T1 Organisatorisches - Anmeldung Projektaufgaben

Größe: px
Ab Seite anzeigen:

Download "T1 Organisatorisches - Anmeldung Projektaufgaben"

Transkript

1 Praktikum ASP Blatt 6 1 LEHRSTUHL FÜR RECHNERTECHNIK UND RECHNERORGANISATION Aspekte der systemnahen Programmierung bei der Spieleentwicklung Arbeitsblatt 6 Am ist Dies Academicus. Alle Lehrveranstaltungen entfallen. Bitte verteilen Sie sich möglichst gleichmäßig auf andere Tutorgruppen. T1 Organisatorisches - Anmeldung Projektaufgaben Sehr geehrte PraktikumsteilnehmerInnen, in der 2. Dezemberwoche werden wir die Projektaufgaben an Sie verteilen. Von Ihnen zwei Schritte notwendig: 1. Melden Sie sich bis zum (Freitag) für eine Projektgruppe an (s. unten) 2. Melden Sie sich rechtzeitig (bis zum ) für die Prüfung in TUMonline an Das Verpassen einer von beiden Terminen reicht, um das Praktikum nicht erfolgreich abschließen zu können. Anmeldung zu den Projektaufgaben Wie angekündigt, werden Sie die Projektaufgaben in 3er-Gruppen bearbeiten. Sie haben die Wahl zwischen: Anmeldung zur Projektaufgabe als 3er-Gruppe Anmeldung zur Projektaufgabe als 2er-Gruppe (drittes Gruppenmitglied wird zugewiesen) Anmeldung zur Projektaufgabe alleine (Gruppe wird zugewiesen) Bei Anmeldungen als 3er-Gruppe ist die Zuteilung als solche garantiert. Bei Anmeldungen als 2er-Gruppe versuchen wir die Teilnehmer so weit wie möglich in einer Projektgruppe zuzuordnen, können dies aber nicht garantieren. Melden Sie sich bis zum bei einem Tutor in einer der Übungen oder per . (Eine Anmeldung pro Gruppe!) Die Informationen, die von Ihrem Tutor zur erfolgreichen Anmeldung notwendig sind: Vor- und Nachname der Mitglieder adressen der entsprechenden GitLab-Accounts (

2 Praktikum ASP Blatt 6 2 Bei allen Teilnehmern, die diesen Termin nicht einhalten, gehen wir davon aus, dass Sie nicht weiter am Praktikum teilnehmen. Mit freundlichen Grüßen, Die Übungsleitung

3 Praktikum ASP Blatt 6 3 T2 Der Spieler im Casino (Anwendung) Wir werden in dieser Einheit Spieltheorie mit Statistik kombinieren, um ein Modell für ein bestimmtes Szenario beim Roulette-Spiel zu bilden. Anschließend werden wir das Modell verwenden, um numerisch einige Erkenntnisse zu erlangen zur Berechnung verwenden wir das Raspberry Pi 3. T2.1 Aufgabenstellung Ein Spieler betritt ein Casino mit 4000 Euro. Er setzt stets genau 1000 Euro beim (Französischen) Roulette auf Schwarz (Gewinn zu Einsatz = 2 : 1), unabhängig davon, ob er in der Runde zuvor gewonnen oder verloren hat. Allerdings ist der Spieler ein Fanatiker, weswegen er das Casino erst verlassen wird, wenn er entweder 7000 Euro besitzt, oder aber alles Geld verspielt hat. Mit welcher Wahrscheinlichkeit wird der Spieler als Gewinner aus dem Abend hervorgehen? T2.2 Modellbildung 1. Das obige Szenario modelliert man typischer Weise mithilfe einer Markovkette. Man kann diese darstellen als einen endlichen Automaten, mit den aktuellen Geldbeträgen als Zuständen und den Gewinnwahrscheinlichkeiten als Übergangswahrscheinlichkeiten zwischen den Zuständen. Eine einfache Markovkette für eine beliebig lange Kette an (fairen) Münzwürfen ließe sich beispielsweise so darstellen: Kopf Zahl Erstellen Sie nun eine Markovkette für den Spieler im Casino! Achten Sie darauf, dass die Wahrscheinlichkeiten an den ausgehenden Pfeilen jedes Zustands in Summe stets 1 ergeben! 2. Bilden Sie nun aus der Markovkette die Matrix der Übergangswahrscheinlichkeiten M: { p ij wenn p ij > 0 M = m ij = p ij = 0 sonst p ij bezeichne dabei die Wahrscheinlichkeit, in einem Schritt von Zustand i in Zustand j überzugehen. Offensichtlich gelten mit n als Zahl der Zustände außerdem die folgenden beiden Gleichungen:

4 Praktikum ASP Blatt 6 4 n p ij = 1 j=0 n n p ij = n. i=0 j=0 Überprüfen Sie diese Gleichungen bei Ihrem Lösungsvorschlag auf Gültigkeit! 3. Die Matrix der Übergangswahrscheinlichkeiten kann nun einfach verwendet werden, um die Wahrscheinlichkeiten nach einer beliebigen Zahl von Schritten m zu berechnen. Es gilt für die Matrix der Übergangswahrscheinlichkeiten nach m Schritten M m : M m = M m Der Eintrag (M m ) ij beträgt dann genau die Wahrscheinlichkeit vom Zustand i ausgehend nach m Schritten im Zustand j zu landen. Welcher Eintrag der Matrix M m ist in der Aufgabenstellung gesucht? 4. Der oben beschriebene Umstand ermöglicht es uns, das Ergebnis numerisch zu bestimmen: Wählen wir m nur hoch genug, können wir das System im eingeschwungenen Zustand betrachten. Im Anwendungsfall entspricht dies genau dem Verhalten des Spielers, der unendlich lange spielt, bis er entweder verloren hat, oder aber 7000 Euro besitzt. T2.3 Implementierung 1. Gegeben ist das folgende Rahmenprogramm: 1 # include < s t d i o. h> 2 # include < s t r i n g. h> 3 4 # define MATRIXSIZE 8 5 i n t main ( i n t argc, char argv ) { 6 7 f l o a t matrix [MATRIXSIZE ] [ MATRIXSIZE] = 8 { 9 / I h r e Matrix a l s 2 dimensionales C Array / 10 } ; f l o a t r e s u l t M a t r i x [MATRIXSIZE ] [ MATRIXSIZE ] ; 13 i n t i, j = 0 ; f o r ( i = 0 ; i < 8 ; i ++) { 16 _asm_matrquad(& matrix [ 0 ] [ 0 ], &r e s u l t M a t r i x [ 0 ] [ 0 ] ) ; 17 memcpy( matrix, resultmatrix, s i z e o f ( matrix ) ) ; 18 } p r i n t f ( " r e s u l t M a t r i x [%d][%d ] = \n{\n", MATRIXSIZE, MATRIXSIZE) ; 21 f o r ( i = 0 ; i < MATRIXSIZE ; i ++) { 22 p r i n t f ( " { " ) ; 23 f o r ( j = 0 ; j < MATRIXSIZE ; j ++) { 24 p r i n t f ( " %.1 f ", r e s u l t M a t r i x [ i ] [ j ] ) ;

5 Praktikum ASP Blatt ( j < MATRIXSIZE 1)? p r i n t f ( ", " ) : p r i n t f ( " " ) ; 26 } 27 ( i < MATRIXSIZE 1)? p r i n t f ( " },\n" ) : p r i n t f ( " }\n" ) ; 28 } 29 p r i n t f ( " }\n" ) ; 30 return 0 ; 31 } Listing 1: Matrix-Vorlage Diskretisieren Sie Ihre in der vorangegangenen Teilaufgabe gefundene Matrix der Übergangswahrscheinlichkeiten auf drei Nachkommastellen und fügen Sie sie anstelle des Kommentars in Zeile 8 ein. 2. Wie in T1 gezeigt, wollen wir M m für einen großen Wert m bestimmen. Nach der bekannten Formel für die Multiplikation zweier Matrizen A (m n-matrix) und B (n p-matrix) gilt für die Ergebnismatrix C (m p-matrix): C = A B n c ij = a ik b kj k=1 Wie leicht zu erkennen ist, benötigt man für jedes Element der Ergebnismatrix (c i,j ) die einzelnen Elemente in der Spalte i der Matrix b. Da ein spaltenweiser Zugriff auf den Speicher mit mehr Implementierungsaufwand verbunden ist, kann man die Formel durch das Verwenden der Transponierten Matrix T vereinfachen. Dies vereinfacht Speicherzugriffe im Assemblercode, da die Rechenvorschrift zum Multiplizieren zweier Matrizen sequentiell sowohl ganze Reihen als auch Spalten der Matrix benötigt. Frischen Sie Ihre elementaren Kenntnisse über die Multiplikation zweier Matrizen auf und berechnen Sie das folgende Beispiel. Machen Sie sich dabei klar, welche Zahlen miteinander auf welche Weise verrechnet werden Wie speichert C zweidimensionale Arrays ab? Warum stellt das Transponieren der Matrix in diesem Kontext eine Erleichterung beim Speicherzugriff dar, wenn die Matrix selbst quadriert werden soll? 4. Nutzen Sie Ihr Wissen über die Matrixmultiplikation nun, um einen Algorithmus zu entwerfen, welcher mithilfe der Transponierten das Quadrat einer gegebenen Matrix berechnet. Verwenden Sie eine Pseudo-Code-Notation Ihrer Wahl. 5. Schreiben Sie eine Funktion void _asm_matrtransp(float *input, float *result);

6 Praktikum ASP Blatt 6 6 in eine eigene Assemblerdatei, welche eine Matrix input sowie einen Zeiger auf einen entsprechend großen Speicherbereich übergeben bekommt und in result die Transponierte von input speichert. Rufen Sie Ihre Funktion vom obigen Testprogramm aus auf und überprüfen Sie die Ausgabe auf Richtigkeit! 6. Nutzen Sie nun die NEON-Befehle, um eine Assemblerfunktion void _asm_matrquad(float *input, float *result); zu schreiben, welche eine Matrix input übergeben bekommt und das Quadrat der Matrix in result zurückgibt. Der Speicherbereich für result kann im Rahmenprogramm entweder statisch oder dynamisch allokiert werden. Verwenden Sie die ARM-Dokumentation, um die passenden Befehle nachzuschlagen. Wie lautet das Ergebnis? Wie ist es im Kontext der Anwendungsaufgabe zu interpretieren? 7. Berechnen Sie den eingeschwungenen Zustand des Systems nach m = 2 8 = 256 Schritten (= Spielen!), indem Sie die Funktion _asm_matrquad entsprechend oft aufrufen und das Ergebnis result nach jedem Aufruf wieder in den Speicherbereich input kopiert. Beantworten Sie sodann mithilfe der errechneten Matrix die ursprüngliche Frage aus der Aufgabenstellung. Sind auch weitere Einträge der Matrix im Anwendungszusammenhang deutbar? Sind diese plausibel? H1 Hausaufgabe Implementieren Sie die verbleibenden Punkte aus der Tutorübung! Es besteht keine Verpflichtung, diese Hausaufgaben abzugeben. Sie dienen lediglich der Übung und werden in der folgenden Tutorstunde besprochen. Wir raten Ihnen dringend, anhand der Aufgabe auf diesem Blatt zu überprüfen, ob Sie den bisherigen Inhalt des Praktikums verstanden haben. Wir können durchaus von Ihnen erwarten, dass Sie Aufgaben wie die vorangegangene Anwendung des Spielers im Casino selbstständig als Projektaufgabe bearbeiten können. Fragen zu den bisher behandelten Themen, dem Raspberry Pi 3 und dem Ausführen von Projekten sollten mit diesem Blatt abschließend geklärt sein.

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

Praktikum ASP Blatt 2 6. LEHRSTUHL FÜR RECHNERTECHNIK UND RECHNERORGANISATION Aspekte der systemnahen Programmierung bei der Spieleentwicklung

Praktikum ASP Blatt 2 6. LEHRSTUHL FÜR RECHNERTECHNIK UND RECHNERORGANISATION Aspekte der systemnahen Programmierung bei der Spieleentwicklung Praktikum ASP Blatt 2 6 LEHRSTUHL FÜR RECHNERTECHNIK UND RECHNERORGANISATION Aspekte der systemnahen Programmierung bei der Spieleentwicklung T1 Organisatorisches T1.1 Handhabung der Boards 26.10.2015-30.10.2015

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Programmierstarthilfe SS 2008 Fakultät für Ingenieurwissenschaften und Informatik 5. Blatt Für den 26. und

Programmierstarthilfe SS 2008 Fakultät für Ingenieurwissenschaften und Informatik 5. Blatt Für den 26. und Programmierstarthilfe SS 2008 Fakultät für Ingenieurwissenschaften und Informatik 5. Blatt Für den 26. und 27.5.2008 Organisatorisches Um auf die Mailingliste aufgenommen zu werden schicke einfach eine

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Ein kleiner Blick auf die generische Programmierung

Ein kleiner Blick auf die generische Programmierung TgZero Technik.Blosbasis.net June 3, 2013 1 Inhaltsverzeichnis 1 Vorwort 3 2 Ein kleines Beispiel 3 3 Templates 3 4 Verschiedene Datentypen 4 5 Variadic Templates 5 6 Unterschied zwischen den Programmiersprachen

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Primzahlen und Programmieren

Primzahlen und Programmieren Primzahlen Wir wollen heute gemeinsam einen (sehr grundlegenden) Zusammenhang zwischen Programmieren und Mathematik herstellen. Die Zeiten in denen Mathematiker nur mit Zettel und Stift (oder Tafel und

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

Felder, Rückblick Mehrdimensionale Felder. Programmieren in C

Felder, Rückblick Mehrdimensionale Felder. Programmieren in C Übersicht Felder, Rückblick Mehrdimensionale Felder Rückblick Vereinbarung von Feldern: typ name [anzahl]; typ name = {e1, e2, e3,..., en} Die Adressierung von Feldelementen beginnt bei 0 Die korrekte

Mehr

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen Kapitel 5 LU Zerlegung In vielen Fällen interessiert uns die inverse Matrix A 1 gar nicht. Stattdessen suchen wir die Lösung der Matrixgleichung Ax = b bzw. x = A 1 b 5.1) für einen oder wenige Vektoren

Mehr

T1 Setup und erste Schritte

T1 Setup und erste Schritte Praktikum ASP Blatt 1 1 LEHRSTUHL FÜR RECHNERTECHNIK UND RECHNERORGANISATION Aspekte der systemnahen Programmierung bei der Spieleentwicklung 23.10.2017-29.10.2017 Arbeitsblatt 1 Nach der Bearbeitung dieses

Mehr

Teil 5: Zeiger, Felder, Zeichenketten Gliederung

Teil 5: Zeiger, Felder, Zeichenketten Gliederung Teil 5: Zeiger, Felder, Zeichenketten Gliederung Zeiger und Adressen Felder (Arrays) Zeichenketten (Strings) Zeigerarithmetik Mehrdimensionale Felder Zeiger und Adressen Felder Zeichenketten Zeigerarithmetik

Mehr

Programmierpraktikum

Programmierpraktikum TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Praktikum: Grundlagen der Programmierung Programmierpraktikum Woche 05 (24.11.2016) Stefan Berktold s.berktold@tum.de PRÄSENZAUFGABEN Heutige Übersicht

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Zu Markov-Prozessen: Bemerkungen: 17.01.2013 Wir betrachten im Folgenden eine Markovkette (X n ) n N0, wobei jedes X n Werte in Z = {0,1,2,...,s}

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Aufgabe 1 Ein Fahrzeugpark enthält 6 Fahrzeuge. Jedes Fahrzeug hat die Wahrscheinlichkeit p = 0.1 (bzw. p = 0.3), dass es kaputt geht. Pro Tag kann nur

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 006/07 en Blatt 3.0.006 Einführung in die Matrizenrechnung Zentralübungsaufgaben

Mehr

Konzepte der Programmiersprachen

Konzepte der Programmiersprachen Konzepte der Programmiersprachen Sommersemester 2010 4. Übungsblatt Besprechung am 9. Juli 2010 http://www.iste.uni-stuttgart.de/ps/lehre/ss2010/v_konzepte/ Aufgabe 4.1: Klassen in C ++ Das folgende C

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Musterlösung zur 6. Übung

Musterlösung zur 6. Übung Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Hans-Peter Lenhof Dipl. Inform. Andreas Hildebrandt Programmierung II, SS 2003 Musterlösung zur 6. Übung Aufgabe 1: Faire Münzen (10 Punkte) Offensichtlich

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG Serie 6 ETH Zürich D-MATH Einleitung. Diese Serie behandelt nochmals das Rechnen mit Vektoren

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

Analytische Geometrie

Analytische Geometrie Der fx-991 DE X im Mathematik- Unterricht Analytische Geometrie Station 1 Schnittgerade zweier Ebenen Da der Taschenrechner nur eindeutige Lösungen eines Gleichungssystems liefert, kann er nur Schnittpunkte

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 1. Dezember 2010 ZÜ DS ZÜ VI Übersicht: 1.

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Übungen zur Vorlesung EidP (WS 2015/16) Blatt 6

Übungen zur Vorlesung EidP (WS 2015/16) Blatt 6 Andre Droschinsky Ingo Schulz Dortmund, den 0. Dezember 2015 Übungen zur Vorlesung EidP (WS 2015/16) Blatt 6 Block rot Es können 4 + 1 Punkte erreicht werden. Abgabedatum: 10. Dezember 2015 2:59 Uhr Hinweise

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

Matrizen. Lineare Algebra I. Kapitel April 2011

Matrizen. Lineare Algebra I. Kapitel April 2011 Matrizen Lineare Algebra I Kapitel 2 26. April 2011 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung)

Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung) Hochschule München, FK 03 SS 2014 Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung) Zulassung geprüft: (Grundlagenteil) Die Prüfung ist nur dann gültig, wenn Sie die erforderliche Zulassungsvoraussetzung

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free()

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free() Übungspaket 29 Dynamische Speicherverwaltung malloc() und free() Übungsziele Skript In diesem Übungspaket üben wir das dynamische Alloziieren 1. und Freigeben von Speicherbereichen 2. von Zeichenketten

Mehr

Parallele und funktionale Programmierung Wintersemester 2016/ Übung Abgabe bis , 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2016/ Übung Abgabe bis , 16:00 Uhr 4. Übung Abgabe bis 25.11.2016, 16:00 Uhr Aufgabe 4.1: Verklemmungsbedingungen a) Welche drei Bedingungen müssen gelten, damit es zu einer Verklemmung in einem parallelen System kommen kann? b) Nach welcher

Mehr

Einführung in die Programmierung (EPR)

Einführung in die Programmierung (EPR) Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main Einführung in die Programmierung (EPR) (Übung, Wintersemester 2014/2015) Dr. S. Reiter, M. Rupp, Dr. A. Vogel, Dr. K.

Mehr

Dossier: Rechnungen und Lieferscheine in Word

Dossier: Rechnungen und Lieferscheine in Word www.sekretaerinnen-service.de Dossier: Rechnungen und Lieferscheine in Word Es muss nicht immer Excel sein Wenn Sie eine Vorlage für eine Rechnung oder einen Lieferschein erstellen möchten, brauchen Sie

Mehr

Institut für Informatik

Institut für Informatik Technische Universität München Institut für Informatik Lehrstuhl für Computer Graphik & Visualisierung WS 2010 Praktikum: Grundlagen der Programmierung Aufgabenblatt 4 Prof. R. Westermann, A. Lehmann,

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Tag 4 Repetitorium Informatik (Java)

Tag 4 Repetitorium Informatik (Java) Tag 4 Repetitorium Informatik (Java) Dozent: Patrick Kreutzer Lehrstuhl für Informatik 2 (Programmiersysteme) Friedrich-Alexander-Universität Erlangen-Nürnberg Wintersemester 2016/2017 Willkommen zum Informatik-Repetitorium!

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

Klausur Einführung in die Informatik I für Elektrotechniker 16. Juli 2003

Klausur Einführung in die Informatik I für Elektrotechniker 16. Juli 2003 Fakultät Elektrotechnik/Informatik Klausur Einführung in die Informatik I für Elektrotechniker Name:...................... Matr.-Nr....................... Bearbeitungszeit: 120 Minuten Bewertung (bitte

Mehr

Übung Augmented Reality

Übung Augmented Reality Ludwig-Maximilians-Universität München LFE Medieninformatik Prof. Dr. Andreas Butz Fabian Hennecke Sommersemester 2009 Übungsblatt 1 28. April 2009 Übung Augmented Reality Abgabetermin: Die Lösung zu diesem

Mehr

Schriftlicher Test (120 Minuten) VU Einführung ins Programmieren für TM. 25. Jänner 2016

Schriftlicher Test (120 Minuten) VU Einführung ins Programmieren für TM. 25. Jänner 2016 Familienname: Vorname: Matrikelnummer: Aufgabe 1 (3 Punkte): Aufgabe 2 (4 Punkte): Aufgabe 3 (2 Punkte): Aufgabe 4 (2 Punkte): Aufgabe 5 (2 Punkte): Aufgabe 6 (1 Punkte): Aufgabe 7 (3 Punkte): Aufgabe

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 13 Allgemeine Theorie zu Markov-Prozessen (stetige Zeit, diskreter Zustandsraum) Literatur Kapitel 13 * Grimmett & Stirzaker: Kapitel 6.9 Wie am Schluss von Kapitel

Mehr

Numerische Lineare Algebra - Matlab-Blatt 2

Numerische Lineare Algebra - Matlab-Blatt 2 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 014/015 Numerische Lineare Algebra - Matlab-Blatt Lösung (Besprechung

Mehr

FH Ravensburg-Weingarten Schriftlich Prüfung Programmieren

FH Ravensburg-Weingarten Schriftlich Prüfung Programmieren FH Ravensburg-Weingarten Schriftlich Prüfung Programmieren Prof. Dr. M. Zeller Datum, Zeit Aufgabenblätter erreichbare Punktzahl zugelassene Hilfsmittel, 0800 1000 Uhr (120 min) 16 Seiten (einschl. Deckblatt)

Mehr

A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen

A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen Eine Matrix vom Typ M mxn (oder eine (m x n)-matrix) ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Im folgenden Beispiel

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

C- Kurs 07 Höhere Datentypen

C- Kurs 07 Höhere Datentypen C- Kurs 07 Höhere Datentypen Dipl.- Inf. Jörn Hoffmann jhoffmann@informa?k.uni- leipzig.de Universität Leipzig Ins?tut für Informa?k Technische Informa?k Höhere Datentypen Überblick Höhere Datentypen Werden

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Chuck a Luck Zielstellung Diese Aufgabe soll weniger dem Erlernen neuer Inhalte dienen, sondern ist als Anwendungs bzw.

Chuck a Luck Zielstellung Diese Aufgabe soll weniger dem Erlernen neuer Inhalte dienen, sondern ist als Anwendungs bzw. Chuck a Luck Zielstellung Diese Aufgabe soll weniger dem Erlernen neuer Inhalte dienen, sondern ist als Anwendungs bzw. Projektaufgabe gedacht. Material Aufgabenstellung, Lösungsvorschlag und BlueJ Projekte

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 011 Übungsblatt 30. Mai 011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Übungen zur Linearen Algebra, Kap. 1 bis Kap. 3

Übungen zur Linearen Algebra, Kap. 1 bis Kap. 3 Übungen zur Linearen Algebra, Kap. bis Kap. 3. Gegeben seien die beiden Matrizen Berechnen Sie Lösungen zu Übung 6 3 4, B = ( 3 5 4 A B, B A, (A B, (B A Dies ist fast eine reine Rechenaufgabe. Wir wollen

Mehr

B =(b1,1. + b 1,2. + b 1,3 1,3. + b 2,4 + b 3,1. + b 2,2. + b 2,3. + b 3,2. + b 3,3

B =(b1,1. + b 1,2. + b 1,3 1,3. + b 2,4 + b 3,1. + b 2,2. + b 2,3. + b 3,2. + b 3,3 Matrizen Matrizen sind zunächst einmal einfach eine rechteckige Anordnung von Zahlen, Elementen oder mathematischen Operationen, die lineare Zusammenhänge zwischen verschiedenen Größen übersichtlich darstellen.

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Informationen zur Klausur

Informationen zur Klausur Einführung in die Rechnerarchitektur Informationen zur Klausur Tilman Küstner Marcel Meyer Arndt Bode, Michael Gerndt, Einführung in die Rechnerarchitektur Lehrstuhl für Rechnertechnik und Rechnerorganisation

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Arrays. Einleitung. Deklarieren einer Array Variablen

Arrays. Einleitung. Deklarieren einer Array Variablen Arrays Einleitung bisher jede Variable einzeln deklariert: 12 3 14 12 32 32 3 32 5 3 double sum; int count; ÿ Sie können Zweck und Aufbau von Array-Datentypen erklären ÿ Sie können einen Array korrekt

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

T1 Setup und erste Schritte

T1 Setup und erste Schritte Praktikum ASP Blatt 1 1 LEHRSTUHL FÜR RECHNERTECHNIK UND RECHNERORGANISATION Aspekte der systemnahen Programmierung bei der Spieleentwicklung T1 Setup und erste Schritte 19.10.2015-23.10.2015 Arbeitsblatt

Mehr

In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch

In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch Kapitel Matrizen in C++ In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch 1 const int n=10; 3 double a[n][n]; gegeben. Allerdings gibt es bei dieser Methode eine Reihe

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

U4-1 Aufgabe 3: einfache malloc-implementierung

U4-1 Aufgabe 3: einfache malloc-implementierung U4 3. Übung U4 3. Übung Besprechung der Aufgabe 2: wsort Aufgabe 3: malloc-implementierung Ziele der Aufgabe Zusammenhang zwischen "nacktem Speicher" und typisierten bereichen verstehen Funktion aus der

Mehr

Lesen Sie alle Aufgabenstellungen sorgfältig durch, bevor Sie mit der Bearbeitung der ersten Aufgabe beginnen.

Lesen Sie alle Aufgabenstellungen sorgfältig durch, bevor Sie mit der Bearbeitung der ersten Aufgabe beginnen. INE1 Musteraufgaben für die Semesterendprüfung Hilfsmittel Vier Seiten selbst verfasste Zusammenfassung keine weiteren Hilfsmittel keine elektronischen Hilfsmittel Abgabe Füllen Sie das erste Aufgabenblatt

Mehr

Mehrdimensionale Arrays

Mehrdimensionale Arrays Informatik Studiengang Chemische Technologie Michael Roth michael.roth@h-da.de Hochschule Darmstadt -Fachbereich Informatik- WS 2012/2013 Inhalt Teil X Michael Roth (h_da) Informatik (CT) WS 2012/2013

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23 Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 3 3.1 Gegeben sei die Anfangswertaufgabe (AWA) Zeigen Sie, dass die Funktion y (x) = x y(x) mit y(0) = 1 die einzige Lösung dieser AWA

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr

Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr 04-09-2016 Einführung in Lineare Algebra Aus der linearen Algebra brauchen wir für diese Vorlesung nur das Rechnen mit Vektoren und Matrizen.

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Grundlagen der Programmiersprache C für Studierende der Naturwissenschaften

Grundlagen der Programmiersprache C für Studierende der Naturwissenschaften Grundlagen der Programmiersprache C für Studierende der Naturwissenschaften Teil 7: Matrizen, Vektoren und dynamische Speicherverwaltung Martin Nolte Abteilung für Angewandte Mathematik Universität Freiburg

Mehr

Lösung Übungsblatt 7

Lösung Übungsblatt 7 M4 Numerik für Physiker Lösung Übungsblatt 7 SoSe 008 Lösung Übungsblatt 7 Aufgabe 1: Lineare Ausgleichsrechnung Ein mehrdimensionales, lineares Ausgleichungsproblem lässt sich folgendermaßen darstellen:

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr