Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Größe: px
Ab Seite anzeigen:

Download "Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften"

Transkript

1 Fachbereich Mathematik der Univerität Hamburg WiSe / Dr. Hanna Peywand Kiani 4..2 Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwienchaften Stabilität, Laplace-Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern. Ohne die in der Verantaltung gegebenen zuätzlichen Erläuterungen ind diee Unterlagen unvolltändig (z. Bp. fehlen oft weentliche Vorauetzungen). Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Verantaltung angeagt. Eine Korrektur im Netz erfolgt NICHT! Eine Veröffentlichung dieer Unterlagen an anderer Stelle it unteragt!

2 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 2 Stabilität, linearer Fall Phyikalich : Stationärer Punkt / Ruhelage : Punkt in dem ich nicht verändert! Mathematiche Modell : y =. Beipiel : y = ay, y(t ) = y = y(t) = y e a(t t ). Ruhelage : y = alo y = und damit y(t) =, t. Frage : It die Ruhelage tabil? Wa paiert, wenn man die Anfangdaten ein wenig tört? Alo hier tatt y = etwa y = ɛ > vorgibt. Löung de getörten Problem : y(t) = ɛe a(t t ) Löung de urprünglichen Problem : y(t) =. Für a > entfernt ich die Löung de getörten Problem immer weiter von der Ruhelage. Genauer lim y(t) = lim y e a(t t) = t t Die Ruhelage it intabil Für a = : Abtand der Löungen kontrollierbar y(t) = ɛ = Ruhelage tabil Für a < : nähert ich die Löung de getörten Problem für große t wieder der Ruhelage. Genauer lim y(t) = lim y e a(t t) = t t = Ruhelage aymptotich tabil.

3 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 3 Lineare Syteme mit Kontanten Koeffizienten y (t) = A y(t) A R n n Löungen ind Linearkombinationen von Bailöungen der Form e λt v e λt (tv + w) λ Eigenwert vona v, w,... : Eigenvektor/Hauptvektor ( t unabhängig) y (t) = (,,, ) T it eine tationäre Löung! Annahme : E gibt EW λ k = a + ib mit a = Re(λ k ) > Dann gilt c k e λ kt v [k] = c k e ibt e at v [k] (t ) Geringte Störungen de Anfangwerte Null der Ruhelage y = können dazu führen, da die Löung ich für große t beliebig weit von der Ruhelage entfernt. Dagegen gilt für EW λ m = a + ib mit a = Re(λ m ) < c m e λmt v [m] = c m e ibt e at v [m] (t ) Selbt wenn Hauptvektoren benötigt werden ändert ich diee Grenzverhalten nicht (exp wächt chneller al jede Potenz) c m e λmt (tv [m] + w [m]) = c m e ibt e at (tv [m] + w [m] ) Die zu dieen EW n gehörenden Löunganteile gehen alo für t gegen die Nulllöung. A : nur EWe mit Re(λ) < = Nulllöung it aymptotich tabil! Gibt e neben den EW n mit negativem Realteil auch EWe mit Realteil Null, o ind diee harmlo, olange die zugehörigen Löunganteile keine Hauptvektoren enthalten: λ p = ib mit a = Re(λ p ) = c p e λpt v [p] = c p e ibt v [p] = c p v [p] bechränkt, Ruhelage tabil It aber algebraiche Vielfachheit (λ p ) < geometriche Vielfachheit( λ p ), o gibt e Löungkomponenten der Form c p e λpt (tv [p] + w [p] = c p (tv [p] + w [p] (t ) Die Nulllöung it intabil!

4 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 4 Zuammenfaung: Gegeben DGL Sytem y = Ay A kontant. a) Realteile aller Eigenwerte negativ = Nulllöung trikt tabil. (trikt = glm + aympt.) b) Realteil von mindeten einem EW poitiv = Nulllöung intabil. c) Realteile aller EWe negativ oder Null und für die EWe mit Realteil Null g(λ) = a(λ) (d.h. keine Hauptvektoren in der Löungdartellung nötig) = Nulllöung tabil. Andernfall intabil. Beipiel : Löung vor Ort! 2 y = 3 α 4 α 5 β β y α, β R \ {}. Unteruchen Sie die Ruhelage auf Stabilität! Beipiel 2: Löung vor Ort! y = Unteruchen Sie die Ruhelage auf Stabilität 2 y 5 3 und klaifizieren Sie diee (Strudel, Wirbel, Knoten etc.)

5 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 5 Stabilität: nichtlineare, autonome Gleichung y (t) = f(y(t)), y : R n R n Jf(y) = Jakobimatrix von f wird (möglicht) auf den linearen Fall zurückgeführt! Stationäre/Gleichgewichtpunkte : ( y ) = f(y ) = aymptotich tabil = Realteile aller EWe von Jf( y ) negativ. intabil = Jf( y ) hat mindeten einen EW mit poitivem Realteil. keine Auage mit Hilfe der Lineariierung: Re (λ k ) k und l mit Re (λ l ) = Ljapunov Beipiel 3: Seien a, b R \ {} und u = au u 2 uv v = bv v 2 uv Veruchen Sie die tationären Punkte de Sytem mit Hilfe der Lineariierung auf Stabilität zu unteruchen. au u Löung: f(u, v) = 2 uv bv v 2 uv a 2u v u Jf(u, v) =. v b 2v u { u(a u v) = und f(u, v) = v(b v u) = { u = oder (a u v) = v = oder (b v u) = und P = Jf(, ) = = vier Kandidaten! a. b Aymptotich (Strikt) tabil für a, b < ont intabil. P : u = und b v u = = v = b a b P = Jf(, b) =. b b b für a < b und b > Aymptotich tabil für a = b und b > keine Auage möglich ont intabil. P 2 : v = und a v u = = u = a

6 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 6 P 2 = a Jf(a, ) = a a. b a für a > b und a > Aymptotich tabil für a = b und a > keine Auage möglich ont intabil. P 3 : b u v = und a v u = geht nur, wenn a = b. Im Fall a = b : einzige Bedingung a = b = u + v u u u P 3 = Jf(P a u 3 ) =. u a u a Keine Auage möglich! Abhilfe : evtl. Ljapunov Funktion Sei y = ein tationärer Punkt de Sytem y = f(y) alo f() =. Exitiert eine Ljapunov Funktion V : D R, K R () D R n mit a) V () = und V (y) > für y, y D. b) < V, f(y) > y : < y R. o it y = glm. tabiler Gleichgewichtpunkt. In b < tatt = aymptotich tabil In b > tatt = intabil Motivation : Stabile Gleichgewichtzutände mechanicher Syteme ind Zutände minimaler potentieller Energie. V kann al verallgemeinerte Energie interpretiert werden. Läng einer tabilen Löung (alo mit zunehmendem t ) nimmt diee Energie nicht zu, alo mu d dt V (y(t)) =< V (y(t)), y (t) > gelten. Umgekehrt: nimmt die verallgemeinerte Energie zu, o kann die Löung nicht tabil ein!

7 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 7 Beipiel 4) Unteruchen Sie den Gleichgewichtpunkt (, ) T de Sytem y = 2y 3 2 4y y 2 2 y 2 = 3y y 2 2 y 3 2 auf Stabilität. Verwenden Sie ggf. V (y) = ay 2 + by2 2. Löung: Jf(, ) = Mit dem Anatz V (y, v) = ay 2 + bv 2 gilt icher V (, ) =. Außerdem it V (y, y 2 ) > für alle (y, y 2 ) (, ). Mit V = (2ay, 2by 2 ) T und f(y, y 2 ) = ( 2y 3 2 4y y 2 2 3y y 2 2 y 3 2 ) folgt S(y, y 2 ) :=< V, f >= (4a 6b)y y 3 2 8ay 2 y 2 2 2by 4 2. Wählt man nun a, b > mit a = 3b/2, o it S(u, v) für alle (u, v). Damit it eine Ljapunov Funktion gefunden und der Punkt (, ) it gleichmäßig tabiler Gleichgewichtpunkt. DGL 2-ter / n-ter Ordnung: Ert auf Sytem umchreiben Dann it da zugehörige Sytem: y y y + y 2 = etze y = y, y 2 = y y = y 2, y 2 = y y 2 y 2

8 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 8 Laplace Tranformation Ziel: Führe die Löung von Anfangwertaufgaben auf die Löung algebraicher Gleichungen zurück. Originalfunktionen: f : R R oder C heißt Originalfunktion, wenn f und die Ableitungen von f bi auf Sprungtellen tetig ind, wobei in jedem endlichen Intervall höchten endlich viele Sprungtellen auftauchen, f(t) Me σt t : Wachtumkoeffizient σ f(t) = t <. Vorgehen: Problem im Originalraum Problem im Bildraum Laplace Tranf. Rücktranf. Löung im Originalraum Löung im Bildraum y Y Laplace Tranformation: f(t) e t f(t)dt = : F () für R() > σ f F Anwendung auf Differentialgleichungen: heißt Korrepondenz DGL algebr. Gleichung löen y = Löung der DGL Y Geucht Löung y. Wir nehmen an, da y eine Originalfunktion it und nennen die Laplacetranformierte Y. E gilt alo y Y. Dann it y Y y() y 2 Y y() y () y 3 Y 2 y() y () y () Beim gewöhnlichen Integrieren it man darauf angewieen möglicht viele elementare Integrale zu kennen bzw. nachchlagen zu können. Bei der Laplace Tranformation mu man viele Korrepondenzen kennen bzw. gute Tabellen haben. Die Tabellen beziehen ich immer auf Originalfunktionen. D.h. f(t) =, t <.

9 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) 9 f F σ d.h. h (t) h a (t) e a t n, n N e at, a C in(ωt), ω R co(ωt), ω R n! n+ a R(a) ω 2 + ω ω 2 δ(t) einige wichtige Rechenregeln: E gelten f F, g G owie { t a h a (t) = t < a Dann gilt I) αf + βg αf + βg Linearität II) f(αt) α > ( ) α F α Streckung im O Raum III) h a (t)f(t a) e a F () Verchiebung im O Raum a > IV ) e at f(t) F ( a) Verchiebung im a C Bildraum/ Mult. mit exp-fkt im O Raum V ) f (n) (t) n F () n f() Ableitungen im O-Raum n 2 f () f (n ) () V I) ( t) n f(t) F (n) () Ableitungen im Bildraum n N Mult. mit t n im O Raum V II) t f(τ)dτ F () Integration im O Raum V III) f(t) t f(µ)dµ Integration im Bildraum

10 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) Beipiel : (Klauur 23, Str./Ki) Löen Sie die AWA y y 6y = e 2t, y() =, y () =, mit Hilfe der Laplace Tranformation. Wir bezeichnen mit Y () die Bildfunktion der noch unbekannten Löung y(t). Schritt ) Laplace-Tranformation der einzelnen Terme der AWA : y Y y() = Y y (Y ) y () = 2 Y e 2t Tranformation der AWA ergibt alo 2 Y Y 6Y = ( + 2) ( + 2) ( 2 6 ) Y = + 3 ( + 2) Schritt 2) Löung der algebraichen Gleichung : ( 3)( + 2)Y = + 3 ( + 2) Y () = + 3 ( 3)( + 2) 2 Schritt 3) Rücktranformation : bekannt it : tn eat ( a) n+ n! alo machen wir eine PBZ: + 3 ( 3)( + 2) = a b ( + 2) + c = a( + 2) 2 + b( 3) + c( 3)( + 2) a = c = 6/25, b = 5/25 Y () = 25 Damit erhält man ( ( + 2) 6 ) y(t) = 25 (6e3t 6e 2t 5te 2t )

11 Differentialgleichungen I, WiSe 2/, Anleitung 4, ( Kiani) Beipiel 2 : Zu Löen ei da Sytem: ẋ = y + x() = ẏ = x + t y() = Da Sytem kann auf eine DGL zweiter Ordnung + einer Integrationaufgabe zurückgeführt werden oder wie unten direkt gerechnet werden. Schritt ) Laplacetranformation der AWA : x X, ẋ X x() = X y Y ẏ Y y() = Y t 2 Neue algebraiche Sytem: X = Y + Y = X + 2 Schritt 2) Löung der algebraichen Gleichung : Au der erten Gleichung : Y = X Die eingeetzt in die zweite Gleichung : X 2 = X + 2 Auflöen nach X und Partialbruchzerlegung ergibt und damit X = ( 2 ) = = Y = X = 3 2 Schritt 3) Rücktranformation : + = x(t) = 3 2 et t 2 e t Y = 3 2 ( + ) = ( + + ) + + y(t) = 3 2 et e t

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation Prof. Dr. W. Roenheinrich 30.06.2009 Fachbereich Grundlagenwienchaften Fachhochchule Jena Übungmaterial Löen von Anfangwertproblemen mit Laplacetranformation Nachtehend ind einige Anfangwertprobleme zu

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden!

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden! D-HEST, Mathematik III HS 27 Prof. Dr. E. W. Farka M. Nitzchner Löung 7 Bitte wenden! . Wir betrachten ein Sytem linearer Differentialgleichungen erter Ordnung mit kontanten Koeffizienten der Form y (t)

Mehr

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0 3.6 Tranformationätze 853 3.6 Tranformationätze In dieem Abchnitt werden weitere Eigenchaften der Laplace-Tranformation vorgetellt, die in vielen technichen Bechreibungen ihre Anwendung finden. Oftmal

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2016/2017 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Elementare Lösungsmethoden für

Mehr

13.1 Die Laplace-Transformation

13.1 Die Laplace-Transformation 13.1 Die Laplace-ranformation 565 13.1 Die Laplace-ranformation Die Laplace-ranformation it eine Integraltranformation, die jeder Zeitfunktion f(t), t, eine Bildfunktion F () gemäß 13.1 F () = f (t) e

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Muterlöungen - Laplace-ranformation zeitkontinuierlicher Signale... 3. Berechnung der Laplace-ranformierten

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg WiSe 2011/2012 Dr. Hanna Peywand Kiani Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenfolgen 02.12.2011 Die ins Netz

Mehr

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ Prof.Dr. B.Grabowki Mathematik III/MST Übung Löungen Löungen zu Übung-Blatt Differentialgleichungen. Ordnung und PBZ Zu Aufgabe ) Geben Sie jeweil mindeten eine Löung folgender Differentialgleichung an

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Syteme Teil II: Sytemtheorie für Informatiker Dr. Mohamed Oubbati Intitut für Neuroinformatik Univerität Ulm SS 2007 Warum Sytemtheorie? Informatiker werden zunehmend mit Sytemen konfrontiert,

Mehr

Regelungstechnik (A)

Regelungstechnik (A) Intitut für Elektrotechnik und Informationtechnik Aufgabenammlung zur Regelungtechnik (A) Prof. Dr. techn. F. Gauch Dipl.-Ing. C. Balewki Dipl.-Ing. R. Berat 08.01.2014 Übungaufgaben in Regelungtechnik

Mehr

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2017/2018 Dr. Hanna Peywand Kiani Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Polynome, Folgen, Reihen 1. Teil 11/12.12.2017

Mehr

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 207 Dr. Hanna Peywand Kiani Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Laurent-Reihen, isolierte Singularitäten 6.

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

H.J. Oberle Differentialgleichungen I WiSe 2012/ Stabilität. Wir betrachten ein allgemeines DGL-System erster Ordnung:

H.J. Oberle Differentialgleichungen I WiSe 2012/ Stabilität. Wir betrachten ein allgemeines DGL-System erster Ordnung: H.J. Oberle Differentialgleichungen I WiSe 2012/13 A. Allgemeines. 8. Stabilität Wir betrachten ein allgemeines DGL-System erster Ordnung: y (t) = f(t, y(t)) (8.1) mit y(t) R n, hinreichend glatter rechter

Mehr

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion Z-Tranformation Laplace-Tranformation Laplace-Tranformation der Delta-Funktion Z-Tranformation Für eine Differenengleichung wie.b. f(n+) f(n) = n n (alternative Schreibweie n+ n = n n ) it eine expliite

Mehr

HOCHSCHULE RAVENSBURG-WEINGARTEN

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Noper Mathematik Lapace-Tranformation Aufgabe : Betimmen ie mit Hife der Definitiongeichung der Lapace-Tranformation die Bidfunktionen fogender Originafunktionen: f(t) co( ωt) b)

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Anleitung zu Blatt 2, Analysis II

Anleitung zu Blatt 2, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt 2, Analysis II SoSe 202 Funktionenfolgen, Potenzreihen I Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur

Mehr

Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Einführung in das Gebiet der Differentialgleichungen

Mehr

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT!

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Fachbereich Mathematik der Universität Hamburg SoSe 17 Dr. Hanna Peywand Kiani 13.07.2017 Klausurberatung Komplexe Funktionen für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Dateien

Mehr

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale,

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale, Department Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Anleitung u Blatt 7 Komplexe Funktionen Isolierte Singularitäten, Residuensat, reelle Integrale, Die ins Net gestellten Kopien

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

MATHEMATIK II - SOMMERSEMESTER 2016 LÖSUNGEN ZUM 9. ÜBUNGSBLATT ANALYSIS. Aufgabe 41 = (0, 0) (Hess f )(x, y) = (Hess f )(1, 1) =

MATHEMATIK II - SOMMERSEMESTER 2016 LÖSUNGEN ZUM 9. ÜBUNGSBLATT ANALYSIS. Aufgabe 41 = (0, 0) (Hess f )(x, y) = (Hess f )(1, 1) = MATHEMATIK II - SOMMERSEMESTER 26 LÖSUNGEN ZUM 9. ÜBUNGSBLATT ANALYSIS Aufgabe 4 a) f (x, y) x 2 2x + y 2 + : Notwendige Extremalbedingung erter Ordnung: grad f (x, y) f (x, y) (2x 2, 2y)! (, ) 2x 2 2y

Mehr

Wärmeleitungsgleichung,

Wärmeleitungsgleichung, Fachbereich Mathematik der Universität Hamburg SoSe 2015 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung, 05.06.2015 Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann rban Brunner Inhalt 5 Muterlöungen Syteme im Laplace-Bereich 3 5. Löen einer homogenen linearen Differentialgleichung...

Mehr

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren Fachbereich Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung mit anderen Randbedingungen nicht Dirichlet, symmetrische Differentialoperatoren 8.7.2 Die ins Netz

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt Karlruher Intitut für Technologie (KIT) Intitut für Analyi Dr. A. Müller-Rettkowki Dipl.-Math. M. Uhl WS 9/ Höhere Mathematik I für die Fachrichtungen Elektroingenieurween, Phyik und Geodäie Löungvorchläge

Mehr

9. Die Laplace Transformation

9. Die Laplace Transformation H.J. Oberle Differentialgleichungen I WiSe 212/13 9. Die Laplace Transformation Die Laplace Transformation gehört zur Klasse der so genannten Integraltransformationen. Diese ordnen einer vorgegebenen Funktion

Mehr

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am Übungen zur Vorleung PN1 Löung Übungblatt 12 Beprechung am 22.1.2013 Aufgabe 1: Gedämpfte Schwingung An einer Feder mit der Federhärte 20 N/m hängt eine Kugel der Mae 100g. Die Kugel wird um 10 cm nach

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben.

BSc PRÜFUNGSBLOCK 2 / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Intitut für Me- und Regeltechnik BSc PRÜFUNGSBLOCK 2 / D-MAVT. 0. 2005 REGELUNGSTECHNIK I Muterlöung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfmittel: 20 Minuten 8

Mehr

Formelsammlung Mathematik (ET053)

Formelsammlung Mathematik (ET053) Forelalung Matheatik (ET053) Änderunghitorie 07..2006 Differenzialgleichungen, Ordnung, Separierbarkeit, Hoogenität, Linearität, Löungen, Löunganatz Trennen der Variablen, Löunganatz Subtitution, Lineare

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

Aufgabenblatt zum Seminar 01 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 01 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 01 PHYS70356 Klaiche und relativitiche Mechanik Phyik, Wirtchaftphyik, Phyik Lehramt, Nebenfach Phyik) Othmar Marti, othmar.marti@uni-ulm.de) 20. 10. 2008 1 Aufgaben 1. Sie ehen

Mehr

MATHEMATIK 1 VERSION 17. Dezember f(t)e st dt. F (s) = f(t)e st dt =

MATHEMATIK 1 VERSION 17. Dezember f(t)e st dt. F (s) = f(t)e st dt = MATHEMATIK VERSION 7. Dezember 28 ISIBACH ANDRÉ 4. aplacetranformation 4.. Definition. Sei f(t gegeben. Die Funktion F ( f(te t dt heit aplacetranformation der Funktion f(t. Symbolich chreiben wir F (

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

Aus Kapitel 39. Regelungstechnik. Aufgaben Ein Übertragungsglied sei beschrieben durch die Differenzialgleichung

Aus Kapitel 39. Regelungstechnik. Aufgaben Ein Übertragungsglied sei beschrieben durch die Differenzialgleichung Aufgaen Kap 39 229 Au Kapitel 39 Aufgaen 39 Ein Üertragungglied ei echrieen durch die Differenzialgleichung 3ÿt) +2ẏt) +2yt) ut) +2ut) Da Eingangignal ei ut) e 2t, alle Anfangwerte eien null Eritteln Sie

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Kopien der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

Übungsblatt - Stabilität des Standardregelkreises

Übungsblatt - Stabilität des Standardregelkreises Prof. Dr.-Ing. Jörg Raich Dr.-Ing. Thoma Seel Fachgebiet Regelungyteme Fakultät IV Elektrotechnik und Informatik Techniche Univerität Berlin Integrierte Verantaltung Mehrgrößenregelyteme Übungblatt - Stabilität

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 4, Analysis II SoSe 6, 3/4. Mai Uneigentliche und parameterabhängige Integrale, Rotationskörper Die ins Netz gestellten Kopien

Mehr

Differenzengleichungen, Z - Transformation

Differenzengleichungen, Z - Transformation Differenengleichungen, Z - Transformation In diesem Kapitel wollen wir eine weitere Transformation, die Z-Transformation behandeln. Mit Hilfe der Z-Transformation können lineare Differenengleichungen (DFG

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Aufgabe 1: Frequenzgang und Bode-Diagramm ( 10 Punkte) ( )

Aufgabe 1: Frequenzgang und Bode-Diagramm ( 10 Punkte) ( ) Aufgabe : Frequenzgang und Bode-Diagramm ( 0 Punte) Gegeben ei ein einface Sytem mit der Übertragungfuntion: Betimmen Sie analytic den Verlauf de zugeörigen Amplitudengange G ( ω) in Dezibel: ( ) G ( ω)

Mehr

7 Laplace-Transformation

7 Laplace-Transformation 7 Laplace-Tranformation In dieem Kapitel wird die Laplace-Tranformation eingeführt, eine der wichtigten Tranformationen in der linearen Sytemtheorie. Eine Verwendung olcher Tranformationen it, eine mathematiche

Mehr

Kybernetik Stabilität

Kybernetik Stabilität Kybernetik Stabilität Mohamed Oubbati Intitut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 22. 05. 2012 Definition Stabilität Definition 1 Ein Sytem, da nach einer Anregung

Mehr

1.3 Zweidimensionale Systeme

1.3 Zweidimensionale Systeme 132 KAPITEL IV. QUALITATIVE THEORIE UND DYNAMISCHE SYSTEME Im Fall a 3 > 0 ist das Gleichgewicht asymptotisch stabil. Für a 2 3 > 4a 1a 2 haben wir < < 0 und es liegt ein stabiler Knoten vor (siehe den

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anali III W / Löungvorchläge zum 9. Übungblatt. Wir zeigen zunächt, da die u.u. au Vorleung/Übung noch nicht bekannt it: It A BR p und B BR q, o it A B BR p+q. Die läßt ich z.b. wie in Aufgabe

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Wachstum und Entwicklung

Wachstum und Entwicklung Wachtum und Entwicklung Potkeyneianiche Wachtumtheorie Intitut für Genoenchaftween im Centrum für Angewandte Wirtchaftforchung Unierität Münter 1 Da Modell (1) 1 1 Y Min ( K, L) u Produktionfunktion (2)

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WIiSe 18/19 Dr. Hanna Peywand Kiani 28.01.2019 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Das ins Netz gestellte Material zur

Mehr

Eine gewöhnliche Differentialgleichung ist eine. Funktionsgleichung, Die allgemeine Differentialgleichung n-ter Ornung für eine Funktion y = y (x) :

Eine gewöhnliche Differentialgleichung ist eine. Funktionsgleichung, Die allgemeine Differentialgleichung n-ter Ornung für eine Funktion y = y (x) : Gewöhnliche Differentialgleichung. Einleitung und Grundbegriffe Def.: Eine gewöhnliche Differentialgleichung ist eine Funktionsgleichung, die eine unbekannte Funktion = () sowie deren Ableitungen nach

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11 D-MAVT Lineare Algebra II FS 28 Prof. Dr. N. Hungerbühler Lösungen Serie. Die allgemeine Lösung von y = ay ist y(x) = e ax. (a) richtig (b) falsch y(x) = e ax ist eine spezielle Lösung von y = ay. Für

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

Laplace Transformation

Laplace Transformation Prof. Dr. Michael Eiermann Höhere Mathematik 3 (vertieft Kapitel L Laplace Tranformation Die Laplace Tranformation verwandelt Anfangwertprobleme für lineare Differentialgleichungen mit kontanten Koeffizienten

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Seminararbeit. Laplace-Transformation II: Anwendung

Seminararbeit. Laplace-Transformation II: Anwendung Wetfäliche Wilhel Univerität Fachbereich Matheatik (FB 1 Lia Hortann Matrikelnuer 35113 Mater of Education (BAB Cheietechnik / Matheatik Seinararbeit Laplace-Tranforation II: Anwendung Dozent: Prof. Dr.

Mehr

Aufgabe 69 Wir wenden die Laplacetransformation auf das System von Differentialgleichungen an. Schreibe. Y 1, y 2. (1 s 2 )Y 2 (s) = 1.

Aufgabe 69 Wir wenden die Laplacetransformation auf das System von Differentialgleichungen an. Schreibe. Y 1, y 2. (1 s 2 )Y 2 (s) = 1. Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 7.7.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe Dr. Hanna Peywand Kiani Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Elementare Funktionen.Teil stereographische Projektion

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2 Greenche Funktion Frank Eenberger FU Berlin 30.September 2006 Inhalterzeichni Nomenklatur 2 Greenche Theoreme 3 Anwendung in der Elektrotatik 2 4 Anpaung an Randbedingungen 3 5 Eindeutigkeit der Löung

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 6. Vorlesung Michael Karow Themen heute: 1. Die geschlossene Lösungsformel für lineare DGL mit konstanten Koeffizienten. 2. Die Matrixexponentialfunktion

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung.

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung. 9 Schwingungen 9.1 Beipiele und Grundlagen Ruhelage Ruhelage Fadenpendel Ruhelage Federpendel Federpendel Ruhelage orionpendel Charakteritika: Die Bewegung it periodich; d.h. die Bewegung wiederholt ich

Mehr

Analyse zeitkontinuierlicher Systeme im Frequenzbereich

Analyse zeitkontinuierlicher Systeme im Frequenzbereich Übung 3 Analye zeitkontinuierlicher Syteme im Frequenzbereich Diee Übung bechäftigt ich mit der Analye von Sytemen im Frequenzbereich. Die beinhaltet da Rechnen mit Übertragungfunktionen, den Begriff der

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungblatt 3 PHYS11 Grundkur I Phyik, Wirtchaftphyik, Phyik Lehramt Othmar Marti, othmar.marti@uni-ulm.de 4. 11. 5 und 7. 11. 5 1 Aufgaben 1. Im erten Übungblatt wurde der Fahrplan eine BMW-Maenpunkte

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Postkeynesianische Wachstumstheorie

Postkeynesianische Wachstumstheorie 1 Wachtum und Enticklung Potkeyneianiche Wachtumtheorie Prof. Dr. Wolfgang Ströbele In Zuammenarbeit mit Dipl.-Math. Eric Meyer Lehrtuhl für Volkirtchafttheorie Unierität Münter Da Modell 2 (1) 1 1 Y Min

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 6/7 7. Vorlesung Michael Karow Themen heute:. Die rechte Seite einer DGL als Vektorfeld.. Stabilität Die Ableitung einer Kurve Sei J R ein Intervall und y : J

Mehr

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 214 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Kurvenintegrale Zur Erinnerung:

Mehr

Floquet Theorie II. 1 Einführung

Floquet Theorie II. 1 Einführung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 18.10.2011 Sebastian Monschang 1 Einführung Auf den Ergebnissen des ersten Vortrags basierend werden wir in diesem Vortrag gewöhnliche lineare Differentialgleichungssysteme

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9 Prof r Holger ette Muterlöung Statitik I Sommeremeter 009 r Melanie Birke Blatt 9 Aufgabe : 4 Punkte E eien X,, X n unabhängig identich N µ, -verteilt a Man berechne die Fiher-Information I µ für µ b E

Mehr

Definition Anwendungen. z-transformation. Fakultät Grundlagen. Juli 2010

Definition Anwendungen. z-transformation. Fakultät Grundlagen. Juli 2010 z-transformation Fakultät Grundlagen Juli 2010 Fakultät Grundlagen z-transformation Übersicht 1 2 Fakultät Grundlagen z-transformation Folie: 2 Abtastung Abtastung: Umwandlung einer stetigen (zeitkontinuierlichen)

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

1. MECHANISCHE ENERGIE

1. MECHANISCHE ENERGIE KAITL III NRGI . MCHANISCH NRGI Wird ein Körper mit der Kraft entlang de Wege bewegt, o it die dafür benötigte mechaniche nergie da kalare rodukt au der Kraft und dem Weg : co und ind in dieer Definition

Mehr

Übungsblatt 12 Physik für Ingenieure 1

Übungsblatt 12 Physik für Ingenieure 1 Übungblatt 12 Phyi für Ingenieure 1 Othmar Marti, (othmar.marti@phyi.uni-ulm.de) 15. 1. 2002 1 Aufgaben für die Übungtunden Spezielle Relativitättheorie 1 Spezielle Relativitättheorie 2 Schwingungen 3

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr