Theorie der Kondensierten Materie I WS 2014/2015

Größe: px
Ab Seite anzeigen:

Download "Theorie der Kondensierten Materie I WS 2014/2015"

Transkript

1 Karlsrher Institt für Technologie Institt für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS /5 Prof. Dr. A. Mirlin, Dr. I. Gorni Blatt 7: Lösngen U. Briskot, N. Kainaris, Dr. E. König Besprechng... Harmonische Kette = Pnkte N identische Massen m können sich af der -Achse reibngsfrei bewegen nd sind abwechselnd mit nterschiedlichen Federn mit Federkonstanten K > G verbnden: = n a = na a = n+a d K G K G K G K G n sn Mit den Aslenkngen n nd s n as den jeweiligen Rhelagen bei = na nd = na + d s. Abbildng latet die elastische Energie: U = K n s n + G n+ s n. n a Schreiben Sie die klassischen Bewegngsgleichngen für n nd s n mit periodischen Randbedingngen n+n t = n t, s n+n t = s n t. Bestimmen Sie die Freqenzen ω ± k der akstischen nd optischen + Eigenmoden der Kette. Wie verhalten sich ω ± k für kleine k π/a? Skizzieren Sie ω ± k für alle erlabten k. Lösng: Die Lagrange-Fnktion der Kette ist Hierbei ist die kinetische Energie n L = T U. T = m n [ n + ṡ n ]. Die Bewegngsgleichngen ergeben sich dann as den Eler-Lagrange-Gleichngen, z Wir machen den Ansatz d L = L, dt n n d L = L, dt ṡ n s n mü n = K n s n G n s n, m s n = Ks n n Gs n n+. n t = e ik ωt s n t = s e ik ωt, = n a As den periodischen Randbedingngen ergibt sich n+n = n e ikna = k = π a m N, m =, ±, ±,...

2 Wir fordern die Eindetigkeit der Lösng. D.h. der Phasenfaktor e ikna ist für zwei k, die sich m G = π l nterscheiden, gleich: a e ikna = e ik+gna, G = π a l, l =, ±, ±,... Daher mß k eingeschränkt werden af k = π m, m =,,,..., N. a N Alternativ können wir ach schreiben: m = N/ +, N/ +,...,,,,..., N/ π a < k π a Einsetzen des Ansatz in die Bewegngsgleichngen ergibt [ mω K + G ] + [ K + G e ika ]s = [ K + G e ika ] + [ mω K + G ]s = Dies können wir ach als Matri Gleichng schreiben mω K + G K + G e ika K + G e ika mω =. K + G s Nichttriviale Lösng erhalten wir nr, wenn die Determinante der Matri verschwinden, d.h. [ mω K + G ] K + Ge ika K + Ge ika = mω = K + G ± K + G + KG coska. Die Dispersion ist in Abb. dargestellt. Für kleine Implse gilt: k π/a : coska ka Damit folgt für die Dispersionsrelationen: mω = K + G ± K + G KG ka [ ] KG = K + G ± K + G ka ω + = m K + G, ω KG = mk + G ka c a k b Die in Afgabe a berechneten Gitterschwingngen können qantisiert werden. Geben Sie den Hamilton-Operator für jede Mode λ k, ± an. Berechnen Sie die kanonische Zstandssmme. Lösng: Die Moden der Kette seien mit λ bezeichnet, also λ k, ±, ± steht für optisch/akstisch, mit den entsprechenden Eigenfreqenzen ω λ. Jeder Mode λ wird nn ein harmonischer Oszillator zgeordnet, λ : H λ = a λ a λ + /, H λ n λ = n λ + / n λ, n λ =,,,,... Dann latet die kanonische Zstandssmme der nterscheidbaren Oszillatoren: Z = e βeα = e βn λ +/ = e β e β α λ n λ = λ

3 g= g= ka/ π Abbildng : Die Dispersion von optischer + nd akstischer Mode für nterschiedliche Federn G =.5 K nten nd identische Federn G = K oben. Für K = G verschwindet die optische Mode bzw. geht in die zrückgefaltete akstische über. c Betrachten Sie den Limes hoher Temperatren nd zeigen Sie, dass Sie die klassischen Resltate für die innere Energie Gleichverteilngssatz nd die spezifische Wärme c V Dlong-Petit finden. Lösng: Die innere Energie folgt as der Zstandssmme gemäß U = Z Z β = β lnz = [ β ln ] e β β = λ [ + g ]. Hierbei ist g = e β, die Bose-Verteilng. Im Hochtemperatrlimes k B T, entwickeln wir die Eponentialfnktion e β + β, nd erhalten U = λ + k BT = λ λ k B T + ω λ k B T ωλ = Nk B T + O. k B T }{{} In führender Ordnng ist dies gena der Gleichverteilngssatz, der besagt, dass jeder Freiheitsgrad, der qadratisch in der Lagrange-Fnktion aftritt mit k B T/ zr inneren Energie beiträgt N Atome oder Moden, die jeweils in der kinetischen nd potentiellen Energie qadratisch aftreten.

4 Die spezifische Wärme erhält man drch Ableiten nach T nd wir finden c V = Nk B. Im allgemeinen latet das Dlong-Petit sche Gesetz c V = dnrk B mit der Ramdimension d, der Anzahl der Einheitszellen N nd der Anzahl der Atome pro Einheitszelle r. d Nehmen Sie an, dass für tiefe Temperatren nr noch akstische Phononen zm phsikalischen Verhalten beitragen nd nähern Sie ω k = c a k. Bestimmen Sie die innere Energie nd c V in diesem Limes. Lösng: Wir machen die Annahme, ω λ = ω akstisch = c a k. Die Grndzstandsenergie ist U = λ U U = = = k B T c π a = k V π. Es gilt dann also ck e β ck π a π a ck dk e β ck Na k B T π c Na k B T π c Naπ 6 Die spezifische Wärme ergibt sich dann z k B T c c V = U T = Naπk B c π c ak B T T. d e d e Man kann leicht zeigen in einer analogen Rechnng, dass im Allgeimenen gilt c V T d, was dann für d = das bekannte T Gesetz ergibt. e Verwenden Sie nn die noch stärkere Näherng ω λ = ω = const für alle λ Einstein- Modell. Berechnen Sie wiederm c V. Lösng: Man erhält mit den Annahmen vom Übngsblatt die innere Energie nd daras sofort die spezifische Wärme U = U + N ω e β ω c V = U T = Nk ω e β ω ΘE B k B T [ ] e β ω = Nk B T mit der charakteristischen Einstein-Temperatr k B Θ E = ω. e Θ E/T [ e Θ E /T ]

5 Abbildng : Das Kristallgitter von Graphen.. Phononen in Graphen Pnkte Betrachten Sie das Gitter von Graphen. Nehmen Sie an, dass die Kohlenstoff-Atome sich nr innerhalb der zwei-dimensionalen Ebene bewegen können. Bentzen Sie die harmonische Näherng mit Kraftkonstanten zwischen nächsten Nachbarn nd berechnen Sie das Spektrm der Phononen. Lösng: Im Folgenden sei die Gitterkonstante a =. Die Position jedes Ions läßt sich drch die mittlere Ionenposition R nd eine Abweichng Verschiebngsfeld asdrücken. Es gibt zwei Ionen A nd B pro Elementarzelle. Wir wählen als nsere Elementarzelle das horizontalen Verbindngselement A B s. Abb.. Dann bezeichnen wir die Rhepositionen als nd R A = ma + na, R B = ma + na δ, wobei die Gittervektoren gegeben sind drch a = δ δ =,, a = δ δ =,. Die Vektoren δ j zeigen af den nächsten Nachbarn s. Abb. nd sind gegeben drch, δ =,, δ =,, δ =,. Jetzt können wir die Positionen des Ions A nd B afschreiben: R A = ma + na + A, R B = ma + na δ + B. Wir betrachten nr die Kopplng zwischen nächsten Nachbarn mit Kraftskonstante K. Jedes Ion A hat drei B Nachbarn nd die elastische Energie ist demnach U A = K [ R A R B R + A R B ] R + A R B m,n. Die gesamte elastische Energie ist U = U A.

6 Hierbei sind bereits alle Verbindngselemente berücksichtigt. Wir bentzen nn die Harmonische Näherng, d.h. die Entwicklng von U in. Ordnng in : U A = K { [ A ] B + [ A B A + ] B + [ A B m,n + A ] } B m,n. Die Bewegngsgleichngen ergeben sich, wie in Afgabe, as den Eler-Lagrange- Gleichngen, welche die folgende Form annehmen: M d A,B dt Eplizit ergeben sich daras die Gleichngen, = U d A dt = [ A B + A,B,. B + + [ ] B B m,n, ] B m,n d A dt = A [ ] B + B m,n [ ] + B B m,n, d B dt = [ B A + A + [ ] A + A m+,n, + d B dt = Weiter verwenden wir jetzt die Forier-Transformation A,B + ] A m+,n B [ ] A + + A m+,n +, = AA,B, [ ] A + A m+,n. e iωt e ir A q,

7 wobei R A die Koordinate der Elementarzelle ist. Dann schreiben wir die Bewegngsgleichngen in Matri-Form af, wobei A T = A A M K ω A = DA,, A A, A B, A B, nd 6 [ + e iaq + e iaq ] [e ia q e iaq ] D = 6 [e ia q e iaq ] [e iaq + e iaq ] [ + e iaq + e iaq ] [e ia q e iaq ] 6. [e ia q e iaq ] [e iaq + e iaq ] 6 Die Eigenwerte von D E =, E =, E ± = 6 ± liefern ns die Dispersionsrelation gemäß + cos q cos q + cos q, Die Entwicklng für kleine q hier q = q ergibt M K ω ± = E ±. 5 E q, E + q. Deswegen finden wir zwei akstische Phononen ω =, ω K 8M q, nd zwei optische Phononen ω K M, ω + K M q. 6 Die zwei Phononen ω nd ω haben keine Dispersion. Das ist ein Artefakt nserer Näherng. Um die Phononen in Graphen besser z beschreiben, mss man weitere d.h. etwa übernächste Nachbar Wechselwirkng betrachten.

20. Dielektrische Eigenschaften (II) 1 Prof. Beatriz Roldán Cuenya

20. Dielektrische Eigenschaften (II) 1 Prof. Beatriz Roldán Cuenya . Diektrische Eigenschaften (II) Phononen im Ionenkristall t q q t p rative Aslenkng E M q M C E M q M C E q C M M Bewegngsgleichng der Aslenkngen: Ionische Polarisierbarkeit C: Kraftkonstante (Federkonstante)

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem Übngsafgaben Mathematik III MST Lösngen z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Z a) Klassifizieren Sie folgende Differentialgleichngen nach folgenden Kriterien: -Ordnng der Differentialgleichng

Mehr

Gitterschwingungen in Festkörpern

Gitterschwingungen in Festkörpern in Festkörpern Gitterschwingungen Wie bei den Molekülen wollen wir im folgenden die Dynamik der Festkörper, also Schwingungen des Kristallgitters behandeln Erklärung, Beschreibung Elastische Eigenschaften

Mehr

3. Mechanische Eigenschaften von Kristallen

3. Mechanische Eigenschaften von Kristallen 3. echanische Eigenschaften von Kristallen 3.. Elastizität eines Festkörpers Kontinmsnäherng: Kristall homogenes, kontinierliches edim, λ»a zr Beschreibng von statischen Verschiebngen, Ultraschallwellen

Mehr

4.6 Stöße mit Phononen

4.6 Stöße mit Phononen Physik der kondensierten Materie WS 00/0 05..00 ii) Wie viele mögliche k-vektoren gibt es in der ersten Brillouinzone? Wir betrachten eine Kette mit N Atomen unter periodischen Randbedingungen, d.h. für

Mehr

die Zielgröße. Für diesen gilt A = u v.

die Zielgröße. Für diesen gilt A = u v. VII Unterschng on Fnktionen 7 ptimieren Legen Sie mit gena 6 Streichhölzern möglichst iele erschiedene Rechtecke. Ermitteln Sie jeweils den Flächeninhalt ( LE = Streichholzlänge). Stellen Sie die Seitenlängen

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am U Graz, Institt für Regelngs- nd Atomatisierngstechnik Schriftliche Prüfng as Control Systems am 8004 Name / Vorname(n): Kennzahl / Matrikel-Nmmer: Prüfngsmods: O VO+UE (M) O VO (BM) Bonspnkte as den MALAB-Übngen:

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichngen für Ingeniere WS 6/7 4. Vorlesng Michael Karow Themen hete:. Gewöhnliche Lineare Differentialgleichngen. Ordnng (a) Das gedämpfte Pendel als Beispiel (b) Fndamentalsysteme (Lösngsbasen)

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B Sommersemester 6 Prof. Dr. Alexander Mirlin Musterlösung: Blatt. PD Dr. Igor

Mehr

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält.

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält. 5 0. Die Kgel 0. Die Kgelgleichng Def. Unter der Kgel k mit Mittelpnkt M nd adis verstehen wir die Menge aller Pnkte P, die vom Mittelpnkt M einen vorgegebenen abstand haben, für die also gilt: MP MP oder

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngssysteme Lineare Gleichngssysteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; zm Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a Abschlssprüfng Berfliche Oberschle 00 Mathematik Technik - A I - Lösng Teilafgabe.0 Gegeben sind die reellen Fnktionen f a ( x) von a nabhängigen Definitionsmenge D x ax a = x mit a IR in der maximalen,

Mehr

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem Definition nd Eigenschaften von elliptischen Fnktionen Thomas Regier. Verdoppelng des Lemniskatenbogens nd erweitertes Additionstheorem Elliptische Integrale berechnen die Krvenlänge von z.b. elliptischen

Mehr

338 KAPITEL 7. SCHWINGUNGEN UND WELLEN

338 KAPITEL 7. SCHWINGUNGEN UND WELLEN 338 KAPITEL 7. SCHWINGUNGEN UND WELLEN 1 x 1 0-1 1 x 2 0-1 0 5 10 15 20 25 30 Zeit t Abbildung 7.20: Amplituden von 2 gekoppelten Pendeln. In diesem Beispiel sind D/m = 1 und d = 0.2 D gewählt. Die Zeit

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Geometrie und Topologie von Flächen

Geometrie und Topologie von Flächen SoSe 06 Geometrie nd Topologie on Flächen Lösng der Afgaben on Blatt 6 Prof. Dr. Thomas Vogel Dr. Jonathan Bowden Afgabe. a) Wir wählen die Parametrisierng ϕ : V S, ϕx, y) x, y, ϕx, y)). Nach Definition

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 4..6 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 7: Dichtematrix, Variationsprinzip Aufgabe (5 Punkte) Betrachten Sie ein Gas

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich) Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Übungen zu Moderne heoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 5 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag.

Mehr

Analysis II für M, LaG/M, Ph

Analysis II für M, LaG/M, Ph Fachbereich Mathematik Prof Dr M Hieber Robert Haller-Dintelmann Horst Heck TECHNISCHE UNIVERSITÄT DARMSTADT ASS 008 195008 Analysis II für M, LaG/M, Ph 7 Übng mit Lösngshinweisen G 1 Grppenübngen Af der

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

1 3.Übungsblatt-Phononen

1 3.Übungsblatt-Phononen 1 3.Übungsblatt-Phononen 1.1 Phonon dispersion relation for atoms on a 2-d square lattice Das Gesetz von Newton beschreibt die Kraft zwischen Atomen auf einem Gitter, wobei nur die Wechselwirkung zwischen

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

Lokale Eigenschaften des Hilbert-Symbols

Lokale Eigenschaften des Hilbert-Symbols Lokale Eigenschaften des Hilbert-Symbols (Nach J.P. Serre: A Corse in Arithmetic) Bettina Böhme, Karin Loch 24.05.2007 Im Folgenden bezeichnet k entweder den Körer R der reellen Zahlen oder den Körer Q

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 216 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 9. PD

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Waagbalkenuhr BUCO 1320

Waagbalkenuhr BUCO 1320 Waagbalkenhr BUCO 130 Waagbalkenhr BUCO 130 Berechnng - 1 - Waagbalkenhr BUCO 130 1 INHALTVERZEICHNIS 1 Inhaltverzeichnis... Einleitng...3 3 Berechnngen...4 3.1 Drehbewegng des Waagbalkens...4 1. Schwingngsamplitde...4

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme Fakultät für Physik Christoph Schnarr & Michael Schrapp Technische Universität München Übungsblatt 3 - Lösungsvorschlag Ferienkurs Theoretische Mechanik Sommer 00 Hamiltonformalismus und Schwingungssysteme

Mehr

So lösen Sie die Differentialgleichung für eine komplexe Kurve (für eine komplexe Funktion)

So lösen Sie die Differentialgleichung für eine komplexe Kurve (für eine komplexe Funktion) Prof. Dr. Sebastian Hensel Sommersemester 208 Argmente der GTF Was ist dieses Dokment? (nd was ist es nicht?) Dieser Text fasst einige der wichtigsten Standardargmente zsammen, die im Stdim von Flächen

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösngsskizzen z den Klasrafgaben zm Krs 4 Algorithmische Mathematik 4LN08 Afgabe. Zeigen Sie: a) n + n ist eine gerade Zahl für alle n N. Lösng: Wir zeigen die Behaptng per Indktion. Für n = 0 ist offenbar

Mehr

Ferienkurs Mechanik: Probeklausur

Ferienkurs Mechanik: Probeklausur Ferienkurs Mechanik: Probeklausur Simon Filser 5.9.09 1 Kurze Fragen Geben Sie möglichst kurze Antworten auf folgende Fragen: a) Ein Zug fährt mit konstanter Geschwindigkeit genau von Norden nach Süden.

Mehr

Phasenseparation (Entmischung) in binären, homogenen Mischungen

Phasenseparation (Entmischung) in binären, homogenen Mischungen Phasenseparation (Entmischng) in binären homogenen Mischngen Exkrs: Tangenten an molare Zstandsfnktionen In einer binären Mischng (enthält 2 Komponenten) seien Teilchen der orte nd Teilchen der orte vorhanden.

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen.

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen. Toda- Institut für Theoretische Physik 11. April 2012 Überblick Toda- 1 2 3 Toda- Toda- Betrachte eindimensionale Kette N identischer Teilchen. Wechselwirkung nur zwischen Nachbarn = Bewegungsgleichung:

Mehr

2ml2 folgt die Form der Phasenraumtrajektorien zu

2ml2 folgt die Form der Phasenraumtrajektorien zu PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt WS 8/9 3..9. Phasenraumportrait eines Fadenpendels. Eine Masse m sei an einer masselosen Stange der Länge l aufgehängt,

Mehr

Berechnung der Phononen Dispersionsrelation. am Beispiel eines FCC Gitters

Berechnung der Phononen Dispersionsrelation. am Beispiel eines FCC Gitters Berechnung der Phononen Dispersionsrelation am Beispiel eines FCC Gitters Inhaltsverzeichnis 1) FCC-Gitter... ) Federmodell... 3 3) Dispersionsrelation... 4 4) Auswahl der k Vektoren... 6 5) Programm im

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Die Bestimmung von π

Die Bestimmung von π 10D (ht) Die Bestimmng on π Bergstadt-Gymnasim mit Hilfe on n-ecken Die Bestimmng on π mit Hilfe on n-ecken Inhaltserzeichnis 005-09-0 9. September 005 1 Einleitng 1.1 Vorassetzng.............................

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe2007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 420 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Endklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2007 (28.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition!

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition! Vorlesng Finite-lemente Prof. Rieg lastiitätstheorie I wieso?? Definition! lastiitätstheorie II lim A B A B A B A B A Dehnng am Pnkt A ) ( ) ( ) ( ) ( A A ( B ) ( A ) lastiitätstheorie III A B A B ( )

Mehr

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen Physik A VL1 (7.11.1) Schwingngen g nd Wellen II Wellen, Gedämpfe Schwingngen Wellen Gedämpfe Schwingngen schwache Dämpfng aperiodischer Grenzfall Kriechfall 1 Ei Erinnerng: Beschreibng von Schwingngen

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

1.4 Streuung an Kristallen

1.4 Streuung an Kristallen 34 Theoretische Festkörperphysik Prof. Heermann.4 Streuung an Kristallen.4. Elastische Streuung Wir betrachten etwa die folgende Situation. Zunächst spezifizieren wir den Anfangszustand des Kristalls durch

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

3 Flächen und Flächenintegrale

3 Flächen und Flächenintegrale 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

IV. Parabolische Probleme

IV. Parabolische Probleme IV. Parabolisce Probleme IV. Vorüberlegngen IV.2 Rote-Metode Kapitel IV () Parabolisce Randwertafgabe Wärmeleitngsgleicng Wir scen eine Fnktion = (,t) für [,] nd t > mit mit den Randbedingngen nd der Anfangsbedingng

Mehr

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0a) Es sollen aus folgenden kubischen Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte

Mehr

Blatt 12.3: Fourier-Integrale, Differentialgleichungen

Blatt 12.3: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte)

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Phsik III WS 204/205 Prof Dr A Shnirman Blatt 3 Dr B Narohn Lösung Brewster-Winkel: 20 Punkte

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

FS10 _ SiSy2 Semesterprüfung :

FS10 _ SiSy2 Semesterprüfung : / FS _ SiS Seesterprüfng : Zeit: 9 Minten Unterlagen erlabt. Taschenrechner nd jede Art von Koniation nicht erlabt. Der Lösngsweg ss ersichtlich nd nachvollziehbar sein. Bentzen Sie für Sizzen die gegebenen

Mehr

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 016 Prof. Dr. A. Shnirman Blatt 6 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag

Mehr

Theorie der Kondensierten Materie I WS 2016/2017

Theorie der Kondensierten Materie I WS 2016/2017 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 216/217 Prof. Dr. A. Shnirman Blatt 6 PD Dr. B. Narozhny, M.Sc. T. Ludwig Lösungsvorschlag

Mehr

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ Universität Karlsruhe Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 08 Prof. Dr. P. Wölfle Musterlösung Dr. M. Greiter Blatt 7 1. Berechnung der Spur (1 Punkt) (i)

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Musterlösung zur Probeklausur Theorie 1

Musterlösung zur Probeklausur Theorie 1 Institut für Physik WS 24/25 Friederike Schmid Musterlösung zur Probeklausur Theorie Aufgabe ) Potential In einem Dreiteilchensystem (eine Dimension) wirken folgende Kräfte: F = (x x 2 )x 2 3, F 2 = (x

Mehr

Theorie der Kondensierten Materie I WS 2018/ Hartree-Fock Näherung als Variationsproblem: (50 Punkte)

Theorie der Kondensierten Materie I WS 2018/ Hartree-Fock Näherung als Variationsproblem: (50 Punkte) Karlsruhe Institute for Technology Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 8/9 Prof Dr A Shnirman Blatt 9 PD Dr B Narozhny, MSc T Ludwig Lösungsvorschlag Hartree-Fock

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium!

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium! Integralrechnng Integrationsmethoden für gebrochen rationale Fnktionen Übersicht über die wichtigsten Methoden Vor allem für das Stdim! Tet 800 Stand 8. Febrar 08 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Klausur Strömungsmechanik II x y. ηl y. yref ρ u. x v. y ref L. ηu Lρ. T v. u y. y = ρ c p u L

Klausur Strömungsmechanik II x y. ηl y. yref ρ u. x v. y ref L. ηu Lρ. T v. u y. y = ρ c p u L ...... Name, Matr.-Nr, Unterschrift) Klasr Strömngsmechanik II 6. 3. 213 1. Afgabe a) Grenzschicht: OTrägheit) OReibng), ρ 2 2 geeignete Referenzgrößen: ref, ρ ref ρ, ref L, ref δ? ρ 2 L L ref 2 ref ρ

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 12-13 Prof. Dr. Alexander Mirlin Blatt 10

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr