Distribution-free calculation of the standard error of Chain Ladder reserve estimates

Größe: px
Ab Seite anzeigen:

Download "Distribution-free calculation of the standard error of Chain Ladder reserve estimates"

Transkript

1 Distribution-free calculation of the standard error of Chain Ladder reserve estimates David Fischinger 31. März 2018 David Fischinger 31. März / 41

2 Inhaltsverzeichnis 1) Einleitung 2) Chain Ladder 3) Notation und grundlegende Resultate 4) Berechnung des MSE und des Standardfehlers 5) Beispiele David Fischinger 31. März / 41

3 Einleitung Einleitung David Fischinger 31. März / 41

4 Einleitung Spätschäden IBNR-Schäden ( incurred but not reported ) bereits eingetreten, aber dem Versicherungsunternehmen noch nicht bekannt IBNER-Schäden ( incurred but not enough reserved ) am Ende des Geschäftsjahres bereits bekannt, Höhe aber noch abschätzbar David Fischinger 31. März / 41

5 Einleitung Spätschäden viele Methoden zur Berechnung der Rückstellung für die Spätschäden z.b Chain Ladder Verfahren oft deutlich andere Ergebnisse Herausforderung von bisherigen Daten auf Spätschäden zu schließen Standardfehler als Maß für Unsicherheit der verwendeten Daten Vergleichsmöglichkeit mit anderen Verfahren David Fischinger 31. März / 41

6 Einleitung Grundlage Paper Distribution-free calculation of the standard error of Chain Ladder reserve estimates von Thomas Mack von 1993 Ziel: möglichst einfache Formel für den Standardfehler des Schätzers der Chain Ladder Rückstellung herleiten David Fischinger 31. März / 41

7 Chain Ladder Chain Ladder David Fischinger 31. März / 41

8 Chain Ladder Vorgehensweise Vergangenheit Abwicklungsdreiecke Zukunft David Fischinger 31. März / 41

9 Chain Ladder Schadensdreieck David Fischinger 31. März / 41

10 Chain Ladder Schadensdreieck David Fischinger 31. März / 41

11 Chain Ladder Schadensdreieck David Fischinger 31. März / 41

12 Chain Ladder Schadensdreieck David Fischinger 31. März / 41

13 Notation und grundlegende Resultate Notation und grundlegende Resultate David Fischinger 31. März / 41

14 Notation und grundlegende Resultate Notation Definition Die Zufallsvariablen C ik sind die kumulierten Claims eines Schadenjahres i wobei 1 i I für ein Entwicklungsjahr k mit 1 k I. Der Wert von C ik ist uns bekannt für i + k I + 1 Definition Die Zufallsvariablen R i sind die zu schätzenden Schadenreserven für ein Schadenjahr i = 2,..., I und sind definiert durch R i = C ii C i,i +1 i und die gesamte Schadenreserve durch R = I i=2 R i David Fischinger 31. März / 41

15 Notation und grundlegende Resultate Notation David Fischinger 31. März / 41

16 Notation und grundlegende Resultate Annahmen des Chain Ladder Verfahren 1) Entwicklungsfaktoren: Entwicklungsfaktoren f 1,..., f I 1 > 0 Sie erfüllen: E(C i,k+1 C i1,..., C ik ) = C ik f k 1 i I, 1 k I 1 (1) f k wird geschätzt durch ˆf k := I k j=1 C j,k+1 I k j=1 C j,k 1 k I 1 David Fischinger 31. März / 41

17 Notation und grundlegende Resultate Annahmen des Chain Ladder Verfahren 2) Ulimate Claims und Schadenreserven Die zukünftigen Ultimate Claims C ii werden geschätzt durch Ĉ ii := C i,i +1 i ˆf I +1 i... ˆf I 1 und die Schadensreserven R i durch ˆR i = C i,i +1 i (ˆf I +1 i... ˆf I 1 1). 3) Unabhängigkeit {C i1,..., C ii }, {C j1,..., C ji }, i j sind unabhängig (2) David Fischinger 31. März / 41

18 Notation und grundlegende Resultate Satz 3.1 Sei D := {C ik i + k I 1} die Menge aller bisher beobachteten Daten. Mit den Voraussetzungen (1) und (2) folgt E(C ii D) = C i,i +1 i f I +1 i... f I 1 David Fischinger 31. März / 41

19 Notation und grundlegende Resultate Beweis. Um den Beweis übersichtlicher zu gestalten, definieren wir uns zuerst E i (X ) := E(X C i1,..., C i,i +1 i ) E(C ii D) = E i (C ii ) = E i ( E(CiI C i1,..., C i,i 1 ) ) = E i (C i,i 1 f I 1 ) = E i (C i,i 1 ) f I 1 = etc. = E i (C i,i +1 i ) f I +1 i... f I 1 = C i,i +1 i f I +1 i... f I 1 David Fischinger 31. März / 41

20 Notation und grundlegende Resultate Unverzerrte und unkorrelierte Schätzer Definition Ein Schätzer ˆθ heißt erwartungstreu bzw. unverzerrt für eine Zufallsvariabel θ, wenn gilt E[ˆθ] = θ Definition Zwei Schätzer ˆθ 1 und ˆθ 2 heißen unkorreliert wenn gilt also die COV ( ˆθ1, ˆθ 2 ) = 0 ist. E[ ˆθ 1 ˆθ 2 ] = E[ ˆθ 1 ]E[ ˆθ 2 ] David Fischinger 31. März / 41

21 Notation und grundlegende Resultate Satz 3.2 Mit den Annahmen (1) und (2) ist der Schätzer ˆf k unverzerrt und unkorreliert für 1 k I 1. David Fischinger 31. März / 41

22 Notation und grundlegende Resultate Beweis. Unverzerrtheit: Sei B k := {C ij j k, i + j I + 1}, 1 k I. Mit der Voraussetzung (1) und (2) folgt E(C i,k+1 B k ) = E(C i,k+1 C i1,..., C ik ) = C ik f k Zusammen der Definition von ˆf k und der Linearität des Erwartungsertes folgt dann E(ˆf k B k ) = I k j=1 E(C j,k+1 B k ) I k C jk j=1 = f k David Fischinger 31. März / 41

23 Notation und grundlegende Resultate Beweis. Dieses führt zu E(ˆf k ) = E(E(ˆf k B k )) = f k, 1 k I 1 Unkorreliertheit von ˆf k und ˆf j : Sei j < k, dann gilt E(ˆf j ˆf k ) = E(E(ˆf j ˆf k B k )) = E(ˆf j E(ˆf k B k )) = E(ˆf j )f k = E(ˆf j )E(ˆf k ) David Fischinger 31. März / 41

24 Notation und grundlegende Resultate Satz 3.3 Unter den Annahmen (1) und (2) ist Ĉ ii = C i,i +1 i ˆf I +1 i... ˆf I 1 ein unverzerrter Schätzer für E(C ii D) und ˆR i = Ĉ ii C i,i +1 i ein unverzerrter Schätzer für R i. David Fischinger 31. März / 41

25 Notation und grundlegende Resultate Beweis. Wir wissen bereits: E(C ii D) = C i,i +1 i f I +1 i... f I 1 Wiederholung des vorherigen Beweises für das Produkt von paarweise verschiedenen ˆf k, führt zu Weiters gilt E(ˆf I +1 i... ˆf I 1 ) = f I +1 i... f I 1 E(Ĉ ii ) = C i,i +1 i E(ˆf i+1 i... ˆf I 1 ) = C i,i +1 i f I +1 i... f I 1 = E(C ii D) womit die Unverzerrtheit folgt. Analog lässt sich die zweite Behauptung zeigen. David Fischinger 31. März / 41

26 Berechnung des MSE und des Standardfehlers Berechnung des MSE und des Standardfehlers David Fischinger 31. März / 41

27 Berechnung des MSE und des Standardfehlers MSE Definition Der bedingte mittlere quadratische Fehler (MSE) des Schätzers Ĉ ii von C ii ist gegeben durch mse(ĉ ii ) = E((Ĉ ii C ii ) 2 D) wobei D = {C ik i + k I + 1} die Menge aller bereits zur Verfügung stehenden Daten ist. Für den MSE gilt mse( ˆR i ) = E(( ˆR i R i ) 2 D) = E((Ĉ ii C ii ) 2 D) = mse(ĉ ii ) und damit mse(ĉ ii ) = Var(C ii D) + (E(C ii D) Ĉ ii ) 2 David Fischinger 31. März / 41

28 Berechnung des MSE und des Standardfehlers Varianz der C ik Schätzer der Chain Ladder Faktoren ˆf k sind C ik -gewichtetes Mittel Var(C i,k+1 C i1,..., C ik ) soll invers proportional zu C ik sein, also Var(C i,k+1 C i1,..., C ik ) = C ik σ 2 k 1 i I, 1 k I 1 (3) mit unbekannten Parametern σ 2 k für 1 k I 1. Diese Forderung ist eine weitere, implizite Annahme, die aus dem Chain Ladder verfahren resultiert David Fischinger 31. März / 41

29 Berechnung des MSE und des Standardfehlers Schätzer für die Varianz der C ik Genauso wie für den Schätzer ˆf k lässt sich zeigen, dass ˆσ k 2 = 1 I k ( Ci,k+1 C ik I k 1 C ik i=1 ˆf k ) 2, 1 k I 2 ein unverzerrter Schätzer für σ 2 k, 1 k I 2 ist. Für die Wahl von ˆσ I 2 1 gibt es zwei Möglichkeiten: 1. Wenn ˆf I 1 = 1 ˆσ 2 I 1 = 0 2. ( ) ˆσ ˆσ I = min I 2 ˆσ I 2, min(ˆσ I 2 3, ˆσ2 I 2 ) 3 David Fischinger 31. März / 41

30 Berechnung des MSE und des Standardfehlers Satz 4.1 (Varianzzerlegung) Für die Varianz einer Zufallsvariable X gilt Var(X ) = E ( Var(X Y ) ) + Var ( E(X Y ) ) David Fischinger 31. März / 41

31 Berechnung des MSE und des Standardfehlers Beweis. Sei U := E(X Y ) eine Zufallsvariable mit Erwartungsert E(U) = E ( E(X Y ) ) = E(X ) Für die Varianz gilt: Var(U) = E(U 2 ) ( E(U) ) 2 = E(U 2 ) ( E(X ) ) 2 Andererseits hat die bedingte Varianz den Erwartungswert E ( Var(X Y ) ) = E ( E(X 2 Y ) ) E(U 2 ) = E(X 2 ) E(U 2 ) Damit erhalten wir E ( Var(X Y ) ) + Var ( E(X Y ) ) = E(X 2 ) ( E(X ) 2) = Var(X ) David Fischinger 31. März / 41

32 Berechnung des MSE und des Standardfehlers Satz 4.2 Unter den Annahmen (1), (2) und (3) können wir den mse( ˆR i ) durch mse( ˆR i ) = Ĉ 2 ii I 1 k=i +1 i ˆσ 2 k ˆf 2 k ( Ĉ I k ik C jk j=1 schätzen, wobei Ĉ ik = C i,i +1 i ˆf I +1 i..., k > I + 1 i die geschätzten Werte der zukünftigen C ik sind und Ĉ i,i +1 i = C i,i +1 i gilt. Der Standardfehler von ˆR i ist dann definiert durch s.e( ˆR i ) = mse( ˆR i ) ) David Fischinger 31. März / 41

33 Berechnung des MSE und des Standardfehlers Satz 4.3 Mit der Notation und den Vorraussetzungen des vorherigen Satzes kann der MSE der gesamten Reserve ˆR durch mse( ˆR) = [ I (s.e( ˆR i ) ) ( I 2 + ĈiI i=2 j=i+1 2ˆσ k 2 ˆf k 2 I k I +1 i C nk n=1 ) I 1 Ĉ ji ] geschätzt werden. Der Standardfehler von ˆR ist dann wiederum definiert durch s.e( ˆR) = mse( ˆR) David Fischinger 31. März / 41

34 Beispiele Beispiele David Fischinger 31. März / 41

35 Beispiele D.A.S Rechtsschutz AG David Fischinger 31. März / 41

36 Beispiele D.A.S Rechtsschutz AG David Fischinger 31. März / 41

37 Beispiele D.A.S Rechtsschutz AG David Fischinger 31. März / 41

38 Beispiele ÖBV VVaG David Fischinger 31. März / 41

39 Beispiele ÖBV VVaG David Fischinger 31. März / 41

40 Beispiele ÖBV VVaG David Fischinger 31. März / 41

41 Beispiele Vielen Dank für Ihre Aufmerksamkeit! David Fischinger 31. März / 41

Schadenversicherungsmathematik

Schadenversicherungsmathematik Schadenversicherungsmathematik Teil 3: Schadenreservierung Dr. Ulrich Riegel, Swiss Re Europe S.A. Mathematisches Institut LudwigMaximiliansUniversität München Wintersemester 2015/16 Dr. Ulrich Riegel,

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

Beurteilung konkurrierender Information in der Reservierung

Beurteilung konkurrierender Information in der Reservierung Beurteilung konkurrierender Information in der Reservierung Mathias Zocher Allianz Suisse, Aktuariat Nichtleben Dresden, 21. Oktober 2011 Inhalt 1 Einführung: Reservierung 2 Ein Problem: divergierende

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Lineare Regression (Ein bisschen) Theorie

Lineare Regression (Ein bisschen) Theorie Kap. 6: Lineare Regression (Ein bisschen) Theorie Lineare Regression in Matrixform Verteilung des KQ-Schätzers Standardfehler für OLS Der Satz von Gauss-Markov Das allgemeine lineare Regressionsmodell

Mehr

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren Kapitel 9 Schätzverfahren und Konfidenzintervalle 9.1 Grundlagen zu Schätzverfahren Für eine Messreihe x 1,...,x n wird im Folgenden angenommen, dass sie durch n gleiche Zufallsexperimente unabhängig voneinander

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

Prüfungskolloquium Aktuar SAV Biel, 20. November 2008 Dr. Stephan Clerc-Dändliker

Prüfungskolloquium Aktuar SAV Biel, 20. November 2008 Dr. Stephan Clerc-Dändliker Welche Genauigkeit kann bei der Bestimmung von Rückstellungen unter Berücksichtigung sowohl von Prozess- Risiko als auch von Parameter- und Messfehlern erwartet werden? Prüfungskolloquium Aktuar SAV Biel,

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 6. Juli 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 13 Version: 7. Juli

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

Lineare Modelle in der Schadenreservierung

Lineare Modelle in der Schadenreservierung Lineare Modelle in der Schadenreservierung Klaus D Schmidt Gemeinsame Arbeit mit Klaus Th Hess, Kathrin Kloberdanz, Alexander Ludwig, Carsten Pröhl, Christiane Schmeißer, Katrin Thänert, Mathias Zocher

Mehr

Das Bornhuetter Ferguson Prinzip. Über Gemeinsamkeiten bekannter Reservierungsverfahren

Das Bornhuetter Ferguson Prinzip. Über Gemeinsamkeiten bekannter Reservierungsverfahren AbD 2V AbM BFV BFP Bsp Über Gemeinsamkeiten bekannter Reservierungsverfahren Klaus D. Schmidt Lehrstuhl für Versicherungsmathematik TU Dresden Mathias Zocher Aktuariat Nichtleben Allianz Suisse Dresden,

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen

Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Inhalt Stichproben

Mehr

Stochastische Modelle in der Schadenreservierung

Stochastische Modelle in der Schadenreservierung Technische Universität Dresden Stochastische Modelle in der Schadenreservierung Vortrag an der Universität zu Köln am 17. November 2003 Gliederung 1. Abwicklungsdreiecke und Abwicklungsquadrate 2. Das

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Masterarbeit. Credibility Chain Ladder

Masterarbeit. Credibility Chain Ladder Eidgenössische Technische Hochschule Zürich Departement Mathematik Masterarbeit Credibility Chain Ladder Eingereicht von: Patrick Helbling Eingereicht am: 12.02.2014 Betreuer: Prof. Dr. Alois Gisler Vorwort

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Stochastik für Studierende der Informatik

Stochastik für Studierende der Informatik Wiederholungs-/Fragestunde Peter Czuppon Uni Freiburg, 05. September 2016 Diese Zusammenfassung wurde mit Hilfe des Skriptes von Prof. Dr. Pfaffelhuber aus dem Sommersemester 2016 erstellt. Ferner deckt

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

Zusammenfassung: Einfache lineare Regression I

Zusammenfassung: Einfache lineare Regression I 4 Multiple lineare Regression Multiples lineares Modell 41 Zusammenfassung: Einfache lineare Regression I Bisher: Annahme der Gültigkeit eines einfachen linearen Modells y i = β 0 + β 1 x i + u i, i {1,,

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Bootstrap: Punktschätzung

Bootstrap: Punktschätzung Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Bootstrap: Punktschätzung 1. Die Grundidee 2. Plug-in Schätzer 3. Schätzung des Standardfehlers 4. Schätzung und Korrektur der Verzerrung 5. Konsistenz

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Name: Vorname: Matrikelnummer: Lösungsvorschlag zur Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik (Stochastik) Datum: 07.

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Modellanpassung. Einführung in die induktive Statistik. Statistik. Statistik. Friedrich Leisch

Modellanpassung. Einführung in die induktive Statistik. Statistik. Statistik. Friedrich Leisch Modellanpassung Einführung in die induktive Statistik Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München SS 2009 Statistik Statistik Wahrscheinlichkeitsrechnung: Gesetze bekannt,

Mehr

Multivariate Modelle in der Praxis

Multivariate Modelle in der Praxis DRESDNER FORUM ZUR VERSICHERUNGSMATHEMATIK Multivariate Modelle in der Praxis 23. Juni 2006 Technische Universität Dresden Anja Schnaus A Berkshire Hathaway Company Inhalt Multivariates Chain-Ladder für

Mehr

Prüfungskolloquium SAV

Prüfungskolloquium SAV Modellierung der Inflation in der Berechnung des Abwicklungsrisikos im SST in der Nichtlebenversicherung Prüfungskolloquium SAV Irina Sikharulidze, SST, FINMA 19. November 2010 Modellierung der Inflation

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

5 Optimale erwartungstreue Schätzer

5 Optimale erwartungstreue Schätzer 33 5 Optimale erwartungstreue Schätzer 5.1 Definition Seien X 1,..., X n reelle Zufallsvariablen, T T (X 1,..., X n ) reellwertige Statistik. T heißt linear : c 1,..., c n R mit T n c j X j 5.2 Satz Seien

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Solvency II and Nested Simulations - a Least-Squares Monte Carlo Approach

Solvency II and Nested Simulations - a Least-Squares Monte Carlo Approach Grafik and - a Least-Squares Monte Carlo Approach Khischgee Turbat Technische Universität Wien 17. Februar 2016 Grafik 1 2 3 4 Grafik 5 6 Inhalt Grafik Großprojekt der EU-Kommission gültig ab dem 1. Jänner

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

Schadenversicherungsmathematik

Schadenversicherungsmathematik Schadenversicherungsmathematik Prof. Dr. Michael Kohler Sommersemester 2009 Vorlesung orientiert sich an: Thomas Mack: Schadenversicherungsmathematik. Gesellschaft für Versicherungsmathematik, Verlag Versicherungswirtschaft,

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Einige parametrische Familien für stochastische Prozesse

Einige parametrische Familien für stochastische Prozesse Einige parametrische Familien für stochastische Prozesse Seminar: Grundlagen der und Statistik von dynamischen Systemen 26. November 2014 Inhaltsverzeichnis 1 Einleitung 2 3 4 5 Einleitung Ziel des Vortrages:

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Vorlesung: Lineare Modelle

Vorlesung: Lineare Modelle Vorlesung: Lineare Modelle Prof Dr Helmut Küchenhoff Institut für Statistik, LMU München SoSe 2014 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a.

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a. Determinanten - II. Berechnung von Determinanten Wir erinnern, dass für A M(n n; K) gilt : det A = σ S n signσ a σ() a 2σ(2)...a nσ(n). Falls n =, gibt es offenbar nur die identische Permutation, und für

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Kurs Empirische Wirtschaftsforschung

Kurs Empirische Wirtschaftsforschung Kurs Empirische Wirtschaftsforschung 5. Bivariates Regressionsmodell 1 Martin Halla Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz 1 Lehrbuch: Bauer/Fertig/Schmidt (2009), Empirische

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen .1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

Notgepäck Genauigkeit

Notgepäck Genauigkeit Notgepäck Genauigkeit Beat Hulliger Dienst Statistische Methoden, Bundesamt für Statistik 20.4.2006 1 Was ist Genauigkeit genau? Um zu beschreiben, was Genauigkeit in der Statistik ist, müssen wir untersuchen,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Tests für Erwartungswert & Median

Tests für Erwartungswert & Median Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr