Formats. 4. Kombinierte Auswertungen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 9 Kombination von Vektor- und Rasterdaten Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2011/12 Ludwig-Maximilians-Universität

Mehr

computer graphics & visualization

computer graphics & visualization Entwicklung und Implementierung echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs Motivation

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Merkmale und Klassifikation Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 1 Einordnung in die Inhalte der

Mehr

3D-Rekonstruktion von Schiffen aus kalibrierten und unkalibrierten Aufnahmen

3D-Rekonstruktion von Schiffen aus kalibrierten und unkalibrierten Aufnahmen Allgemeine Nachrichtentechnik Prof. Dr.-Ing. Udo Zölzer 3D-Rekonstruktion von Schiffen aus kalibrierten und unkalibrierten Aufnahmen Christian Ruwwe & Udo Zölzer 4. Tagung Optik und Optronik in der Wehrtechnik

Mehr

Computergrafik 1 Beleuchtung

Computergrafik 1 Beleuchtung Computergrafik 1 Beleuchtung Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Lokale Beleuchtungsmodelle Ambiente Beleuchtung Diffuse Beleuchtung (Lambert) Spiegelnde Beleuchtung

Mehr

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer mafi@upb.de Vorlesung 12 26.6.2012 Matthias Fischer 374 Übersicht Motivation Modell der Sichtbarkeit Eigenschaft

Mehr

GIS und raumbezogene Datenbanken

GIS und raumbezogene Datenbanken GIS und raumbezogene Datenbanken Eine raumbezogene Datenbank (spatial database) dient der effizienten Speicherung, Verwaltung und Anfrage von raumbezogenen Daten. datenbankorientiert Ein geographisches

Mehr

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre

Mehr

Rastergraphik & Rasteralgorithmen

Rastergraphik & Rasteralgorithmen Rastergraphik & Rasteralgorithmen 3D Computer Graphik (Bemerkungen) Page 1 Wo entsteht das Bild das wir sehen? Bilder entstehen im Gehirn! Materie + Licht + Geometrie = Abbild im Auge => Reiz im Gehirn

Mehr

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Protokoll VIII Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Datum: 10.12.2001 Projektgruppe 279 Tutorin: Grit Petschick Studenten: Mina Günther Berna Gezik Carola Nisse Michael

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Kollisionserkennung

Kollisionserkennung 1 Kollisionserkennung von Jens Schedel, Christoph Forman und Philipp Baumgärtel 2 1. Einleitung Wozu wird Kollisionserkennung benötigt? 3 - für Computergraphik 4 - für Simulationen 5 - für Wegeplanung

Mehr

Computer Graphik II Tesselierung impliziter Kurven und Flächen

Computer Graphik II Tesselierung impliziter Kurven und Flächen Computer Graphik II impliziter Kurven und Flächen 1 impliziter Flächen Problem: Nullstellenmenge kann nicht explizit berechnet werden! Lösung: ApproximaCon der Fläche auf Zellen Beispiel 2D: f p ( )

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Mobile Augmented Reality

Mobile Augmented Reality Mobile Augmented Reality Semantische Bauwerksmodelle als Datengrundlage einer Smartphone-basierten Augmented Reality Anwendung RWTH Aachen University Geodätisches Institut Lehrstuhl für Bauinformatik &

Mehr

Universität Augsburg. 20. April 2012. B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6

Universität Augsburg. 20. April 2012. B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6 Kapitel 1 Einführung B. Möller Universität Augsburg 20. April 2012 B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6 Begriffsdefinition Computergrafik: realistische Darstellung realer oder

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

OpenGL. (Open Graphic Library)

OpenGL. (Open Graphic Library) OpenGL (Open Graphic Library) Agenda Was ist OpenGL eigentlich? Geschichte Vor- und Nachteile Arbeitsweise glscene OpenGL per Hand Debugging Trend Was ist OpenGL eigentlich? OpenGL ist eine Spezifikation

Mehr

Computergrafik 1. 2D Rendering

Computergrafik 1. 2D Rendering Computergrafik 2D Rendering Hearn/Baker 32., 3.4-3.6,5. 5.8, 6. 6.8, 6. Based on material b Werner Purgathofer, Gerhard Reitmar and Dieter Schmalstieg 2D Racasting Inhalt Einfaches Rendering Model 2D Transformationen

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

ArcView GIS 3.2a Gauss Boaga UTM WGS84 ETRS89

ArcView GIS 3.2a Gauss Boaga UTM WGS84 ETRS89 ArcView GIS 3.2a Gauss Boaga UTM WGS84 ETRS89 Dieses Dokument beschreibt die Auswirkungen des Projekts GB2UTM auf die mit ArcView 3.2a vor der Migration erstellten Projekte. Weiters wird erläutert wie

Mehr

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany Spline-artige Kurven auf Subdivision Surfaces Jörn Loviscach Hochschule Bremen, Germany Überblick Spline-artige Kurven auf Spline-Flächen Kurven auf SDS: Problem, Anwendung Verwandte Arbeiten Spline-artige

Mehr

Vorbereitungsaufgaben

Vorbereitungsaufgaben Praktikum Bildverarbeitung / Bildinformationstechnik Versuch BV 4 / BIT 3: Mustererkennung Paddy Gadegast, CV00, 160967 Alexander Opel, CV00, 16075 Gruppe 3 Otto-von-Guericke Universität Magdeburg Fakultät

Mehr

Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick

Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick D. Schlesinger TUD/INF/KI/IS D. Schlesinger () BV/ME: Zusammenfassung 1 / 6 Organisatorisches Es gibt keine Scheine und keine bestanden Abschlüsse

Mehr

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie I Markus Götze Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Polygone ccw Pick's Theorem Konvexe Hülle Hallo Welt für Fortgeschrittene

Mehr

Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen.

Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. -1- Selbst lernen: Einführung in den Graphikrechner TI-84 Plus Das Graphikmenü des TI84-Plus Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. 1 Grundsätzliches Die

Mehr

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013 Bildverstehen Vorlesung an der TU Chemnitz SS 2013 Johannes Steinmüller 1/B309 Tel.: 531 35198 stj@informatik.tu-chemnitz.de Seite zur Vorlesung: http://www.tu-chemnitz.de/informatik/ki/edu/biver/ Buch

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Grundlagen. Marking semantically relevant. on slides in Backstage. 2D Ebene mit einer endlichen Menge an Brennpunkten (focal points)

Grundlagen. Marking semantically relevant. on slides in Backstage. 2D Ebene mit einer endlichen Menge an Brennpunkten (focal points) Grundlagen Marking semantically relevant 2D Ebene mit einer endlichen Menge an Brennpunkten (focal points) regions on slides in Backstage Ein Brennpunkt ist ein Kreis mit beliebigen Radius um einen festen

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Klasse: 5B 2. Schularbeit 7. Dezember 1999 Gruppe A

Klasse: 5B 2. Schularbeit 7. Dezember 1999 Gruppe A Klasse: 5B. Schularbeit 7. Dezember 1999 Gruppe A 1) Löse folgende Gleichungen mit Unbekannten ausführlich händisch (ohne Verwendung des TI-9) mit der Methode der gleichen Koeffizienten und kontrolliere

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Hardware für Graphik und Bildverarbeitung Graphische DV und BV, Regina Pohle, 3. Hardware für Graphik und Bildverarbeitung 1 Einordnung

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Mitschriebe, Skripten, Bücher, einfacher Taschenrechner

Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Prüfungsfach: Darstellende Geometrie Termin: 2. September 2015 Prüfungsbeginn: Prüfungsende: zugel. Hilfsmittel: Hinweis: 9.00 Uhr 10.00 Uhr Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Wir

Mehr

Simulation von räumlich verteilten kontinuierlichen Modellen

Simulation von räumlich verteilten kontinuierlichen Modellen Vorlesungsreihe Simulation betrieblicher Prozesse Simulation von räumlich verteilten kontinuierlichen Modellen Prof. Dr.-Ing. Thomas Wiedemann email: wiedem@informatik.htw-dresden.de HOCHSCHULE FÜR TECHNIK

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer mafi@upb.de Vorlesung 2 10.4.2012 Matthias Fischer 59 Übersicht = Binary Space Partitions Motivation Idee Anwendungsbeispiel:

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt.

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Name: Arbeitsblatt zur Aufgabe "Dreiecksfläche" Datum: Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Die Lerneinheit findest Du unter

Mehr

Die Übereckperspektive mit zwei Fluchtpunkten

Die Übereckperspektive mit zwei Fluchtpunkten Perspektive Perspektive mit zwei Fluchtpunkten (S. 1 von 8) / www.kunstbrowser.de Die Übereckperspektive mit zwei Fluchtpunkten Bei dieser Perspektivart wird der rechtwinklige Körper so auf die Grundebene

Mehr

Non-Photorealistic Rendering

Non-Photorealistic Rendering Übersicht 1. Motivation und Anwendungen 2. Techniken - Cel Shading - Konturlinien - Hatching Einführung Traditionelle Computergraphik Ziel: Fotorealismus Einführung Motivation Bewusste Vermeidung von

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

Praktikum Schau Geometrie

Praktikum Schau Geometrie Praktikum Schau Geometrie Intuition, Erklärung, Konstruktion Teil 1 Sehen auf intuitive Weise Teil 2 Formale Perspektive mit Aufriss und Grundriss Teil 3 Ein niederländischer Maler zeigt ein unmögliches

Mehr

Geometrische Primitive und Hidden Surface Removal

Geometrische Primitive und Hidden Surface Removal C A R L V O N O S S I E T Z K Y Geometrische Primitive und Hidden Surface Removal Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Wiederholung Geometrische Primitive in OpenGL Mit

Mehr

Methoden der 3D-Konstruktion mit CAD

Methoden der 3D-Konstruktion mit CAD 10 ZPG-Mitteilungen für gewerbliche Schulen - Nr. 29 - Juli 2004 Methoden der 3D-Konstruktion mit CAD Wie in vielen anderen Bereichen der T echnik führen auch bei der 3-Konstruktion mit CAD viele Wege

Mehr

Grundlagen der 3D-Modellierung

Grundlagen der 3D-Modellierung April 28, 2009 Inhaltsverzeichnis 1 Einführung 2 Direkte Darstellungsschemata 3 Indirekte Darstellungsschemata 4 Parametrische Kurven und Freiformflächen 5 Abschluss Motivation Vom physikalischen Körper

Mehr

Leica 3D Disto CAD-Werkzeuge

Leica 3D Disto CAD-Werkzeuge Leica 3D Disto CAD-Werkzeuge Wann werden sie benötigt? um Fenster, Türen und andere Wanddetails zu messen um verdeckte Punkte zu messen 90 um Ecken von genau 90.000 zu erzeugen 45 um Sollmaße zu erzeugen

Mehr

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer Seminar Werkzeuggestütze tze Softwareprüfung fung Slicing Sebastian Meyer Überblick Einführung und Begriffe Static Slicing Dynamic Slicing Erweiterte Slicing-Techniken Fazit 2 Was ist Slicing?? (I) Program

Mehr

Softwaretechnik (WS 11/12)

Softwaretechnik (WS 11/12) Universität Augsburg, LSt. Softwaretechnik, K. Stenzel, H. Seebach, G. Anders Softwaretechnik (WS 11/12) Lösungsvorschlag 5 Aufgabe 1 (System Behavior: System Sequence Diagrams) (10/5 Punkte) a) Was sind

Mehr