Atom- und Kernphysik Atomhülle Normaler Zeeman-Effekt

Größe: px
Ab Seite anzeigen:

Download "Atom- und Kernphysik Atomhülle Normaler Zeeman-Effekt"

Transkript

1 Atom- und Kernphysik Atomhülle Normaler Zeeman-Effekt LD Handblätter Physik P Beobachtung des normalen Zeeman-Effekts in transversaler und in longitudinaler Konfiguration Versuchsziele Beobachtung des Linientripletts beim normalen, transversalen Zeeman-Effekt Bestimmung des Polarisationszustandes der Triplettkomponenten Beobachtung des Liniendubletts beim normalen, longitudinalen Zeeman-Effekt Bestimmung des Polarisationszustandes der Dublettkomponenten Grundlagen Normaler Zeeman-Effekt Als Zeeman-Effekt bezeichnet man die Aufspaltung von atomaren Energieniveaus bzw. von Spektrallinien bei Einwirkung eines äußeren Magnetfeldes. Der Effekt wurde 1895 von H. A. Lorentz im Rahmen seiner klassischen Elektronentheorie vorhergesagt und ein Jahr später von P. Zeeman experimentell bestätigt. Zeeman beobachtete senkrecht zum Magnetfeld anstelle einer einzelnen Spektrallinie ein Linientriplett und parallel zum Magnetfeld ein Liniendublett. Später wurden kom- Fig. 1: Niveauaufspaltung und Übergänge beim normalen Zeeman-Effekt an Cadmium pliziertere Aufspaltungen von Spektrallinien entdeckt, die man anomaler Zeeman-Effekt nannte. Zur Erklärung führten Goudsmit und Uhlenbeck 1925 die Hypothese des Elektronenspins ein. Es stellte sich heraus, daß der anomale Zeeman-Effekt der Regelfall und der normale Zeeman-Effekt die Ausnahme ist. Der normale Zeeman-Effekt tritt nur an Übergängen zwischen atomaren Zuständen mit dem Gesamtspin S = 0 auf. Der Gesamtdrehimpuls J = L + S eines Zustandes ist dann ein reiner Bahndrehimpuls (J = L). Für das mit ihm verbundene magnetische Moment gilt einfach = B J (I) mit B = e (II) 2m e ( B = Bohrsches Magneton, m e = Masse des Elektrons, e = Elementarladung, = h/2, h = Plancksche Konstante) Sel Mit dem magnetischen Moment ist in einem äußeren Magnetfeld B die Energie E = B (III) verknüpft. Die Drehimpulskomponente in Magnetfeldrichtung kann die Werte J z = M J mit M J = J, J 1,, -J (IV) annehmen. Daher spaltet der Term mit dem Drehimpuls J in 2J + 1 äquidistante Zeeman-Komponenten auf, die sich durch den Wert von M J unterscheiden. Der Energieabstand benachbarter Komponenten M J, M J+1 beträgt E = B B (V). Beobachten kann man den normalen Zeeman-Effekt z.b. an der roten Spektrallinie des Cadmium ( 0 = 643,8 nm, f 0 = 465,7 THz). Sie entspricht dem Übergang 1 D 2 (J = 2, S = 0) 1 P 1 (J = 1, S = 0) eines Elektrons der 5. Schale (siehe Fig. 1). 1

2 P LD Handblätter Physik Geräte 1 Cadmiumlampe zum Zeeman-Effekt Beobachtungsoptik zum Zeeman-Effekt Lummer-Gehrcke-Platte Elektromagnet zum Zeeman-Effekt Universal-Drossel zu Hochstrom-Netzgerät Experimentierkabel mit Leiterquerschnitt 2,5 mm 2 In einem Magnetfeld spaltet das Niveau 1 D 2 in fünf und das Niveau 1 P 1 in drei Zeeman-Komponenten mit dem in Gleichung (V) berechneten Abstand auf. Optische Übergänge zwischen diesen Niveaus sind nur in Form von elektrischer Dipolstrahlung möglich. Dabei gelten folgende Auswahlregeln für die magnetischen Quantenzahlen M J der beteiligten Zustände: = ±1 für -Komponenten M J = 0 für -Komponenten (VI) Man beobachtet also insgesamt drei Spektrallinien (siehe Fig. 1), von denen die -Komponente unverschoben bleibt und die beiden -Komponenten um f = ± E (VII) h gegenüber der Ausgangsfrequenz verschoben sind. E ist hier die in (V) berechnete äquidistante Energieaufspaltung. Winkelverteilung und Polarisation Je nach ihrer Drehimpulskomponente M J in Magnetfeldrichtung weisen die emittierten Photonen unterschiedliche Winkelverteilungen auf. Fig. 2 zeigt die Winkelverteilungen als zweidimensionale Polardiagramme. Sie können experimentell beobachtet werden, da das Magnetfeld eine gemeinsame Achse für alle Cadmium-Atome auszeichnet. Der Fall M J = 0 entspricht im klassischen Bild dem parallel zum Magnetfeld schwingenden Hertzschen Dipol. In Magnetfeldrichtung werden keine Quanten ausgesandt, d.h. die - Komponente kann parallel zum Magnetfeld nicht beobachtet werden. Das senkrecht zum Magnetfeld abgestrahlte Licht ist linear polarisiert, wobei der E-Vektor in Dipolrichtung bzw. parallel zum Magnetfeld schwingt (siehe Fig. 3). Umgekehrt gehen im Fall M J = ±1 die meisten Quanten in die Magnetfeldrichtung. Im klassischen Bild entspricht dieser Fall zwei zueinander senkrechten Dipolen, die mit einer Phasendifferenz von 90 schwingen. Die Überlagerung der beiden Dipole ergibt einen Kreisstrom. In Magnetfeldrichtung wird daher zirkular polarisiertes Licht abgestrahlt, und zwar in positiver Feldrichtung für M J = +1 rechts zirkulares und für M J = 1 links zirkulares (siehe Fig. 3). Sicherheitshinweise Die elektrischen Zuleitungen an der Cadmiumlampe und die Widerstände der Zündelektroden sind frei zugänglich. Berührung der stromführenden Teile vermeiden. Die Lummer-Gehrcke-Platte ist mit äußerstes Präzision in Bezug auf Parallelität und Ebenheit ihrer Oberflächen gefertigt. Lummer-Gehrcke-Platte auf keinen Fall durch Biegung oder auf andere Art mechanisch beanspruchen. Lummer-Gehrcke-Platte nur von der Seite her anfassen. Beim Einbau der Lummer-Gehrcke-Platte darauf achten, daß die Platte auf der gesamten Länge im Halter gleichmäßig unterstützt wird. Zum Transport der Apparatur die Lummer-Gehrcke- Platte aus dem Halter nehmen und an einem sicheren Ort aufbewahren. Lose ferromagnetische Gegenstände können vom Elektromagneten mit großer Kraft angezogen werden und den Quarzkolben der Cadmiumlampe beschädigen. Vor Einschalten des Magnetstroms kontrollieren, ob die Polschuhe fest angeschraubt sind. Bei eingeschaltetem Magnetstrom nicht mit ferromagnetischen Gegenständen in der Nähe der Cadmiumlampe hantieren. Der Quarzkolben der Cadmiumlampe wird nach Ablagerung von Hautfett bei Erwärmung zerstört. Quarzkolben der Cadmiumlampe niemals mit bloßen Händen anfassen. Fig. 2: Fig. 3: Winkelverteilungen der elektrischen Dipolstrahlung ( M J : Drehimpulskomponenten der emittierten Photonen in Magnetfeldrichtung) Übersichtsdarstellung zur Polarisation der Zeemankomponenten Spektroskopie der Zeeman-Komponenten Durch den Zeeman-Effekt wird die spektroskopische Trennung der unterschiedlich polarisierten Komponenten ermöglicht. Zum Nachweis der Verschiebung ist allerdings ein Spektralapparat mit sehr hoher Auflösung erforderlich, denn die beiden -Komponenten der roten Cadmium-Linie werden z.b. bei einer magnetischen Flußdichte B = 1 T nur um f = 14 GHz bzw. um = 0,02 nm verschoben. Im Experiment wird eine Lummer-Gehrcke-Platte eingesetzt. Sie ist mit äußerstes Präzision in bezug auf Parallelität und Ebenheit ihrer Oberflächen gefertigt. Das in vertikaler Richtung 2

3 LD Handblätter Physik P divergente Licht tritt durch einen waagerechten Spalt über ein aufgekittetes Prisma in eine lange planparallele Glasplatte (siehe Fig. 4). Im Inneren der Platte wird das Licht mehrfach hin und her reflektiert, wobei jedesmal ein Teil austritt. Bei Beobachtung unter 90 erfolgt die Reflexion im Platteninneren nahezu unter dem Grenzwinkel der Totalreflexion. Dadurch ist ein hoher Reflexionskoeffizient gewährleistet, d.h. es können viele Strahlen miteinander interferieren, wenn die Plattenlänge ausreicht. Die austretenden Strahlen werden hinter der Platte mit einem auf unendlich eingestellten Fernrohr beobachtet. Zu einer Wellenlänge findet man oberhalb und unterhalb der Platte zwei spiegelsymmetrisch identische Systeme aus horizontalen Interferenzstreifen. Jedem Interferenzstreifen ist eine Austrittsrichtung der Teilstrahlen aus der Lummer-Gehrcke und eine Eintrittsrichtung in das Prisma zuzuordnen. Die unter einem Winkel k austretenden Strahlen interferieren konstruktiv miteinander, wenn zwei benachbarte Strahlen die Interferenzbedingung für Kurven gleicher Neigung erfüllen (siehe Fig. 4): = 2d n 2 sin 2 k = k mit k = 1, 2, 3, (VIII) ( = optischer Gangunterschied, d = Plattendicke, n = Brechzahl des Glasmaterials, k = Interferenzordnung) Eine Änderung der Wellenlänge um macht sich als Verschiebung der Interferenzstreifen um einen Winkel bemerkbar. Enthält eine Spektrallinie mehrere Komponenten mit dem Abstand, so wird jeder Interferenzstreifen in entsprechend viele Komponenten mit dem Abstand aufgespaltet. Man erkennt also ein Spektrallinien-Dublett an einer Dublettstruktur und ein Spektrallinien-Triplett an einer Triplettstruktur in den Interferenzstreifen. Fig. 4: Aufbau Lummer-Gehrcke-Platte als Interferenzspektrometer. (als durchgezogene Linien eingezeichnet ist der Strahlengang für den Eintrittswinkel = 0 ). Der optische Gangunterschied zweier benachbarter austretender Strahlen beträgt = n 1 2. Erstmaliger Aufbau: Fig. 5 zeigt den kompletten Aufbau in transversaler Konfiguration. Elektromagnet zum Zeeman-Effekt auf der Grundplatte der Beobachtungsoptik montieren; beim Festziehen der Sechskantschraube (SW 27) unter der Grundplatte darauf achten, daß sich der Elektromagnet mit etwas Kraftaufwand noch auf der Grundplatte drehen läßt. Polschuhe des Elektromagneten (a) mit 10 mm Abstand aufsetzen. Fig. 5: Versuchsaufbau zum Zeeman-Effekt in transversaler Konfiguration a Polschuhe b Cadmiumlampe mit Halterung c Steckfassung für Rotfilter d Abdeckhaube e Fernrohr f Okular g Höhenverstellung des Fernrohrs h Feststellschraube für Säule i Feststellschraube für Säulenfuß 3

4 P LD Handblätter Physik Fig. 6: Aufbau in transversaler Konfiguration (oben) und in longitudinaler Konfiguration (unten), von oben betrachtet d1 Halter mit Viertelwellenlängenfolie e1 Halter mit Polarisationsfolie Halterung der Cadmiumlampe (b) mit der Öffnung zu den elektrischen Anschlüssen des Elektromagneten drehen. Polschuhe und Halterung der Cadmiumlampe über Spannbänder mit Feststellschrauben fixieren. Spektrallampe mit der Abschmelzstelle des Lampenkolbens auf die Seite der elektrischen Anschlüsse drehen, so daß die elektrischen Zuleitungen den Strahlengang nicht behindern. Säule der Beobachtungsoptik mit Säulenfuß zunächst in möglichst großem Abstand zum Elektromagnet festschrauben. Abdeckhaube (d) entfernen und Lummer-Gehrcke-Platte vorsichtig in die mit Velourfolie ausgelegte Auflage legen; darauf achten, daß die Platte horizontal ausgerichtet ist und auf der gesamten Länge gleichmäßig unterstützt wird; das Prisma möglichst nah zur Lichteintrittseite schieben. Abdeckhaube mit dem zylindrischen Ansatz zum Fernrohr (e) drehen und vorsichtig aufsetzen, ohne die Lummer- Gehrcke-Platte zu berühren, und die Feststellschrauben anziehen. Rotfilter mit Sammellinse in die Steckfassung (c) schieben. Zur Vermeidung von störendem Außenlicht die flexible Lichtblende auf den zylindrischen Ansatz der Abdeckhaube und den Schaumstoffring über das Fernrohr schieben. Wechsel zwischen transversaler und longitudinaler Beobachtung: Feststellschraube am Säulenfuß (i) lösen und maximalen Abstand zwischen der Säule für Beobachtungsoptik und dem Elektromagneten herstellen. Rotfilter mit Sammellinse aus der Steckfassung nehmen. Elektromagnet mit Cadmiumlampe in die gewünschte Stellung (siehe Fig. 6) schwenken und so ausrichten, daß die Kante der Basisplatte des Elektromagneten parallel zur hinteren Kante der Grundplatte der Beobachtungsoptik liegt. Rotfilter mit Sammellinse in die Steckfassung schieben. Minimalen Abstand zwischen der Säule für Beobachtungsoptik und dem Elektromagneten herstellen. Elektrischer Anschluß: Cadmiumlampe an Universaldrossel anschließen; nach dem Einschalten 5 min bis zur hinreichend starken Lichtemission warten. Spulen des Elektromagneten parallel beschalten (Buchse 1 mit Buchse 3 sowie Buchse 2 mit Buchse 4 verbinden) und an das Hochstrom-Netzgerät anschließen. Justierung der Beobachtungsoptik: Höhe der Beobachtungsoptik in longitudinaler Konfiguration justieren und beim Umschwenken in transversale Konfiguration nicht mehr ändern. Die Beobachtungsoptik ist optimal justiert, wenn das horizontale rote Interferenzstreifenmuster oberhalb und unterhalb der Lummer-Gehrcke-Platte möglichst hell und kontrastreich ist. Okular des Fernrohrs (f) entfernen und zur Optimierung von Helligkeit und Kontrast des Interfernzstreifenmusters abwechselnd 4

5 LD Handblätter Physik P a) die gesamte Beobachtungsoptik auf der Grundplatte in Rechts-Links-Richtung verschieben und schwenken (fixieren mit Feststellschraube (i)) b) die Höhe der gesamte Beobachtungsoptik relativ zur Cadmiumlampe bzw. zum Bohrloch in den Polschuhen einstellen (fixieren mit Feststellschraube (h)) Evtl. zur Verbesserung der Helligkeit und des Kontrasts der Streifen die gesamte Abdeckhaube bzw. das Rotfilter mit Sammellinse in der Steckfassung anheben. Meßbeispiel und Auswertung a) Beobachtung in transversaler Konfiguration: Feinjustierung: Wird das Fernrohr genau auf das hintere Ende der Lummer- Gehrcke-Platte gerichtet, so erscheinen die Interferenzstreifen symmetrisch nach oben und unten verteilt. Der Streifenabstand nimmt nach außen ab. Zur Beobachtung am besten geeignet sind die hellen inneren Streifen. Okular gegen das Licht halten und das Fadenkreuz scharf stellen. Okular in den Tubus des Fernrohrs einsetzen und durch Verschieben des Okulars Interferenzstreifen scharf einstellen. Durchführung Hinweis: Die Polarisationsfolie ist etwas dunkler als die Viertelwellenlängenfolie. a) Beobachtung in transversaler Konfiguration: zunächst das Interferenzstreifenmuster ohne Magnetfeld (I = 0 A) beobachten und durch Ausrichten des Fernrohrs das Fadenkreuz des Okulars mit einem Interferenzstreifen zur Deckung bringen. Magnetstrom langsam auf etwa I = 10 A erhöhen, bis die aufgespaltenen Streifen deutlich voneinander getrennt sind. Zur Unterscheidung zwischen - und -Komponenten: Schaumstoffring über den Halter der Polarisationsfolie schieben. Halter mit Polarisationsfolie (e1) auf das Fernrohr stecken (siehe Fig. 6) und um die Beobachtungsachse drehen, bis die mittlere Komponente der Streifentripletts verschwindet. Halter mit Polarisationsfolie um weitere 90 drehen, bis die beiden äußeren Komponenten der Streifentripletts verschwinden. b) Beobachtung in longitudinaler Konfiguration: Zunächst das Interferenzstreifenmuster ohne Magnetfeld (I = 0 A) beobachten und durch Ausrichten des Fernrohrs das Fadenkreuz des Okulars mit einem Interferenzstreifen zur Deckung bringen. Magnetstrom langsam auf etwa I = 10 A erhöhen und Änderung des Streifenmusters beobachten. Zur Unterscheidung zwischen + - und -Komponente: die flexible Lichtblende auf den Halter der Viertelwellenlängenfolie schieben. Halter mit Viertelwellenlängenfolie (d1) auf den zylindrischen Ansatz der Abdeckhaube und Halter mit Polarisationsfolie (e1) auf das Fernrohr stecken (siehe Fig. 6). Halter mit Polarisationsfolie um die Beobachtungsachse drehen, bis eine der beiden Dublettkomponenten verschwindet, und um weitere 90 bis zur Ausblendung der anderen Komponente drehen. Fig. 7: Interferenzmuster beim Zeeman-Effekt in transversaler Konfiguration a) beobachtet ohne Polarisationsfolie b) beobachtet bei der Polarisationsrichtung der Folie senkrecht zum Magnetfeld c) beobachtet bei der Polarisationsrichtung der Folie parallel zum Magnetfeld b) Beobachtung in longitudinaler Konfiguration: Fig. 8: Interferenzmuster beim Zeeman-Effekt in longitudinaler Konfiguration a) beobachtet ohne Viertelwellenlängenfolie und Polarisationsfolie b), c) beobachtet mit Viertelwellenlängenfolie und Polarisationsfolie zum Nachweis rechts- bzw. linkszirkularer Polarisation Zusatzinformation Die summierte Intensität aller Zeeman-Komponenten ist in alle Raumrichtungen gleich. Bei transversaler Beobachtung entspricht im übrigen die Intensität der -Komponente der gesamten Intensität der beiden -Komponenten. LD DIDACTIC GmbH Leyboldstrasse 1 D Hürth Phone (02233) Telefax (02233) info@ld-didactic.de by LD DIDACTIC GmbH Printed in the Federal Republic of Germany Technical alterations reserved

6

Atom- und Kernphysik. Beobachtung des normalen Zeeman-Effekts in transversaler und in longitudinaler Konfiguration. LD Handblätter Physik P6.2.7.

Atom- und Kernphysik. Beobachtung des normalen Zeeman-Effekts in transversaler und in longitudinaler Konfiguration. LD Handblätter Physik P6.2.7. Atom- und Kernphysik Atomhülle Normaler Zeeman-Effekt LD Handblätter Physik P6.2.7.3 Beobachtung des normalen Zeeman-Effekts in transversaler und in longitudinaler Konfiguration Spektroskopie mit einem

Mehr

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke.

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke. Elektrizitätslehre Magnetostatik iot-savart-gesetz LD Handblätter Physik P3.3.4.1 Magnetfeldmessung am geraden Leiter und an kreisförmigen Leiterschleifen Versuchsziele Messung des Magnetfeldes am geraden

Mehr

Optik. Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien. LD Handblätter Physik P Wei

Optik. Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien. LD Handblätter Physik P Wei Optik Lichtgeschwindigkeit Messung mit einem periodischen Lichtsignal LD Handblätter Physik Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien P5.6.3.2 Versuchsziele Bestimmung der

Mehr

FP-Experiment E112 Protokoll Zeeman- und Paschen-Back-Effekt

FP-Experiment E112 Protokoll Zeeman- und Paschen-Back-Effekt FP-Experiment E112 Protokoll Zeeman- und Paschen-Back-Effekt Dimitri Pritzkau, Niels Räth 4. Dezember 2006 Universität Bonn Inhaltsverzeichnis 1 Theoretische Grundlagen 2 1.1 Atome in äußeren Magnetfeldern...........................

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Physikalisches Anfängerpraktikum: Versuch 607 - Der Zeeman Effekt - Korrektur

Physikalisches Anfängerpraktikum: Versuch 607 - Der Zeeman Effekt - Korrektur Physikalisches Anfängerpraktikum: Versuch 607 - Der Zeeman Effekt - Korrektur Sebastian Rollke 103095 webmaster@rollke.com und Daniel Brenner 105292 daniel.brenner@uni-dortmund.de durchgeführt am 28.Juli

Mehr

FP-Versuch E112 Zeeman- und Paschen-Back-Effekt

FP-Versuch E112 Zeeman- und Paschen-Back-Effekt FP-Versuch E112 Zeeman- und Paschen-Back-Effekt Martin Urban, Philipp Wilking 17. Oktober 2007 In diesem Versuch soll das Verhalten von Atomen im äußeren Magnetfeld beobachtet werden. Wir messen die Zeeman-Aufspaltung

Mehr

Physikalisches Institut der Universität Bern. Praktikum für Fortgeschrittene ZEEMAN-EFFEKT

Physikalisches Institut der Universität Bern. Praktikum für Fortgeschrittene ZEEMAN-EFFEKT Physikalisches Institut der Universität Bern Praktikum für Fortgeschrittene ZEEMAN-EFFEKT Versuchsanleitung September 1987 Juni 005 B Theorie Die für das Verständnis notwendigen Grundlagen sind vor der

Mehr

Zeeman-Effekt. Abb. 1: Natrium D-Linien, hoch aufgelöst mit Selbstabsorptionsminima im Zentrum

Zeeman-Effekt. Abb. 1: Natrium D-Linien, hoch aufgelöst mit Selbstabsorptionsminima im Zentrum Zeeman-Effekt Abb. 1: Natrium D-Linien, hoch aufgelöst mit Selbstabsorptionsminima im Zentrum Geräteliste: Na-Dampf-Lampe, Regeltransformator, Stativmaterial, Blende, Linsen ( f = 5000mm, f = 100mm, 2

Mehr

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 26. April 2004 Made

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Simon Lewis Lanz 2015 simonlanzart.de Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Zeeman-Effekt, Paschen-Back-Effekt, Fein- und Hyperfeinstrukturaufspaltung Fließt elektrischer Strom

Mehr

Atom- und Kernphysik. Optisches Pumpen: Beobachtung des Pumpsignals. LD Handblätter Physik P Atomhülle Optisches Pumpen.

Atom- und Kernphysik. Optisches Pumpen: Beobachtung des Pumpsignals. LD Handblätter Physik P Atomhülle Optisches Pumpen. Atom- und Kernphysik Atomhülle Optisches Pumpen LD Handblätter Physik P6..8. Optisches Pumpen: Beobachtung des Pumpsignals Versuchsziel g Beobachtung des Pumpsignals bei schneller Umpolung des Zeeman-Magnetfeldes.

Mehr

Physikalisches Praktikum A9 Zeeman-Effekt

Physikalisches Praktikum A9 Zeeman-Effekt Physikalisches Praktikum A9 Zeeman-Effekt Literatur /1/ T.Mayer-Kuckuk Atomphysik /2/ PHYWE Versuchsanleitung Zeeman Effect with CMOS-Camera 1. Grundlagen Im Wasserstoffatom bewegt sich das Elektron im

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (7 Punkte) a)

Mehr

Zeeman Effekt und Fabry Pérot Interferometer

Zeeman Effekt und Fabry Pérot Interferometer Universität Potsdam Institut für Physik und Astronomie Physikalisches Praktikum für Fortgeschrittene 2012 A 1 Zeeman Effekt und Fabry Pérot Interferometer 1 Einleitung Michael Faraday war davon überzeugt,

Mehr

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM WS 2000 / 2001 Protokoll zum Thema WELLENOPTIK Petra Rauecker 9855238 INHALTSVERZEICHNIS 1. Grundlagen zu Polarisation Seite 3 2. Versuche zu Polarisation Seite 5

Mehr

Versuche zur Dispersion

Versuche zur Dispersion Versuche zur Dispersion. August 006 1 Grundlagen 1.1 Historische Angaben Das Brechungsgesetz wurde zuerst von WILLIBROD SNELL VAN ROYEN (SNELLIUS) 161 entdeckt und von RENE DESCARTES (CARTESIUS) 163 in

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005 PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 00 Assistent Florian Jessen Tübingen, den. Oktober 00 1 Vorwort In diesem Versuch ging es um das Phänomen der Doppelbrechung

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Vorgeschrittenenpraktikum Anomaler Zeemaneffekt

Vorgeschrittenenpraktikum Anomaler Zeemaneffekt Vorgeschrittenenpraktikum Anomaler Zeemaneffekt Rüdiger Reitinger David Neubauer WS 2004/05 1 Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 4 2.1 Normaler Zeemaneffekt............................ 4 2.2 Anomaler

Mehr

Elektrizitätslehre. Feldverlauf und Polarisation von Mikrowellen vor einer Hornantenne. LD Handblätter Physik P Bb/Sel.

Elektrizitätslehre. Feldverlauf und Polarisation von Mikrowellen vor einer Hornantenne. LD Handblätter Physik P Bb/Sel. Elektrizitätslehre Elektromagnetische Schwingungen und Wellen Mikrowellen LD Handblätter Physik P3.7.4.1 Feldverlauf und Polarisation von Mikrowellen vor einer Hornantenne Versuchsziele Messung des transversalen

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3.

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3. Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld LD Handblätter Physik P3.4.3.1 Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Inhalt 1. Grundlagen 1.1 Interferenz 1.2 Das Mach-Zehnder- und das Michelson-Interferometer 1.3 Lichtgeschwindigkeit und Brechzahl

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

Mechanik. Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen. LEYBOLD Handblätter Physik P

Mechanik. Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen. LEYBOLD Handblätter Physik P Mechanik Translationsbewegungen des Massenpunktes Eindimensionale Bewegungen auf der Rollenfahrbahn LEYBOLD Handblätter Physik Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen P1.3.2.4 Aufzeichnung

Mehr

Gebrauchsanweisung Martin Henschke, Fresnel-Spiegel Art.-Nr.:

Gebrauchsanweisung Martin Henschke, Fresnel-Spiegel Art.-Nr.: Gerätebau - Physikalische Lehrmittel Dr. Martin Henschke Gerätebau Dieselstr. 8, D-50374 Erftstadt www.henschke-geraetebau.de Gebrauchsanweisung Martin Henschke, 2006-05-16 Fresnel-Spiegel Art.-Nr.: 650272

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

Physikalisches Praktikum O 3 Interferenz

Physikalisches Praktikum O 3 Interferenz Physikalisches Praktikum O 3 Interferenz Versuchsziel Untersuchung von Interferenzerscheinungen. Literatur /1/ E. Hecht Optik /2/ Bergmann/Schäfer Band 3, Optik /3/ P. Tipler/G. Mosca Physik /4/ LD Didactic

Mehr

1.6 Michelson-Interferometer und Newtonsche Ringe

1.6 Michelson-Interferometer und Newtonsche Ringe Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen

Mehr

Zeemann - Effekt, Paschen-Back - Effekt

Zeemann - Effekt, Paschen-Back - Effekt Zeemann - Effekt, Paschen-Back - Effekt Abstract. Wir beobachten in diesem Versuch den Zeemann - Effekt am Spektrum einer Cadmium Lampe, und den Paschen-Back - Effekt an Helium-Linien. Da wir diese Aufspaltung

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O07 Michelson-Interferometer (Pr_PhII_O07_Michelson_7, 5.10.015) 1.. Name Matr. Nr. Gruppe

Mehr

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen

Mehr

Polarisation durch Doppelbrechung

Polarisation durch Doppelbrechung Version: 27. Juli 24 O4 O4 Polarisation durch Doppelbrechung Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene,

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt -II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man

Mehr

Interferometer OPL 29

Interferometer OPL 29 Interferometer OPL 29 Material: 1 Interferometer nach Michelson DL408-2I 1 Rundfuß mit Klemmsäule DS100-1R Theoretische Grundlagen: Beim Interferometer nach Michelson wird das von der Lichtquelle L kommende

Mehr

Polarisationsapparat

Polarisationsapparat 1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist

Mehr

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2

Mehr

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit IU3 Modul Universalkonstanten Lichtgeschwindigkeit Die Vakuumlichtgeschwindigkeit beträgt etwa c 3.0 10 8 m/s. Sie ist eine Naturkonstante und soll in diesem Versuch bestimmt werden. Weiterhin wollen wir

Mehr

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode. LD Handblätter Physik P

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode P6.3.6.1 Versuchsziele Untersuchung der charakteristischen

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

Abitur 2006: Physik - Aufgabe I

Abitur 2006: Physik - Aufgabe I Abitur 2006: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2006 Aufgabe : I a) Im

Mehr

Aufspaltung von Spektrallinien im Magnetfeld. Aineah Wekesa Barasa und Patrick Janassek Betreuer: Datum: 26.05.2014

Aufspaltung von Spektrallinien im Magnetfeld. Aineah Wekesa Barasa und Patrick Janassek Betreuer: Datum: 26.05.2014 Aufspaltung von Spektrallinien im Magnetfeld Aineah Wekesa Barasa und Patrick Janassek Betreuer: Datum: 26.05.2014 Inhaltsverzeichnis 1 Einleitung.............................................................

Mehr

Experimentierfeld 5. Optisches Präzisionsinterferometer. 1. Sicherheitshinweise. 2. Beschreibung und Bedienung der Geräte

Experimentierfeld 5. Optisches Präzisionsinterferometer. 1. Sicherheitshinweise. 2. Beschreibung und Bedienung der Geräte Experimentierfeld 5 Optisches Präzisionsinterferometer 1. Sicherheitshinweise Laserstrahlen können in biologisches Gewebe insbesondere die Netzhaut des Auges schädigen. Der im Experiment verwendete HeNe-Laser

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Planspiegelinterferometer

Planspiegelinterferometer B Planspiegelinterferometer Das Planspiegelinterferometer des ZLM 700 stellt für viele spezielle linear-messtechnische Aufgaben, die eine höhere Auflösung verlangen, eine optimale Lösung dar. Bei der Weg

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Demonstrations-Laseroptik-Satz U17300 und Ergänzungssatz U17301 Bedienungsanleitung 1/05 ALF Inhaltsverzeichnung Seite Exp - Nr. Experiment Gerätesatz 1 Einleitung 2 Leiferumfang

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Atom und Kernphysik. Elektronenspinresonanz an DPPH. LD Handblätter Physik P6.2.6.2. 1109-Sel/Wei. Atomhülle Elektronenspinresonanz (ESR)

Atom und Kernphysik. Elektronenspinresonanz an DPPH. LD Handblätter Physik P6.2.6.2. 1109-Sel/Wei. Atomhülle Elektronenspinresonanz (ESR) Atom und Kernphysik Atomhülle Elektronenspinresonanz (ESR) LD Handblätter Physik P6.2.6.2 Elektronenspinresonanz an DPPH Bestimmung des Magnetfeldes in Abhängigkeit von der Resonanzfrequenz Versuchsziele

Mehr

Montageanleitung. Side-by-Side Kombination SBS

Montageanleitung. Side-by-Side Kombination SBS Montageanleitung Side-by-Side Kombination 211216 7085626-00 SBS... Allgemeine Sicherheitshinweise Inhalt 1 Allgemeine Sicherheitshinweise... 2 2 Aufstellmaße... 2 3 Side-by-Side Montage... 2 Gerätebezeichnung

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Versuch Polarisiertes Licht

Versuch Polarisiertes Licht Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise

Mehr

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................

Mehr

Der Zeeman - Eekt. Matthias Lütgens und Christoph Mahnke. 16. November 2005. betreut von Herrn Toral Ziems. Versuch durchgeführt am 10./11.11.

Der Zeeman - Eekt. Matthias Lütgens und Christoph Mahnke. 16. November 2005. betreut von Herrn Toral Ziems. Versuch durchgeführt am 10./11.11. Der Zeeman - Eekt Matthias Lütgens und Christoph Mahnke 16. November 2005 betreut von Herrn Toral Ziems Versuch durchgeführt am 10./11.11.2005 1 Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen 3 2.1 Das

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Thüringer Kultusministerium Abiturprüfung 1995 Physik als Grundfach (Haupttermin) Hinweise für die Prüfungsteilnehmerinnen und Prüfungsteilnehmer Arbeitszeit: Einlesezeit: Hilfsmittel: 180 Minuten 30 Minuten

Mehr

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Versuch: Spannungsoptik 1. Spannungsoptik eine Einleitung Spannungsoptik

Mehr

POLARISATION. Von Carla, Pascal & Max

POLARISATION. Von Carla, Pascal & Max POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium Fachbereich Physik Physikalisches Praktikum I Name: Polarisation durch ein optisch aktives Medium Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser

Mehr

Optische Spektroskopie

Optische Spektroskopie O10 Optische Spektroskopie Zwei gebräuchliche Elemente, mit denen man optische Spektren erzeugen kann, sind das Prisma und das Beugungsgitter. Um einfache spektroskopische Messungen durchzuführen, werden

Mehr

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie E B z I I p I u I I p 2 I u teilweise polarisiert unpolarisiertes Licht: Licht transversale, elektromagnetische Welle Schwingung senkrecht zur Ausbreitungsrichtung elektr. Feldstärke E und magnet. Feldstärke

Mehr

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

08 Aufgaben zur Wellenoptik

08 Aufgaben zur Wellenoptik 1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im

Mehr

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse

Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse O2 Spektroskopie Stoffgebiet: Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse Versuchsziel: Durch Untersuchung der Beugung am

Mehr

Versuch 21: Das Lambert-Beersche Gesetz und Grundlagen optischer Spektroskopie

Versuch 21: Das Lambert-Beersche Gesetz und Grundlagen optischer Spektroskopie Versuch 21: Das Lambert-Beersche Gesetz und Grundlagen optischer Spektroskopie Verschiedene Materialien sollen bezüglich ihrer brechenden und absorbierenden Eigenschaften gegenüber elektromagnetischen

Mehr

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V.

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. ZfP-Sonderpreis der DGZfP beim Landeswettbewerb Jugend forscht SAARLAND Versuche zu linear polarisiertem Licht Jaqueline Schriefl Manuel Kunzler

Mehr

Michelson-Interferometer

Michelson-Interferometer D02a Sie werden ein (MI) kenne lernen und justieren. Mit einem MI lassen sich Wegdifferenzen mit einer Genauigkeit in nm-bereich (Lichtwellenla nge λ) messen. Schriftliche VORbereitung: Was versteht man

Mehr

Fortgeschrittenenpraktikum im WS 02/03 E112: Zeeman- und Paschen-Back-Effekt. Christian Sandow & Iris Rottländer Gruppe 7

Fortgeschrittenenpraktikum im WS 02/03 E112: Zeeman- und Paschen-Back-Effekt. Christian Sandow & Iris Rottländer Gruppe 7 Fortgeschrittenenpraktikum im WS 02/03 E112: Zeeman- und Paschen-Back-Effekt Christian Sandow & Iris Rottländer Gruppe 7 Universität Bonn, 24. Oktober 2002 Inhaltsverzeichnis 1 Thema des Versuchs 2 2 Theoretische

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Nachweis von Reflexions- und Brechungsgesetz Bestimmung des renzwinkels der Totalreflexion Klasse : Name : Datum : Versuchsziel : Im ersten Versuch soll zunächst das Reflexionsgesetz erarbeitet (bzw. nachgewiesen)

Mehr

Bedienungsanleitung für Einsteiger Teleskop Refraktor M-70060

Bedienungsanleitung für Einsteiger Teleskop Refraktor M-70060 Bedienungsanleitung für Einsteiger Teleskop Refraktor M-70060 Warnung Das Teleskop darf nicht auf die Sonne gerichtet werden! Dadurch können ernsthafte Verletzungen am Auge entstehen. Kinder Müssen von

Mehr

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls 2.2. Der Spin 2.2.1. Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls Dies entspricht einem Kreisstrom. n r r I e Es existiert ein entsprechendes magnetisches

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Praktikum für Fortgeschrittene I Wintersemester 2003/2004. Protokoll zum Versuch 2. Der Zeeman-Effekt

Praktikum für Fortgeschrittene I Wintersemester 2003/2004. Protokoll zum Versuch 2. Der Zeeman-Effekt Praktikum für Fortgeschrittene I Wintersemester 2003/2004 Protokoll zum Versuch 2 Der Zeeman-Effekt Christian Dehne Sebastian Fleischmann Versuchsdatum: 26. Januar 2004 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Hund Gebrauchsanweisung 575 471 Zählgerät S (575 471) 1 Beschreibung Das Zählgerät S ist ein Messgerät zur Zählung von Zählrohrimpulsen, Impulsraten oder anderen elektrischen Signalen sowie zur

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek). 31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel

NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel OPTIK Elektromagnetische Wellen Grundprinzip: Beschleunigte elektrische Ladungen strahlen. Licht ist eine elektromagnetische Welle. Hertzscher Dipol Ausbreitung der Welle = der Schwingung Welle = senkrecht

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr