Worksheet zur Hauptachsentransformation

Größe: px
Ab Seite anzeigen:

Download "Worksheet zur Hauptachsentransformation"

Transkript

1 Worksheet zur Hauptachsentransformation with(linearalgebra): with(plots): Die Gleichungen fuer Kreise, Ellipsen und Hyperbeln sind (mehr oder weniger) bekannt: der Einheitskreis besteht aus den Punkten ( ) der Ebene mit. Genauso ist die Gleichung einer Hyperbel, die Gleichung einer Ellipse mit Halbachsen. Wir zeichnen diese Kurven: implicitplot(x^2+y^2-1,x=-1..1,y=-1..1,scaling=constrained); y 0 x implicitplot(x^2-y^2-1,x=-4..4,y=-4..4,scaling=constrained);

2 3 y x implicitplot(x^2/3+y^2-1,x=-3..3,y=-1..1,scaling=constrained);

3 y x 1 Ellipsen, Parabeln und Hyperbeln werden auch Kegelschnitte genannt; der Grund dafuer ist, dass diese Kurven als Schnittlinien auftreten, wenn man einen Kegel mit Ebenen verschiedener Neigung schneidet. Um das zu sehen, definieren wir zunaechst einen Kegel; die Plotstrukturen wkegel und pkegel unterschieden sich nur in der Art der Darstellung. wkegel:=implicitplot3d(x^2+y^2-z^2,x= ,y= ,z= , scaling=constrained,numpoints=30000,style=wireframe): pkegel:=implicitplot3d(x^2+y^2-z^2,x= ,y= ,z= , scaling=constrained,numpoints=30000,style=patchcontour): Anschliessend definieren wir Ebenen verschiedener Neigung: ebene1:=implicitplot3d(z=5,x= ,y= ,z=-2..6): ebene3:=implicitplot3d(z=1-x,x= ,y=-5..5,z= ): pngebene3:=implicitplot3d(z=1-x,x= ,y=-5..5,z= , style=patchnogrid): ebene2:=implicitplot3d(z=-x/2+3,x= ,y= ,z= ): ebene4:=implicitplot3d(x=2,x=-5..5,y=-5..5,z= ): Jetzt bringen wir die Ebenen mit dem Kegel zum Schnitt; als Schnittkurven erhalten

4 wir nacheinander Kreis, Ellipse, Parabel, Hyperbel. display(wkegel,ebene1); display(pkegel,ebene2);

5 display(pkegel,ebene3);

6 display(pkegel,ebene4,orientation=[30,105]);

7 Die Parabel zeichnen wir auch noch als parametrisierte Raumkurve, dafuer eliminieren wir zunaechst eine Variable aus den beiden solve({x^2+y^2-z^2=0,z=1-x}); curve:=spacecurve([-w^2/2+1/2,w,(1/2+w^2/2)],w=-5..5,color=black) : display(pngebene3,curve);

8 Wir definieren jetzt symmetrische 2 x 2 -Matrizen; ist A eine dieser Matrizen, so ist die Gleichung einer der ebenen Kurven von oben, und zwar fuer K ein Kreis, fuer E eine Ellipse, fuer H und fuer H3 eine Hyperbel. H:=<<1,0 <0,-1; K:=<<1,0 <0,1; E:=<<1,0 <0,3; H3:=<<3,0 <0,-1;

9 Die Matrix t ist die Matrix der Drehung um 45 Grad, hier benutzt als die Matrix des Uebergangs zu einem um 45 Grad gedrehten Koordinatensystems. Die Matrix der bezueglich der Standardbasis durch E gegebenen Bilinearform bezueglich der neuen Basis ist E1. t:=<<sqrt(2)/2,-sqrt(2)/2 <sqrt(2)/2,sqrt(2)/2; E_1:=Transpose(t). E. t; Wir betrachten jetzt die durch diese Matrizen (wie oben) gegebenen quadratischen Polynome und zeichnen die Nullstellengebilde der zugehoerigen Gleichungen. Zunaechst fuer die Matrizen E, E1; dem Polynom zu E1 sieht man schon nicht mehr so direkt an, welche geometrische Figur man als Nullstellengebilde erhaelt: xv:=<x[1],x[2]; b0:=expand(bilinearform(xv,xv,e,conjugate=false)); b1:=expand(bilinearform(xv,xv,e_1,conjugate=false)); p0:=implicitplot( b0-3, x[1]=-3..3,x[2]=-3..3,numpoints=2000): display(p0);

10 x x 1 p1:=implicitplot( b1-3, x[1]=-3..3,x[2]=-3..3,numpoints=2000): display(p1);

11 1 x x 1 Wir zeichnen jetzt noch die Hauptachsen der gedrehten Ellipse ein. achsen:=implicitplot(x1^2-x2^2,x1= ,x2= ,color= blue,numpoints=1000): display(p1,achsen,scaling=constrained);

12 1 x x 1 Jetzt machen wir dasselbe fuer H und fuer H3, auch den Polynomen fuer H_1 und fuer H_3 sieht man nicht direkt an, welche Kurven man erhaelt: H; H_1:=Transpose(t). H. t; H3; H3_1:=Transpose(t). H3. t;

13 b2:=expand(bilinearform(xv,xv,h3_1,conjugate=false)); p2:=implicitplot( b2-3, x[1]=-3..3,x[2]=-3..3): display(p2,achsen,scaling=constrained); 3 2 x x 1 b3:=expand(bilinearform(xv,xv,h_1,conjugate=false)); p3:=implicitplot( b3-3, x[1]=-3..3,x[2]=-3..3): display(p3,achsen,scaling=constrained);

14 3 2 x x 1 Zum Abschluss zeichnen wir auch noch eine Parabel. implicitplot( x1^2-2*x2, x1=-3..3,x2=-3..3);

15 3 2 x x1 Und weil's so schoen war, zeichnen wir auch noch ein paar der zugehoerigen Rotationskoerper, die natuerlich auch als Quadriken gegeben sind:: Ellipsoid:=implicitplot3d(3*x^2+2*y^2+z^2=3,x=-1..1,y=-2..2,z=-2..2,scaling=constrained,numpoints=30000,style=patchcontour): display(ellipsoid);

16 Hyperboloid:=implicitplot3d(3*x^2+2*y^2-z^2=3,x=-2..2,y=-3..3,z= -2..2,scaling=constrained,numpoints=30000,style=patchcontour): display(hyperboloid);

17 Hyperboloid2:=implicitplot3d(3*x^2+2*y^2-z^2=-3,x=-3..3,y=-5..5, z=-5..5,scaling=constrained,numpoints=30000,style=patchcontour): display(hyperboloid2);

18

Ziel: Wir wollen eine gegebene Quadrik auf eine einfache Form transformieren, aus der sich ihre geometrische Gestalt unmittelbar ablesen lässt.

Ziel: Wir wollen eine gegebene Quadrik auf eine einfache Form transformieren, aus der sich ihre geometrische Gestalt unmittelbar ablesen lässt. 49 Quadriken 49.1 Motivation Quadriken (vgl. Def. 48.2) stellen eine wichtige Klasse geometrischer Objekte dar, mit Anwendungen in Computergrafik, Bildverarbeitung, Visualisierung, Physik u. a. Ziel: Wir

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 4: Kegelschnitte 4.1 Inhalte Didaktik der Linearen

Mehr

Seminar für LAGym/LAB: Analytische Geometrie

Seminar für LAGym/LAB: Analytische Geometrie Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt

Mehr

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy)

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy) Man nde die gesuchten Funktionswerte. Übung (i) f(, ) = + 3 f(, ) f(, ) f(, 3) f( 3, ) f(, ) = sin() f(, π/6) f( 3, π/) f(π, /) f( π/, 7) Übung Man nde und skizziere den enitionsbereich und nde den Wertebereich

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

5.4 Hauptachsentransformation

5.4 Hauptachsentransformation . Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems.

Mehr

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i TU Dresden Fakultät Mathematik Institut für Numerische Mathematik Lösung zur Aufgabe (b des Übungsblattes Ermitteln Sie on der folgenden Matrix alle (komplexen Eigenwerte und zu jedem Eigenwert einen zugehörigen

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort

Mehr

Inhaltsübersicht. P U n k t G -. Seite

Inhaltsübersicht. P U n k t G -. Seite Inhaltsübersicht. P U n k t G -. Die Lage eines Punktes 1 Übungen 2 Anwendungen (Hydranten, Panamakanal, Rohrleitung)... 3 Entfernung zweier Punkte. 4 Übungen 5 Berechnung geradlinig begrenzter Flächen

Mehr

Abb.1. Falls die Spitze des Kegels (bzw. Doppelkegels) nicht in der jeweiligen Schnittebene liegt, können die folgende Kurven entstehen:

Abb.1. Falls die Spitze des Kegels (bzw. Doppelkegels) nicht in der jeweiligen Schnittebene liegt, können die folgende Kurven entstehen: Kegelschnitte Ein Kegelschnitt ist eine ebene Kurve, die entsteht, wenn man die Oberfläche eines Kreiskegels bzw. Doppelkreiskegels mit einer Ebene schneidet (vgl.abb.1). Der Doppelkreiskegel seinerseits

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

12. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

12. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demirel M. Fetzer, B. Krinn M. Wied. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester / Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 4. Hauptachsentransformation

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

7.1 Bewegungen und Polynome zweiten Grades

7.1 Bewegungen und Polynome zweiten Grades Kapitel 7 Quadriken Eine Quadrik ist die Nullstellenmenge eines Polynoms in mehreren Variablen, die nur quadratisch, linear oder in gemischten Gliedern, d.h. Produkten zweier verschiedener Variablen auftreten.

Mehr

Euklidische Vektorräume

Euklidische Vektorräume ÜBUNG [00]: Lies dir sämtliche Informationen über das Begleitpraktikum II auf der Homepage durch, damit du informiert über den Ablauf bist. Beachte hierbei insbesondere die Fristen für die Anmeldung! Hinweis:

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 1. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 1. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 1. Übungsblatts 1. Wolfram Alpha: (a) Der Befehl Plot[{x^3-x,2/(3 Sqrt[3]),-2/(3 Sqrt[3]),-x,2(x+1),2(x-1)},{x,-1,1}] stellt

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 1

FK WMS: Wirtschaftsmathematik 2, Einheit 1 FK WMS: Wirtschaftsmathematik 2, Einheit 1 Markus Sinnl 1 Sprechstunde: MO, 13-14 Uhr [04/343] markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl 06.10.2014 1/18 1 basierend auf Folien

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Flächen zweiter Ordnung

Flächen zweiter Ordnung 1 Flächen zweiter Ordnung Definition: Eine Fläche zweiter Ordnung ist die Gesamtheit aller Punkte, deren Ortsvektoren x der Gleichung x T A x + p T x + f = 0 genügen, wobei x 1 x = x x 3, A = Ausführliche

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Kapitel 4. Raumkurven. 4.1 Graphische Darstellung

Kapitel 4. Raumkurven. 4.1 Graphische Darstellung Kapitel 4 Raumkurven 4.1 Graphische Darstellung Für die Darstellung von Raumkurven existiert in MAPLE der Befehl spacecurve aus der Bibliothek plots. Diesem Befehl lassen sich noch einige Parameter mitgeben.

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7 Inhaltsverzeichnis Prolog. Die Elemente des Euklid... 1 1. Euklid 2. Axiome 3. Über die Sprache der Geometrie Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung... 5 1. Affine Ebenen...

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Algebraische Kurven - Vorlesung 7. Kegelschnitte und Quadriken

Algebraische Kurven - Vorlesung 7. Kegelschnitte und Quadriken Algebraische Kurven - Vorlesung 7 Kegelschnitte und Quadriken Der Standardkegel im dreidimensionalen affinen Raum ist gegeben durch die homogene Gleichung Z 2 = X 2 + Y 2 Das kann man sich so vorstellen,

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

Über Regelflächen zweiten Grades. Von. (Als Manuskript eingegangen ans 14. Oktober 1922.)

Über Regelflächen zweiten Grades. Von. (Als Manuskript eingegangen ans 14. Oktober 1922.) Über Regelflächen zweiten Grades. Von A. KIEFER (Zürich). (Als Manuskript eingegangen ans 14. Oktober 1922.) I. Welches ist der Ort des Durchschnittspunktes derjenigen Erzeugenden eines Hyperboloids, welche

Mehr

Algebraische Kurven und Flächen

Algebraische Kurven und Flächen Matheseminar, 6. Februar 2015 Algebraische Kurven Inhalt 1 Algebraische Kurven 2 Parametrisierung 3 Algebraische Flächen Algebraische Kurven Definition Definition Eine ebene algebraische Kurve C ist die

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

Kreis, Ellipse, Hyperbel, Parabel

Kreis, Ellipse, Hyperbel, Parabel Kreis, Ellipse, Hyperbel, Parabel Hörsaalanleitung Dr. E. Nana Chiadjeu 23. 11. 2011 Kreis Die Gleichung des Kreises um den Punkt P = (α, β) (Mittelpunkt) mit dem Radius R ist durch folgende Gleichung

Mehr

Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum "Abenteuer-Universum" zusammengestellt

Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum Abenteuer-Universum zusammengestellt Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum "Abenteuer-Universum" zusammengestellt Nov. 008 Die Hauptachsentransformation einer Quadrik in zwei Variablen liefert als Ergebnis eine Normalform

Mehr

Kapitel 3. Kurven, Flächen und Solids Kurvendarstellung

Kapitel 3. Kurven, Flächen und Solids Kurvendarstellung Kapitel 3 Kurven, Flächen und Solids In diesem Abschnitt werden die mathematische Beschreibung von ebenen und räumlichen Objekten behandelt. Die Beschreibungen sind die Grundlage für die Darstellung dieser

Mehr

Mathematische Probleme, SS 2013 Montag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ x 2 + y 2 = tan 2 (β)z 2.

Mathematische Probleme, SS 2013 Montag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ x 2 + y 2 = tan 2 (β)z 2. $Id: quadratisch.tex,v 1.8 2013/08/12 09:49:46 hk Exp $ 4 Kegelschnitte Wir hatten am Ende der letzten Sitzung begonnen die sogenannten Kegelschnitte zu besprechen. Gegeben sei ein Kegel K mit halben Öffnungswinkel

Mehr

ANALYTISCHE GEOMETRIE EINE EINFÜHRUNG IN GEOMETRIE UND LINEARE ALGEBRA

ANALYTISCHE GEOMETRIE EINE EINFÜHRUNG IN GEOMETRIE UND LINEARE ALGEBRA * ANALYTISCHE GEOMETRIE EINE EINFÜHRUNG IN GEOMETRIE UND LINEARE ALGEBRA DR. GUNTER PICKERT PROFESSOR AN DER UNIVERSITÄT GIESSEN MIT 77 ABBILDUNGEN 7., DURCHGESEHENE UND ERWEITERTE AUFLAGE LEIPZIG 1976

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007 Workshops zur VO Einfu hrung in das mathematische Arbeiten im SS 2007 Kegelschnitte Evelina Erlacher 13. & 14. M arz 2007 Denken wir uns einen Drehkegel, der nach oben als auch nach unten unbegrenzt ist.

Mehr

2 Kegelschnitte, Normalformen und Konstruktion

2 Kegelschnitte, Normalformen und Konstruktion Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 8. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 3 Der Axiator Eigenschaften des Axiators Bestimmung des Kegelschnitts Geometrische Betrachtungen Dualer Kegelschnitt Pol-Polare

Mehr

Symmetrie zum Ursprung

Symmetrie zum Ursprung Symmetrie zum Ursprung Um was geht es? Betrachten wir das Schaubild einer ganzrationalen Funktion mit ungeradem Grad, z.b.: f : R R x f x = 2 15 x3 23 15 x Wertetabelle x f(x) -3 1,0-2 2,0-1 1,4 0 0 1-1,4

Mehr

Name und des Einsenders

Name und  des Einsenders Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec Andreas.Ulovec@univie.ac.at Verwenden von Dynamischer

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

8 Blockbild und Hohenlinien

8 Blockbild und Hohenlinien Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

8.Kreisdarstellung in Perspektive

8.Kreisdarstellung in Perspektive 8.Kreisdarstellung in Perspektive Kegelschnitte durch fünf Punkte Wie wir bereits wissen, läßt sich ein Kegel grundsätzlich nach 4 verschiedenen Kurven schneiden: Kreis, Ellipse, Parabel oder Hyperbel.

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Rationale Punkte auf algebraischen Kurven

Rationale Punkte auf algebraischen Kurven Rationale Punkte auf algebraischen Kurven THOMAS CHRIST, JÖRN STEUDING (Uni Würzburg) Würzburg, den 7. Oktober 2009 W-Seminare p.1/20 Kurven Kurven begegnen uns in allen Lebenslagen... p.2/20 Kurven Kurven

Mehr

DG für Kunstpädagogik

DG für Kunstpädagogik DG für Kunstpädagogik Kreisdarstellung in Perspektive Kegelschnitte durch fünf Punkte Wie wir bereits wissen, läßt sich ein Kegel grundsätzlich nach 4 verschiedenen Kurven schneiden: Kreis, Ellipse, Parabel

Mehr

11 Eigenwerte und Eigenvektoren

11 Eigenwerte und Eigenvektoren 11 Eigenwerte und Eigenvektoren Wir wissen bereits, dass man jede lineare Abbildung ϕ : K n K n durch eine n n-matri A beschreiben kann, d.h. es ist ϕ() = A für alle K n. Die Matri A hängt dabei von der

Mehr

2) Drehungen: Eine Drehung wird durch ihr Zentrum Z und ihren Drehwinkel ff bestimmet. Sei zuerst Z = O. Wir benützen Polarkoordinaten ρ und '; der Be

2) Drehungen: Eine Drehung wird durch ihr Zentrum Z und ihren Drehwinkel ff bestimmet. Sei zuerst Z = O. Wir benützen Polarkoordinaten ρ und '; der Be Kapitel III Ebene Geometrie x1. Translationen, Rotationen, Spiegelungen Wir betrachten folgende Grundtypen von Bewegungen: 1) Translationen: Eine Translation T wird durch ihren Translationsvektor ~a beschrieben:

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag Dr. Erwin Schörner 49: Lineare Algebra/Geometrie Prüfungstermin Herbst 5 Lösungsvorschlag I.. a Die in Abhängigkeit vom Parameter t R für t t A t t t R und b R t + t t + t zu betrachtende Menge F t { x

Mehr

Musterlösung zur Serie 10

Musterlösung zur Serie 10 D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 1 Prof. Giovanni Felder, Thomas Willwacher Musterlösung zur Serie 1 1. a) Zur Erinnerung: Eine Äquivalenzrelation auf einer Menge M ist eine Relation, die die

Mehr

Inhaltsverzeichnis. geometrischer Objekte auszufüllen. Die Liste der Lösungen kann auch eine ABC Liste zu diesen Themen sein.

Inhaltsverzeichnis. geometrischer Objekte auszufüllen. Die Liste der Lösungen kann auch eine ABC Liste zu diesen Themen sein. Lückentexte 1 zu den Themen: I. Der Kreis als Figur in der Ebene II. Der Kreis als Figur im Raum III. Die Kugel Multiple Choice Aufgabe zum Thema IV. Ebene Schnitte einer Kugel Kreuzworträtsel zu den Themen:

Mehr

1.5. Relationen, Abbildungen und Flächen

1.5. Relationen, Abbildungen und Flächen .5. Relationen, Abbildungen und Flächen In Verallgemeinerung der reellen Situation nennt man jede Teilmenge F eines kartesischen Produkts A B eine Relation zwischen A und B, und man spricht von einer Abbildung

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Die projektive Ebene Was sind unendlich ferne Punkte?

Die projektive Ebene Was sind unendlich ferne Punkte? Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Die allgemeine quadratische Gleichung mit zwei Unbekannten. DET (λ 1 ) 3. p = 1. Strategie und grundlegende Definitionen

Die allgemeine quadratische Gleichung mit zwei Unbekannten. DET (λ 1 ) 3. p = 1. Strategie und grundlegende Definitionen Die allgemeine quadratische Gleichung mit zwei Unbekannten 1. Strategie und grundlegende Definitionen 2. Die elliptischen Fälle 1, 2 und 3 3. Der parabolische Fall 4 4. Die entarteten Fälle 5 und 6 5.

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

A1-1 Kubische Gleichung

A1-1 Kubische Gleichung A1-1 Kubische Gleichung Wir betrachten das kubische Polynom p(x) = x 3 + a 2 x 2 + a 1 x + a 0, x R bzw. die kubische Gleichung mit reellen Koeffizienten a 0, a 1 und a 2. x 3 + a 2 x 2 + a 1 x + a 0 =

Mehr

A = Eine symmetrische Matrix ist gleich ihrer transponierten Matrix: A t = A

A = Eine symmetrische Matrix ist gleich ihrer transponierten Matrix: A t = A Hans Walser, [07] Smmetrische Matri Die Matri Wir arbeiten mit der smmetrischen Matri: A = 3 6 Eine smmetrische Matri ist gleich ihrer transponierten Matri: A t = A Die Abbildung. Verzerrungsellipse Wir

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie Lineare Algebra und analytische Geometrie von Günther Eisenreich Mit 107 Abbildungen und 2 Tabellen 3., erweiterte und berichtigte Auflage Akademie Verlag Inhaltsverzeichnis A. Allgemeine Vorbemerkungen

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 1

FK WMS: Wirtschaftsmathematik 2, Einheit 1 Markus Sinnl 2 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag. Reinhard Ullrich 2 Sprechstunde: MI, 10-11

Mehr

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen.

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen. Matrizen / ensoren - eil ensoren - zweidimensionales Beispiel um das Eigenwertproblem zu verdeutlichen hier als Beispiel ein zweidimensionales Problem die entsprechenden Matrizen und Determinanten haben

Mehr

Computational Geometry, MU Leoben

Computational Geometry, MU Leoben Computational Geometry, MU Leoben www.unileoben.ac.at Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS 2011 http://institute.unileoben.ac.at/anggeom/dg1 Übungsleiterin: S.

Mehr

Prof. Dr. Dörte Haftendorn: Mathematik mit MuPAD 4 Juli 07 Update

Prof. Dr. Dörte Haftendorn: Mathematik mit MuPAD 4 Juli 07 Update Parabel in allgemeiner Lage Beispiel Prof. Dr. Dörte Haftendorn: Mathematik mit MuPAD Juli 7 Update.7.7 Web: http://haftendorn.uni-lueneburg.de www.mathematik-verstehen.de ######################################################

Mehr

Man berechnet Paare von Punkten und trägt sie in ein xy-koordinatensystem ein.

Man berechnet Paare von Punkten und trägt sie in ein xy-koordinatensystem ein. Graphische Darstellungen von Funktionen Inhaltsverzeichnis Behandelt werden Funktionsgraphen, die durch Verschiebung von Grundfunktionen in einem zweidimensionalen kartesischem Koordinatensystem entstehen.

Mehr

Inversion an Kegelschnitten mit CINDERELLA

Inversion an Kegelschnitten mit CINDERELLA Inversion an Kegelschnitten mit CINDERELLA Hermann Vogel, TU-München In diesem Vortrag wird aufgezeigt, wie man mit Hilfe des Programms CINDERELLA die bekannte Inversion am Kreis auf die Inversion an Kegelschnitten

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

20. und 21. Vorlesung Sommersemester

20. und 21. Vorlesung Sommersemester 2. und 21. Vorlesung Sommersemester 1 Der Spezialfall fester Drehachse Aus dem Trägheitstensor sollte der früher behandelte Spezialfall fester Drehachse wieder hervorgehen. Wenn man ω = ω n mit einem Einheitsvektor

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit. Wertemenge: \W =IR

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit. Wertemenge: \W =IR WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit. Funktionen.. Die quadratische Funktion... Die quadratische Grundfunktion Wir betrachten die Gleichung = als Funktionsgleichung und bezeichnen die

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Lineare Algebra und Geometrie für Ingenieure

Lineare Algebra und Geometrie für Ingenieure Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13

Mehr

Lehrbuch der Konstruktiven Geometrie

Lehrbuch der Konstruktiven Geometrie H. Brauner Lehrbuch der Konstruktiven Geometrie Springer-Verlag Wien New York Inhaltsverzeichnis Abbildungsverfahren der Darstellenden Geometrie 1. Elementargeometrische Grundlagen 1.1. Grundbegriffe 12

Mehr

4 Kegelschnitte und Quadriken

4 Kegelschnitte und Quadriken 6. Mai 2013 4 Kegelschnitte und Quadriken 4.1 Kegelschnitte Vorbemerkung: Kegelschnitte sind ein klassisches Thema seit der antiken griechischen Mathematik. So schrieb (angeblich) Apollonios von Perge

Mehr

Planimetrie. Mit einem Abrifi über die Kegelschnitte. Ein Lehr- und Übungsbuch zum Gebrauche an technischen Mittelschulen. von. Dr.

Planimetrie. Mit einem Abrifi über die Kegelschnitte. Ein Lehr- und Übungsbuch zum Gebrauche an technischen Mittelschulen. von. Dr. Planimetrie Mit einem Abrifi über die Kegelschnitte Ein Lehr- und Übungsbuch zum Gebrauche an technischen Mittelschulen von Dr. Adolf Hess Professor am kantonalen Technikum in Winterthur Neunte Auflage

Mehr