1 Eine nichtlineare Gleichung mit einer Unbekannten

Größe: px
Ab Seite anzeigen:

Download "1 Eine nichtlineare Gleichung mit einer Unbekannten"

Transkript

1 r_aufgws.mcd Seite von 7 Hochschule München Fakultät 4 Redaktion: Kahl / Paster / Rauh / Erven Stand WS 2/ Praktikum Numerische Mathematik Versuch : "Nichtlineare Gleichungen" Bearbeiter: Dennis Kunz Datum: Eine nichtlineare Gleichung mit einer Unbekannten. Fipunkt-Iteration (allgemein) Von Ihrem Dozenten erhalten Sie den Term einer nichtlinearen Funktion f = f(), eine Fehlerschranke eps für die Bestimmung einer Nullstelle ξ von f und einen Definitionsbereich D ohne weitere Nullstellen. f asin + 2 π nach Angabe Ihres Dozenten () 4 Definitionsbereich [a, b]: a.2 b.8 eps 8 Entnehmen Sie dem folgenden Quickplot von f() über D einen Näherunwert für ξ. f.5 Die Nullstelle liegt in der Nähe von Die Gleichung f() = lässt sich auf verschiedene Weise äquivalent umformen zu = φ(). Überlegung auf etra Blatt: Geben Sie einige solche Umformungen an. Verwenden Sie nun die v om Dozenten gegebene Iterationsfunktion φ: ϕ sin 2 π + nach Angabe Ihres Dozenten (2) 4 Die folgende Darstellung dieser Funktion zusammen mit der Geraden y = gibt Ihnen einen anschaulichen Überblick über das zu erwartende Konvergenzverhalten einer Fipunkt-Iteration. ϕ Warum ist nebenstehende Darstellung (mit der Geraden y = ) sinnvoll?. qualitativer Vergleich der Steigung f'() < 2. Abschätzen der Nullstelle Warum kann die Nullstelle durch Fipunktiteration mit φ ausgehend vom Startwert berechnet werden?

2 r_aufgws.mcd Seite 2 von 7 In dieser Graphik wird die Ableitung ψ von φ auf D [ -., +.] dargestellt. Warum ist diese Einschränkung des Definitionsbereichs sinnvoll? Weil dieses Intervall die Bedinung erfüllt.6 d d ϕ Entnehmen Sie daraus eine obere Schranke m von ψ auf D: m.78 Erster Iterationsschritt zur Gewinnung eines verbesserten Wertes : ϕ Mit den Größen m, und können Sie eine "a-priori-abschätzung" für die maimale Abweichung des Näherunwertes vom tatsächlichen Wert der Nullstelle nach einer Anzahl von k Schritten machen. In Ihrer Vorbereitung haben Sie die entsprechende Formel nach k aufgelöst. Berechnen Sie nun mit Mathcad die maimal notwendige Zahl kma von Schritten, um einen Fehler < eps zu erreichen. eps kma ceil ln ( m) kma = 6 ganzzahlig! ln( m) Zur Duchführung der Fipunkt-Iterationen mit Iterationsfunktion fkt und Startwert start bis zum Erreichen der vorgeschriebenen Toleranz eps dient folgende Prozedur: fiiter( fkt, m, start, eps, kma) dma it d ( m) eps 2 dma z 2 start m while ( d > dma) ( it < kma) it it + z it+ 2 fkt z it+ d z it+ 2 z it+ z z it+ 2 z it return z Ausgabevektor z: z = Näherung k z = Iterationsanzahl k z2, z3... = Iterierte,... k erg fiiter( ϕ, m,, eps, kma) erg =.44 k erg k = 39 kma = 6 Vergleichen Sie die Zahl der tatsächlich gemachten Schritte mit Ihrer a-priori-absc hätzung. Da die a-posteriori-abschätzung schärfer ist ist k < kma, also deutlich weniger Berechnung der Differenzen: i.. k d i erg i+ 3 erg i+ 2 In Ihrer Vorbereitung haben Sie sich klar gemacht, nach welcher Gesetzmäßigkeit die Differenzen abnehmen.wir wählen für die Folge der Differenzen eine halblogarithmische Darstellung (warum?): Die Geometrische Folge bilde annährend eine Gerade

