Mathematik GK m3, 2. KA gebr. rat. Funktionen / Steigungen Lösung

Größe: px
Ab Seite anzeigen:

Download "Mathematik GK m3, 2. KA gebr. rat. Funktionen / Steigungen Lösung"

Transkript

1 Aufgabe 1: Gebrocen rationale Funktion Gegeben ist die folgende gebrocen rationale Funktionen f (x)= 0.5x4 +2 x 3 16x 2 x 3 6x 2 +12x Berecne die Nullstellen der Funktion. (Kontrolllösung: x 1 =0 ; x 2 = 8 ; x 3 =4 ) Hinweis: Die Aufgabe ist lösbar, one eine Nullstelle für den Zäler zu raten (zumal die Lösungen angegeben sind). Ein Lösungsweg, der dieses Probieren als Lösungsweg benutzt ist zulässig, fürt aber zu Punktabzug! Nullstellen der Funktion: Nullstellen des Zälers, die nict gleiczeitig Nullstellen des Nenners sind. NST des Zälers: 0=0.5x n 4 +2 x n 3 16x n 2 0=x n 2 (0.5x n 2 +2 x n 16) Damit ist x 1 =0 ein doppelte NST. Betracte Klammer: 0=0.5x n 2 +2 x n = x n 2 +4x n 32 p-q-formel: x 2 /3 = 2± = 2± 36= 2±6 x 2 = 2 6= 8 ; x 3 = 2+6=4 NST des Nenners: x 4 =2 muss eine Nullstelle sein (siee folgende Aufgabe). Polynomdivision: ( x 3 6x 2 +12x 8):(x 2)=x 2 4x+4 (x 3 2x 2 ) 4x 2 +12x 8 ( 4x 2 +8x) 4x 8 (4x 8) 0 Weitere Nullstellen: 0= x n 2 4x n +4 Mit 2. binomiscer Formel: 0=( x n 2) 2 x 4 =2 ist also eine dreiface NST des Nenners. Es gibt keine Übereinstimmung zwiscen den NST des Zälers und denen des Nenners. Damit sind x 1 =0 ; x 2 = 8 ; x 3 =4 die Nullstellen der Funktion. 1.2 Zeige mit Hilfe einer Recnung, dass x 4 =2 die einzige Polstelle der Funktion ist. Wenn die Recnung dazu bereits in Aufgabe 1.1 gemact wurde, genügt ein Hinweis. siee Recnung Aufgabe Erkläre: Was ist eine ebbare Definitionslücke? Wie siet ein Grap aus, der an der Stelle x 0 eine Polstelle at? Wie siet dazu im Vergleic ein Grap aus, der an der Stelle x 0 eine ebbare Definitionslücke at? Eine ebbare Definitionslücke tritt auf, wenn eine (einface, doppelte, dreiface, usw.) Nullstelle des Nenners gleiczeitig eine (einface, doppelte, dreiface, usw.) Nullstelle des Zälers ist. An einer Polstelle näern sic die Funktionswerte einer senkrecten Asymptote, d.. sie laufen gegen ±. Der Grap verläuft an dieser Stelle genauso wie der Grap der Funktion, bei welcer der betreffende Nullstellenterm gekürzt wurde, abgeseen davon, dass er genau an dieser Stelle ein Loc bzw. eine Lücke at. Seite 1 von 5

2 1.4 Bestimme mit Hilfe einer Recnung das Grenzwertveralten der Funktion für x ±. Polynomdivision: (0,5 x 4 +2x 3 16x 2 ):(x 3 6x 2 +12x 8)=0,5 x+5+ 8x2 56x+40 x 3 6x 2 +12x 8 (0,5 x 4 3x 3 +6x 2 4x) 5x 3 22x 2 +4x (5x 3 30x 2 +60x 40) 8x 2 56x+40 x ± x 3 6x 2 +12x 8 = x ± ( 0,5 x+5+ 8x2 56x+40 x 3 6x +12x 8) = (0,5 x+5)+0=± 2 x ± 1.5 Berecne ggf. vorandene waagerecte oder sciefe Asymptoten. Sciefe Asymptote: g ( x)=0,5 x+5 Recnung siee Aufgabe Erkläre kurz, warum man auc one Recnung am Funktionsterm seen kann, dass es eine sciefe Asymptote sein muss. Weil Zäergrad Nennergrad =1, muss die Asymptote eine lineare Funktion sein. 1.7 Bestimme mit Hilfe einer Recnung das Grenzwertveralten der Funktion an der Polstelle. x 2 x<2 x 3 6x 2 +12x 8 = 0,5 x 2 ( x+8) ( x 4) =+ + + x 2 ( x 2) 3 (+ x<2 = + ) x 2 x>2 x 3 6x 2 +12x 8 = weil bei einer dreifacen Polstelle das Vorzeicen wecseln muss. Seite 2 von 5

3 1.8 Zeicne die Nullstellen, senkrecten Asymptoten und waagerecten oder sciefen Asymptoten in der Koordinatensystem auf der Rückseite des Blattes ein. Skizziere anscließend den Funktionsverlauf mit einem farbigen Stift (nict rot). Seite 3 von 5

4 Aufgabe 2: Durcscnittlice und momentane Steigungen 2.1 Berecne den Differenzenquotienten für die Funktion f (x)=2x 2 +4 im Intervall [2 ;6]. f (b) f (a) f (6) f (2) m= = = ( ) = = 64 b a = Berecne die lineare Näerungsfunktion für die Funktion f (x)=2 x im Intervall [1; 4]. f (b) f (a) f (4) f (1) Steigung: m= = = = 16 2 = 14 Der Punkt (1 f (1)) liegt auf b a dem Grapen von f und auf dem Grapen der linearen Näerungsfunktion, welce die allgemeine Funktionsgleicung g ( x)=mx+n at. Steigung und Punkt einsetzen: g(1)=m 1+n 2 1 = n =n 8 3 =n Damit ist g( x)= 14 3 x Berecne den Differentialquotienten für die Funktion f (x)=2x 2 +4 an der Stelle x 0 =2 mit der -Metode. = = f (x 0 +) f (x 0 ) f (2+) f (2) = 0 2 ( )+4 (8+4) = 0 (8+2)=8 = 0 (2 (2+) 2 +4) ( ) = Berecne den Differentialquotienten für die Funktion f (x)=2x 2 +4 an der Stelle x 0 =2 mit der x-metode. f ( x) f ( x 0 ) x x 0 x x 0 = x 2 = x 2 2( x+2)(x 2) x 2 f ( x) f (2) = x 2 x 2 = x 2 (2(x +2))=2 (2+2)=8 2 x 2 +4 ( ) 2x 2 8 = x 2 x 2 x 2 = 2(x 2 4) x 2 x 2 Seite 4 von 5

5 Aufgabe 3: Halfpipe Wenn ein Skateboard über den Rand einer Halfpipe färt, bewegt es sic genau in die Rictung weiter, die es zuletzt auf der Halfpipe atte, (wenn wir Kleinigkeiten wir die Erdgravitation außer act lassen). Nemen wir an die Form der Halfpipe folgt der Funktion f (x)= 1 40 x4 2 im Intervall [ 3;+3]. Die Halfpipe ist also insgesamt 5 m breit. Berecne die Funktion, welce die geradlinige Flugban des Skateboards bescreibt, sobald das Skateboard die Halfpipe auf der recten Seite verlässt. Gesuct ist die Funktionsgleicung der Tangente an der Stelle x 0 =3. Die Steigung ist gleic dem Differentialquotienten: f (x) f (x m= 0 ) ( 1 40 x4 2 = ) ( ) = 1 x x 0 x x 0 x 3 x 3 40 ( x 4 2) (3 4 2) x 3 x 3 m= 1 40 x 4 81 x 3 x 3 = 1 40 (x 2 +9)( x 2 9) = 1 x 3 x 3 40 (x 2 +9)(x+3)(x 3) x 3 x 3 = 1 40 (x 2 +9)( x+3)= 1 x 3 40 (32 +9)(3+3)= = = =2,7 Der Punkt (3 f (3)) liegt auf dem Grapen von f und auf dem Grapen der Tangenten, welce die allgemeine Funktionsgleicung g ( x)=mx+n at. Steigung und Punkt einsetzen: g(3)=m 3+n = 27 3+n =n =n =n =n Also ist g( x)= x Seite 5 von 5

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h Matematik LK 11 M2, AB 1 Funktionsuntersucungen Lösung 14.0.2016 Aufgabe 1: Gegeben ist die Funktion f (x)=x x 2 1.1 Berecne die ersten drei Ableitungsfunktionen der Funktion f mit Hilfe des Differentialquotienten,

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fakultät Matematik Institut für Numerisce Matematik Lösung zur Aufgabe 4 (a) des 9. Übungsblattes größtmöglicer Definitionsbereic: Die Funktion ist überall definiert, außer an der Stelle = 3

Mehr

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10 Differenzialrecnung Was du nac den Ferien kannst! Klasse 10 Zeicne die Tangenten an den Stellen x=-4, x=-1 und x=3 an den abgebildeten Funktionsgrap, und bestimme die Tangentengleicung. Zeicne die Sekanten

Mehr

15 / 16 I GK EF Übung 2 Dez.15

15 / 16 I GK EF Übung 2 Dez.15 1 / 16 I GK EF Übung Dez.1 Nr. 1: Ableitungsdefinition - Tangentenberecnung Gegeben ist die ganzrationale Funktion. Grades mit: f(x) = x - x a) Bestimmen Sie die durcscnittlice Änderungsrate (Sekantensteigung)

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Weitere Anwendungen von ganzrationalen Funktionen

Weitere Anwendungen von ganzrationalen Funktionen Weitere Anwendungen von ganzrationalen Funktionen 1.0 Um Obstkisten aus Pappe erzustellen, werden aus recteckigen Kartonplatten (Länge 16 dm, Breite 1 dm) an den vier Ecken jeweils Quadrate abgescnitten.

Mehr

Schülerbuchseite 8 11

Schülerbuchseite 8 11 Scülerbucseite 8 I Sclüsselkonzept: Ableitung Funktionen Seite 8 Die andere Person muss nict notwendig dieselbe Strecke gefaren sein, nur weil sie denselben Farpreis bezalt at. Es gibt versciedene Verbindungen,

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

N a c h s c h r e i b k l a u s u r

N a c h s c h r e i b k l a u s u r N a c s c r e i b k l a u s u r Aufgabe Bestimmen Sie die Ableitung der Funktion f (x) an der Stelle x 0, indem Sie den Grenzwert des Differenzenquotienten berecnen. a) f (x) = 4 x 2 x 2 x 0 = 4 b) f (x)

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe www.mate-aufgaben.com Matematik - Oberstufe Aufgaben und Musterlösungen zu Ableitungen, Tangenten, Normalen Zielgruppe: Oberstufe Gymnasium Scwerpunkt: Differenzenquotient, Differenzialquotient, Ableitung,

Mehr

± 1 +2= 1 2 ± =1 2 ± 2,25= 1 2 ±1,5 x 2= 1 2 1,5= 1 ; x 3= ,5=2

± 1 +2= 1 2 ± =1 2 ± 2,25= 1 2 ±1,5 x 2= 1 2 1,5= 1 ; x 3= ,5=2 Aufgabe 1: Gegeben ist die Funktion f (x)= 2x2 x 3 +x 4 Bestimme jeweils... 1.1...alle Nullstellen von f. x 5 +x 4 Nullstellen von f: Nullstellen des Zählers, die nicht Nullstellen des Nenners sind. Nullstellen

Mehr

Einführung in die Differentialrechnung

Einführung in die Differentialrechnung Reiner Winter Einfürung in die Differentialrecnung. Das Tangentenproblem als ein Grundproblem der Differentialrecnung Wir betracten im folgenden die quadratisce Normalparabel, d.. den Grapen GI f der Funktionsgleicung

Mehr

5 Gebrochen-rationale Funktionen

5 Gebrochen-rationale Funktionen 5 Gebrochen-rationale Funktionen 5. Definition: Eine Funktion f, deren Term f(x) als Bruch Z(x) N(x) von zwei Polynomfunktion Z(x) und N(x) geschrieben werden kann und deren Nennergrad größer als 0 ist,

Mehr

1. Anleitung: gebrochen rationale Funktionen am Beispiel:

1. Anleitung: gebrochen rationale Funktionen am Beispiel: 1. Anleitung: gebrochen rationale Funktionen am Beispiel: Aufgabe jeweils: Maximale Definitionsmenge D max R und Lage und Art der Definitionslücken bzw. Nullstellen in Abhängigkeit von k R. 1.1 Parameter

Mehr

Grundlagen der Differentialrechnung

Grundlagen der Differentialrechnung Grundlagen der Differentialrecnung Wolfgang Kippels 26. Oktober 2018 Inaltsverzeicnis 1 Vorwort 2 2 Grundprinzip der Differenzialrecnung 3 3 Ableiten von Funktionen 7 3.1 Ableitungen wictiger Grundfunktionen:..................

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Differenzial- und Integralrechnung IV

Differenzial- und Integralrechnung IV Differenzial- un Integralrecnung IV Rainer Hauser September 202 Einleitung. Ableitung un Integral Die Ableitung einer Funktion f: R R, f() ist efiniert urc en Differenzialquotienten als f () = f() = f(

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung Aufgabe 1: Grenzwerte 2 x 3 1.1 Berechne unter Anwendung der 3( +12 x 10 Grenzwertsätze für Funktionen: lim x 3 x 3 +2 x+10 2 x 2 x 3 +12 x 10 1+ 6 lim x 3 x 3 +2 x+10 = lim x 10 3) 2 x 2 x 2 3 x 3( 1

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion

5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion 5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion 5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion Ein kurzer Rückblick erleictert die Bescreibung des Neuen: Im ersten Lernabscnitt

Mehr

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f ''

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f '' matpys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN 5 Grap von f Grap von f ' Grap von f '' matpys-online bei ganzrationalen Funktionen Inaltsverzeicnis Kapitel Inalt Seite Der Ableitungsbegriff.

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

26 Gebrochenrationale Funktionen; Definitionsmenge und Nullstellen. z x. f : x n x

26 Gebrochenrationale Funktionen; Definitionsmenge und Nullstellen. z x. f : x n x 6 Gebrocenrtionle Funktionen; Deinitionsmenge und Nullstellen 6. Deinition und Klssiiktion Sind n gnzrtionle Funktionen, dnn eißt die Funktion z und gebrocenrtionle Funktion. z : n Mn untersceidet dbei

Mehr

Anwendungsaufgaben zur allgemeinen Exponentialfunktion

Anwendungsaufgaben zur allgemeinen Exponentialfunktion Anwendungsaufgaben zur allgemeinen Exponentialfunktion.0 Im Jare 975 gab es auf der Erde 4,033 Milliarden Menscen. Man recnet mit einer Verdoppelungszeit der Erdbevölkerung von etwa 40 Jaren.. Nemen Sie

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

Übungsaufgaben zur Differential-Rechnung

Übungsaufgaben zur Differential-Rechnung Übungsaufgaben zur Differential-Recnung Weitere Übungsaufgaben mit Lösungen gibt es z.b. in Brauc/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski usw.. Bestimme allgemeines Folgen-Element, Eigenscaften

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Anleitung zur Berechnung von Ableitungsfunktionen

Anleitung zur Berechnung von Ableitungsfunktionen Matematik 11d 7..009 Stefan Krissel Anleitung zur Berecnung von Ableitungsfunktionen Prolog Es gibt nict das Verfaren zur Berecnung der Ableitungsfunktion, genausowenig wie es das Verfaren zum Screiben

Mehr

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y 1.06 Druck an gekrümmten läcen f() p γ. (-) p p ds p 0 0 Es andelt sic um ein zweidimensionales Problem in der -- Ebene. ür die Ermittlung von Kräften muss auc die Dimension senkrect zur Tafelebene berücksictigt

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

(1 + h) 2 + (1 + h) 2 (1 + h) 1. + h) = lim. die Definititionslücke. (1 + 2h + h 2 ) h 2. = lim. 3h + h 2 = lim. h(3 + h) = lim.

(1 + h) 2 + (1 + h) 2 (1 + h) 1. + h) = lim. die Definititionslücke. (1 + 2h + h 2 ) h 2. = lim. 3h + h 2 = lim. h(3 + h) = lim. Grenzwerte an ebbaren Deinitionslücken Musterbeispiel: Berecne den Grenzwert an der Deinitionelücke, bzw. den elenden Punkt des Grapen von, von der Funktion (x) = x + x x Scritt : Deinitionslücke bestimmen,

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

Illustrierende Aufgaben zum LehrplanPLUS. Gebrochen-rationale Funktionen

Illustrierende Aufgaben zum LehrplanPLUS. Gebrochen-rationale Funktionen Gebrochen-rationale Funktionen Stand: 26.10.2018 Jahrgangsstufen Fach/Fächer FOS 12 (T), BOS 12 (T), FOS 13 (NT), BOS 13 (NT) Mathematik Übergreifende Bildungs- und Erziehungsziele Benötigtes Material

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Ansgar Schiffler. Die Polynomdivision. Seite 1 von 5. Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden.

Ansgar Schiffler. Die Polynomdivision. Seite 1 von 5. Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden. Seite 1 von 5 Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden. Dies ist der Graph der Funktion: y = f(x) =,5x³,5x² + 1,8x +,88 Die erste Nullstelle können Sie durch

Mehr

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben Wiederholung:. Abschnitt mit Übungsaufgaben Grundwissen (GW) GW. Lösen Sie folgende algebraische Gleichungen bzw. Ungleichungen in der Grundmenge R: a) 5 = 0 a) 5 0 Teilergebnis: ] ;,5] b) Lösen Sie die

Mehr

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum Weg zur e-funktion Zur Einstimmung werden einige Wacstumsverläufe skizziert.. Eponentielles Wacstum. Begrenztes (bescränktes) Wacstum Wacstumsverläufe. Logistisces Wacstum. Vergiftetes Wacstum Eponentielles

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizscule Hannover - Seminararbeit - Modellierung von Ausflussvorgängen J I Sculjar: 2010 Fac: Matematik Inaltsverzeicnis 1 Einleitung 2 11 Vorwort 2 12 Vorbereitung 2 2 Ausflussvorgang bei konstantem

Mehr

Orientierungsaufgaben für die BESONDERE LEISTUNGSFESTSTELLUNG ab 2015 MATHEMATIK

Orientierungsaufgaben für die BESONDERE LEISTUNGSFESTSTELLUNG ab 2015 MATHEMATIK Orientierungsaufgaben für die BESONDERE LEISTUNGSFESTSTELLUNG ab 2015 MATHEMATIK Im Auftrag des TMBWK erarbeitet von den Facberaterinnen und Facberatern Matematik Gymnasium. Hinweise für Prüfungsteilnemerinnen

Mehr

Heizung Pumpen-Auslegung Seite 1 von 5

Heizung Pumpen-Auslegung Seite 1 von 5 Heizung Pumpen-Auslegung Seite 1 von 5 Aus der Heizlastberecnung ergab sic für das gesamte Gebäude ein Wert von 25 kw. Die Vorlauftemperatur ist mit 70 C und die Rücklauftemperatur mit 50 C geplant. Die

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Lösungen zu delta 6. Kann ich das noch? Lösungen zu den Seiten 6 und 7

Lösungen zu delta 6. Kann ich das noch? Lösungen zu den Seiten 6 und 7 Kann ic das noc? Lösungen zu den Seiten 6 und 7. a) L = { ; } b) L = {0; } c) L = {} d) ( + )( + ) = 0; L = { ; } e) ( 6)( ) = 0; L = {; 6} f) L = {0}; 0,7 G g) ( 8)( + ) = 0; L = { ; 8} ) ( + )( + ) =

Mehr

Repetitorium der Mathematik. StR Markus Baur

Repetitorium der Mathematik. StR Markus Baur Repetitorium der Matematik StR Markus Baur 2011 11 20 Repetitorium der Matematik für die bayerisce Oberstufe Markus Baur Studienrat für Matematik und Pysik Werdenfels-Gymnasium Wettersteinstraße 30 82467

Mehr

( ) = ( ) y Kosten in 800

( ) = ( ) y Kosten in 800 R. Brinkmnn tt://brinkmnn-du.de Seite 09.0.008 Lge zweier Gerden zueinnder Ein Gleicungssstem us zwei lineren Gleicungen t beknntlic entweder eine, keine oder unendlic viele Lösungen. Ws ber t ds mit der

Mehr

Winkel an sich schneidenden Geraden So wird s gemacht!

Winkel an sich schneidenden Geraden So wird s gemacht! Winkel an sic scneidenden Geraden So wird s gemact! 1. So gest du vor: bedeutet, dass die Geraden g und parallel sind. g α 1 1 1 1 60 Bestimme alle Winkel. α 60 Sceitelwinkel sind gleic groß: α 60 Stufenwinkel

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Uwe Rat Eckleinjarten 13a. 7580 Bremeraven 0471 3416 rat-u@t-online.de Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen 11..4 Kegelige

Mehr

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart,

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

Numerische Differenziation

Numerische Differenziation In vielen Anwendungen ist es notwendig, Funktionen näerungsweise mit Hilfe eines numeriscen Verfarens zu differenzieren: Die analytisce Berecnung der Ableitung ist zum Beispiel unmöglic, wenn die zu differenzierende

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SoSe Übungsblatt Musterlösung Lösung 4 Einfluß von Randbedingungen) a) Durc Integration erälten wir: u x) = ux) = x x fy)dy +c = x π sinπz)+c b) Seien nun u) = u) = Daraus folgt: cosπy)dy +c = π sinπx)+c.

Mehr

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler Aufträge Modellieren mitilfe der Ableitung. Modellieren mit Parabeln Auftrag Tennis Ein Spieler stet beim Training 5 m inter dem Netz. Er muss einscätzen, ob er den von einer Ballmascine gescossenen Ball

Mehr

Abschlussaufgabe Nichttechnik - A II - Lsg.

Abschlussaufgabe Nichttechnik - A II - Lsg. GS - 8.6.8 - m8_nta_lsg.xmcd Abschlussaufgabe 8 - Nichttechnik - A II - Lsg.. Gegeben ist die Funktion f( x) ID f IR \ { }. Ihr Graph wird mit G f bezeichnet. ( x ) in ihrer maximalen Definitionsmenge.

Mehr

Differenzial- und Integralrechnung V

Differenzial- und Integralrechnung V Differenzial- un Integralrecnung V Rainer Hauser Dezember 2013 1 Einleitung 1.1 Rationale Funktionen Rationale Funktionen sin Funktionen in er Form von Brücen, eren Zäler un Nenner Polynome sin. Durc vollstäniges

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

Kontrollfragen zur Unterrichtsstunde

Kontrollfragen zur Unterrichtsstunde Kontrollfragen zur Unterrichtsstunde Frage 1: Das Newtonverfahren ist eine Methode zur Bestimmung A: der Extremstellen eines C: des Verhalten im Unendlichen. B: der Nullstellen eines D: der Fallzeit eines

Mehr

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

4. Aufgaben zur Integralrechnung (Kap.14)

4. Aufgaben zur Integralrechnung (Kap.14) . ugaben zur Integralrecnung Kap.. Geben Sie ür die Funktionen jeweils die Funktionsgleicung einer Stammunktion F an und erläutern Sie insbesondere Ire Vorgeensweise:. Geben Sie ür die Funktionen jeweils

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Eigenschaften gebrochen rationaler Funktionen

Eigenschaften gebrochen rationaler Funktionen Aufgabe 1: 1 Zeichne mit geogebra den Graphen der Funktion f: f() = Beantworte (zusammen mit deinem Tischnachbar) folgende Fragen: Welche Zahlen dürfen nicht in den Funktionsterm eingesetzt werden? Wie

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante 88 III. Grundlagen der Differential - und Integralrecnung III. Grundlagen der Differential- und Integralrecnung 8. Differenzierbare Funktionen 88 9. Maima und Minima 93 0. Mittelwertsätze und Anwendungen

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit. Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

2. Unterrichtsvorhaben in der E-Phase Änderungsraten und Ableitung

2. Unterrichtsvorhaben in der E-Phase Änderungsraten und Ableitung 0 2. Unterrictsvoraben in der E-Pase Änderungsraten und Ableitung Jörn Meyer j.meyer@fals-solingen.de www.maspole.de 1 Inaltsverzeicnis 1 Einfürung in die Differenzialrecnung... 2 2 Mittlere Änderungsraten...

Mehr

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an.

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an. Anwendungsaufgaben - Größen und Eineiten 1 Gib jeweils die Messgenauigkeit und die Anzal der gültigen Ziffern an. Messgerät Messwert Messgenauigkeit gültige Ziffern Maßband Lineal Messscieber Mikrometer

Mehr