3 r_aufgws.mcd Seite 3 von 7 d i i Als Konvergenzfaktor kf der Iteration berechnen wir den Quotienten der beiden letzten Differenzen. Sein Zahlenwert ist auch eine gute Näherung für ψ in der Nähe der Lösung. d k d kf kf =.674 ψ d k 2 d ϕ ψ erg =.674 Mit diesem Wert können wir jetzt eine a-posterori-abschätzung zum Fehler err unseres letzten iterierten Wertes k machen. Die Formel dazu haben Sie vorbereitet. m err ( erg k+ 2 erg k+ ) err = m.2 Newton-Iteration Wird unsere Toleranz eps eingehalten? Ja, err << ^-8, also sehr gut! Eine besonders effiziente Variante der Fipunkt-Iteration ist das Newton-Verfahren. Es benötigt allerdin die A bleitung der Funktion f(). Wie lautet die Formel für die Ableitung in unserem Beispiel (Handrechnung!)? df 2 2 f Die Iterationsfunktion lautet: phin df Machen Sie nun eine Untersuchung der Newton-Iteration wie oben bei der Fipunkt-Iteration, indem Sie phin() zusammen mit der Geraden y = und phin'() jeweils in einem Diagramm über D betrachten phin d d phin Führen Sie mit der Prozedur fiiter und der Iterationsfunktion phin die Newton-Iteration durch. erg rücksetzen, da Vektor kürzer wird; altes kma sollte genügen; neues m eventuell nützlich! erg fiiter( phin,.336,, eps, kma) erg = k erg k = 3 Die Differenzen der Näherunwerte sind: d rücksetzen i.. k d i erg i+ 3 erg i+ 2

4 r_aufgws.mcd Seite 4 von 7 Darstellung halblogarithmisch: d i i Wie heißt diese Art der Konvergenz? quadratische Konvergenz kein konstanter Quotient 2 Nichtlineares Gleichunstem mit zwei Unbekannten Wir betrachten folgende zwei Funktionen auf dem Definitionsbereich D: f (, y) y 2 y + 9 g(, y) 2 y 2 + 2y + 8 nach Angabe Ihres Dozenten (3) zu untersuchen im Bereich D: Gesucht sind die Lösungen des Gleichunstems f(,y)= & g(,y)=. Inwiefern kann die unten stehende Höhenlinien-Darstellung von f und g auf D bei einer groben Nullstellenbestimmung hilfreich sein? Durch Schnittpunkt der beiden Höhenlininen vom Wert kann man das GS lösen. f g Schätzen Sie grob die beiden Nullstellen (s,) und (2s,y2s) des Stems : s.9. 2s y2s Die Funktionswerte an diesen Punkten sind: gs f ( s, ) g( s, ) gs.22 =.29 f2s g2s f ( 2s, y2s) g( 2s, y2s) f2s g2s.45 =.792

5 r_aufgws.mcd Seite 5 von 7 Bei dem Newton-Raphson-Verfahren tritt an die Stelle der skalaren Funktion f() die Jacobi-Matri der vektorwertigen Funktion (f, g). Berechnen Sie diese Matri als Funktion von und y per Hand und schreiben Sie die Terme in folgende Funktion: Jacobi(, y) 2 y 2 3y Wir beginnen die Iteration im Startpunkt s 2s nach Angabe Ihres Dozenten (4) y2s Die Zahlenwerte der Jacobi-Matri, ihrer Determinante und ihrer Inversen im Startpunkt sind Jf Jacobi( s, ) Jf = Jf = Jinv Jf Jinv = Die Funktionswerte im Startpunkt sind f ( s, ) g( s, ).45 = Jetzt kommt der Newton-Raphson-Schritt zur Gewinnung eines (hoffentlich!) verbesserten Lösunvektors: v s Jinv Die verbesserten Funktionswerte sind: f ( v, ) g( v, ) v = =.2 Um welchen Faktor (bezogen auf die Maimums-Norm des Vektors der Funktionswerte) konnte die A bweichung von der e akten Lösung verbess ert werden? wegen Maimums norm der g-wert weil größer Faktor Faktor = 38.6 Wir machen jetzt einen zweiten Newton-Raphson-Schritt. Beachten Sie, dass dazu die Jacobi-Matri neu berechnet werden muss. Der eben berechnete verbesserte Lösunvektor dient als Startvektor: s v Jf Jacobi( s, ) Jf = Jf = 65.5 Jinv Jf Jinv = v s Jinv f ( v, ) g( v, ) v = =.5 5 Um welchen Faktor (wieder bezogen auf die Ma-Norm des Vek tors der Funktionswerte) konnte im zweiten Schritt die Abweichung v on der eakten Lösung verbessert werden? Faktor Faktor = 2 3 Vergleichen Sie diesen Wert mit dem Verbesserunfaktor aus dem ersten Schritt. Welches Konvergenzverhalten liegt hier wohl vor? deutlich überlineare Konvergenz bezogen auf die Funktionswerte

6 r_aufgws.mcd Seite 6 von 7 3 Iterative Lösung linearer Gleichunsteme Sie kennen aus der Vorlesung iterative Verfahren zur Lösung linearer Gleichunsteme (A*=b). Zu Demonstrationszwecken berechnen wir die Lösung des linearen Gleichunstems für den zweiten Newton-Schritt mit dem Gauß-Seidel-Verfahren. Zu lösen ist das lineare Gleichuntem v s + joule = Zur Ausführung eines Gauß-Seidel-Iterationsschritts verwenden wir die vorgegebene Prozedur seidel. Durch einen A ufruf _neu seidel(a,b,) erhält man aus einer Näherunlösung eine - evtl. verbesserte - Näherunlösung _neu. seidel( amp, b, ) n length( b) for i.. n n i b i k = return amp i, k k + amp i, i i amp i, i Mit Hilfe der Bereichsvariablen von Mathcad kann man eine Folge von iterierten Vektoren als S palten einer Matri X speichern. Die erste Spalte X <> besetzen wir mit dem Nullvektor als Startwert. X amp Jf b n it.. n X it+ seidel amp, b, X it X = Nach n Gauß-Seidel-Iterationsschritten erhalten wir für die verbesserte Lösung des Newton-Verfahrens ähnliche Werte wie bei der Lösung des Gleichunstems mit der inversen Jacobi-Matri. v s + X, n X, n v = f ( v, ) g( v, ) =.5 5 Zur Beurteilung der Konvergenz der Gauß-Seidel-Iteration stellen wir die Beträge der Differenzen aufeinanderfolgender Näherunvektoren diff it = X <it+> - X <it> in einer einfach-logarithmischen Darstellung graphisch dar. diff it X it+ X it diff it it Beschreiben Sie das Konvergenzverhalten. lineare Konvergenz wie bei der Fipunktiteration

7 r_aufgws.mcd Seite 7 von 7 Wir vertauschen die Reihenfolge der Gleichungen und wiederholen die Gauß-Seidel-Iteration. Die Vertausc hung erfolgt durch Multiplik ation der Koeffizientenmatri A und der rechten Seite b mit der Permutationsmatri P. Geben Sie die Permutationsmatri P an poise amp poise bamp poise b amp = b = X X it+ seidel amp, b, X it X = diff it X it+ X it diff it 3 Beschreiben Sie das Konvergenzverhalten. keine Konvergenz it Erläutern Sie das beobachtete Verhalten. ursrüngliches Gleichunstem: Zeilenkriterium erfüllt -> Konvergenz neues Gleichunstem: Zeilensummen- und Spaltensummerkriterium nicht erfüllt Wir können Konvergenz durch durch die Symmetrisierung der Koeffizientematri über die Multiplikation der Gleichung mit der transponierten Matri erhalten. Berechnen Sie die neue Koeffizientenmatri As und die neue rechte Seite bs. As amp T amp bs amp T b As = X X it+ seidel As, bs, X it X = diff it X it+ X it diff it it Beschreiben Sie das Konvergenzverhalten. wueder Konvergenz aber mit kleinerem Konvergenzfaktor

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 26. Februar 2009, Gliederung,, Gleichungen in einer Variablen Was ist... Wie geht... eine lineare (nichtlineare,

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik SS 999 Augabe 6 Punkte Das Integral I ln d soll numerisch bis au eine Genauigkeit von mindestens - approimiert werden. a Wie groß muss die Anzahl N der Teilintervalle sein damit mit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten (MUL) 1. März 2012 1 / 37 Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand MUL 1. März 2012 Gliederung 1 Wiederholung Begriffe, Verfahren

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. Februar 2010 Newton- Gliederung Newton-, ng Newton- , Fragenliste Nichtlineare Gleichungen

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. März 2016 Nichtlineare Gleichungen, Fixpunkt-Iterationen 1 Wiederholung Aufgabentypen

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

6. Numerische Lösung des. Nullstellenproblems

6. Numerische Lösung des. Nullstellenproblems 6. Numerische Lösung des Nullstellenproblems 1 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Übungen zur Mathematik Blatt 1

Übungen zur Mathematik Blatt 1 Blatt 1 Aufgabe 1: Bestimmen Sie die Fourier-Reihe der im Bild skizzierten periodischen Funktion, die im Periodenintervall [ π, π] durch die Gleichung f(x) = x beschrieben wird. Zeichnen Sie die ersten

Mehr

Diplom VP Numerik 21. März 2005

Diplom VP Numerik 21. März 2005 Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie

Mehr

Klausur Numerisches Rechnen ( ) (Musterlösung)

Klausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 01/013 Prof. Dr. M. Grepl J. Berger, P. Esser, L. Zhang Klausur Numerisches Rechnen

Mehr

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren: Allgemeines, Fiunkt-Iteration, Nullstellen Motivation Viele numerische Probleme lassen sich nicht mit endlich vielen Schritten lösen Nullstellen

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

KAPITEL 5. Nichtlineare Gleichungssysteme

KAPITEL 5. Nichtlineare Gleichungssysteme KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Fixpunktiteration. 5.1 Vollständiger metrischer Raum

Fixpunktiteration. 5.1 Vollständiger metrischer Raum 5 Fipunktiteration In diesem Kapitel zeigen wir, dass für die Klasse der kontrahierenden Abbildungen eine Nullstelle einer Abbildung f mit Hilfe einer Fipunktiteration approimiert werden kann. Die Nullstelle

Mehr

NEXTLEVEL I, Analysis I

NEXTLEVEL I, Analysis I NEXTLEVEL I, Analysis I Hanna Peywand Kiani Wintersemester 9/ Die ins Netz gestellten Kopien der Folien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Systeme nichtlinearer Gleichungen

Systeme nichtlinearer Gleichungen Systeme nichtlinearer Gleichungen 3. Vorlesung 170004 Numerische Methoden I Clemens Brand 5. März 2009 Gliederung en Wichtige Themen zur Wann konvergiert Fixpunktiteration anschaulich erklärt mathematisch

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel:

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel: Kapitel 6 Nichtlineare Gleichungen 6. Einführung Problem: Gesucht sind Lösungen nichtlinearer Gleichungen bzw. Systeme, das heißt es geht beispielsweise um die Bestimmung der Nullstellen eines Polynoms

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Wiederholungsklausur Numerisches Rechnen ( ) (Musterlösung)

Wiederholungsklausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 2010/2011 Prof. Dr. Martin Grepl Jens Berger, Jörn Thies Frings Wiederholungsklausur

Mehr

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch):

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch): Leseprobe Hans-Jochen Bartsch Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler ISBN (Buch): 978-3-446-43800-2 ISBN (E-Book): 978-3-446-43735-7 Weitere Informationen oder Bestellungen

Mehr

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben Mathematik-1, Wintersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Dr. Wilhelm Mons, Lubov Vassilevskaya http://www.math-grain.de/ Inhaltsverzeichnis 1.

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Gleichungen, GS und Nullstellen

Gleichungen, GS und Nullstellen TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG5.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 5 Gleichungen, GS

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y.

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y. Diplom VP Informatik/Numerik 9 September 2000 / Seite 1 1 Pivotisierung : 2 L-R-Zerlegung von A: 3 Vorwärtseinsetzen: (pivotisierung) Aufgabe 1: L-R-Zerlegung, Nachiteration A A = 4 2 10 2 6 9 2 1 6 L

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Kapitel 5. Lösung nichtlinearer Gleichungen

Kapitel 5. Lösung nichtlinearer Gleichungen Kapitel 5. Lösung nichtlinearer Gleichungen 5.1 Nullstellen reeller Funktionen, Newton-Verfahren 5.2 Das Konvergenzverhalten iterativer Verfahren 5.3 Methode der sukzessiven Approximation 5.4 Das Newton-Verfahren

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Gleichungsbasierte Modellierung

Gleichungsbasierte Modellierung 1 Gleichungsbasierte Modellierung Die Benutzung von Gleichungen zur Geometrischen Modellierung wurde bereits von Sutherland eingeführt. Fortgeführt wurde sie durch die Arbeiten von Light und Gossard. Wie

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Nae Vornae 1 I II Matrikelnuer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Gruppenleiter: Humboldt-Universität zu Berlin Mitglied im DFG-Forschungszentrum Matheon Mathematik für Schlüsseltechnologien

Gruppenleiter: Humboldt-Universität zu Berlin Mitglied im DFG-Forschungszentrum Matheon Mathematik für Schlüsseltechnologien Newton-Fraktale Teilnehmer: Ugo Finnendahl Janik Gätjen Daniel Krupa Cong Minh Nguyen Gergana Peeva Fabian Ulbricht Herder-Oberschule, Berlin Immanuel-Kant-Gymnasium, Berlin Herder-Oberschule, Berlin Andreas-Gymnasium,

Mehr

Approximation von Nullstellen mit Hilfe der Ableitung Mit Tangenten geht es oft einfacher und schneller als mit Sehnen oder Sekanten

Approximation von Nullstellen mit Hilfe der Ableitung Mit Tangenten geht es oft einfacher und schneller als mit Sehnen oder Sekanten Gegeben ist die Funktion f mit f(x :' x 4 & 2@x 3 & 3@x 2 % 3@x % 2 Man erkennt leicht, dass es durch die Dominanz des vierten Potenzterms ( x 4 genügt, die Funktion über dem Intervall [ -3 ; 3 ] zu betrachten,

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 06 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

2.4 Die Länge von Vektoren

2.4 Die Länge von Vektoren .4 Die Länge von Vektoren 59 Wir können dies auch so sagen: Wir identifizieren (,1)-Spaltenmatrizen mit Vektoren (oder Punkten) aus R, das heißt die Menge R und R 1 werden miteinander identifiziert. Einen

Mehr

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben Gleichungssysteme 3. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 10. März 2016 Gleichungssysteme 1 Wiederholung: Vektoren, vektorwertige Funktionen

Mehr

Klausur zum Fach Mathematik 1 Teil 1

Klausur zum Fach Mathematik 1 Teil 1 (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 4.09.205 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Extrakapitel für M3. 1. Integration durch Substitution (Umkehrung der Kettenregel)

Extrakapitel für M3. 1. Integration durch Substitution (Umkehrung der Kettenregel) Etrakapitel für M Dr.Manfred Gurtner 005. Integration durch Substitution (Umkehrung der Kettenregel) Beispiel : Berechnen Sie das Integral I 5 5 d a) Da die Wurzel eine innere Funktion hat, substituieren

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16 Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen

Mehr

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an.

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an. Repetitorium zur Ingenieur-Mathematik I, WS 00/ Aufgabe : Bestimmen Sie das quadratische Polynom, auf dessen Graph die Punkte (, 4), (0, ), (, 7) liegen. Aufgabe : a) Wann ist eine Folge konvergent (Definition)?

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

! Die Klausureingrenzung besteht in Aufgabentypen. Die Testaufgaben

! Die Klausureingrenzung besteht in Aufgabentypen. Die Testaufgaben Vorbemerkung zu den Testaufgaben Die klausurrelevanten Aufgabentypen, der Klausurablauf und das Bewertungsschema (Stichwort: Methodenpunkte ) sind im Klausurinfo erläutert.! Die Klausureingrenzung besteht

Mehr

D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II

D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Dr. A. aspar ETH Zürich, August 8 D-BIOL, D-HAB, D-HEST Prüfung zur Vorlesung Mathematik I/II. a) (i) ( Punkt) Die Ableitung ist mit Kettenregel f () = +. (ii) ( Punkte : jeweils.5 Punkt für a bzw. a und

Mehr

VI. Iterationsverfahren

VI. Iterationsverfahren VI. Iterationsverahren To ininity and beyond Falls eine direte Lösung des Problems nicht möglich oder ineizient ist. 6.. Fipuntgleichungen 6... Problemstellung: Iterationsuntion Iteration: R Startwert,

Mehr

2.5 Bestimmung von Nullstellen. 2 Interpolation und Approximation

2.5 Bestimmung von Nullstellen. 2 Interpolation und Approximation Wenn man die Gleichungen zusammenfaßt, erhält man die Matri-Form s s 1 s 2... s n a c s 1 s 11 s 12... s 1n. s 2..... =..... s n s n1...... s nn a n c n wobei nun s ij = m w k φ i ( k )φ j ( k ) und c

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

g) 1 e x2 h) y = x 1 Aufgabe 4 Man drücke die Oberfläche A eines Zylinders gegebenen Volumens V als Funktion seiner Höhe h aus!

g) 1 e x2 h) y = x 1 Aufgabe 4 Man drücke die Oberfläche A eines Zylinders gegebenen Volumens V als Funktion seiner Höhe h aus! Thema: Thema: Funktionen,Grenzwert, Stetigkeit, Ableitung BT/MT WS 15 Mathematik I Serie 6 www.eah-jena.de/~puhl Aufgabe 1 Bestimmen Sie den jeweils größtmöglichen Definitionsbereich und skizzieren Sie

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Unterprogramme: Formalargumente und Übergabeargumente

Unterprogramme: Formalargumente und Übergabeargumente Unterprogramme: Formalargumente und Übergabeargumente SUBROUTINE name(var1,var2,var3) Deklarationen ausführbare Anweisungen name= END SUBROUTINE name Formalargumente Der Aufruf des Unterprogramms: CALL

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

y=f(x) Tangente bei x 0

y=f(x) Tangente bei x 0 Lineare Näherungen =f() Tangente bei 0 =f( 0 )+f ( ).( 0 ) 0 Fehler der linearen Näherung 0 f( ) 0 Lineare Näherung einer Funktion einer Variablen f () f ( 0 ) + f ( 0 ) ( 0 ) f ( 0 ) (für nahe bei 0 )

Mehr

A Differenzialrechnung

A Differenzialrechnung A Differenzialrechnung Seite 1 Stetigkeit und Differenzierbarkeit... 2 Nullstellensatz und Intervallhalbierung... Newton - Verfahren... 8 Funktionsverkettung... 1 5 Kettenregel... 11 Produktregel... 1

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr