Lösung: 3. Übung zur Vorlesung Höhere Mathematik 1

Größe: px
Ab Seite anzeigen:

Download "Lösung: 3. Übung zur Vorlesung Höhere Mathematik 1"

Transkript

1 Prof. Dr. R. Plato J. Hauen. Übung zur Vorlesung Höhere Mathematik Wintersemester /9 Aufgabe ( Punkte (+)). Lösen Sie die folgenden Gleichungen: z = 9 z + z + 9 = / z = 9 =( ) 9 = i = (i) z, = ±i Alternativ kann auch die p-q-formel (siehe Vorlesungsskript) angewandt werden. z + z + 9 = z + z + = z + z + 9 = Da ( ) = < 9 ist, kann der entsprechende Fall der p-q-formel verwendet werden. Damit gilt z, = ± i 9 ( ) = ± i 9 = ± i. Aufgabe ( Punkte (+)). Berechnen Sie die Menge derjenigen rellen Zahlen x, die folgende (Un-)Gleichung erfüllen: x + x + =, +x +x x +x Zunächst muss x und x + sein. Man kann diese Bedingungen auch in x und x umformen. Das schränkt die Lösungsmenge auf L {x R x } ein. x + x + = = ( x + x + ) = = x + (x )(x + ) + x + = (x )(x + ) = x + = (x )(x + ) = ( x + ) (x x ) = 9x x + x x = 9x x + x x + = ( Die Anwendung der p-q-formel liefert x, = ± ) = ± = ± = ±. Da bei Ergebnisse gröÿer als sind, erhält man L {+, }. D.h. die einzigen Zahlen,

2 die als Lösungen in Frage kommen sind + und. Bei Einsetzen in die ursprüngliche Gleichung erhält man für keine der Zahlen das gewünschte Ergebnis. ( + ) + + +, ( ) + +, Damit hat die ursprüngliche Gleichung keine Lösung, d.h. L =. Da man nicht durch Null teilen darf, muss x = aus der Lösungsmenge ausgeschlossen werden. Um die Ungleichung zu lösen, muss man bei Seiten der Ungleichung mit + x multipliziert werden. Die Tatsache, dass der Ungleichheitszeichen durch die Multiplikation mit den negativen Zahlen sich ändert, führt zu einer Fall Unterscheidung:. Fall, + x > bzw. x > : + x + x x + x + x x x Wenn man die Bedingungen x > und x kombiniert, erhält man insgesamt < x. Da es sich bei x um eine reelle Zahl handelt, kann man < x auch als x (, ] schreiben.. Fall, + x < bzw. x < : + x + x x + x + x x x Da es kein x R gibt, das beide Bedingungen x < und x erfüllt, liefert dieser Fall keine Lösung. Die Vereinigung der Lösungen aus dem ersten und dem zweiten Fall liefert als Lösungsmenge L = (, ]. Aufgabe ( Punkte (++)). Skizzieren Sie die Menge derjenigen komplexen Zahlen z, die folgende Bedingungen erfüllen z + = z i z + i < c) z z+. Sei z = x + yi mit x, y R, dann z + = z i (x + ) + y = x + (y ) x + x + + y = x + y y + x + = y y = x. Das heiÿt, dass die Menge der gesuchten komplexen Zahlen als eine Gerade darstellbar ist (siehe Anhang, Abb. ).

3 Sei z = x + yi mit x, y R, dann z + i < (x ) + (y + ) < (x ) + (y + ) < Der Ausdruck in der Mitte erinnert an die Kreisgleichung. Das heiÿt, dass die Menge der fraglichen komplexen Zahlen als Punkte der Ebene in einem Ring zwischen den Kreisen mit Radien und um den Punkt (,-) liegen ohne den äuÿeren Rand (siehe Anhang, Abb. ). c) Zunächst muss man den Fall z = ausschlieÿen. Sei z = x + yi mit x, y R, dann z z + z z + (x ) + y (x + ) + y x x y x + x + + y x x Das heiÿt, dass die Lösung alle komplexe Zahlen sind, deren alteil nicht gröÿer als eins ist (siehe Anhang, Abb. ). Aufgabe ( Punkte). Bestimmen Sie die Linearfaktorzerlegungen des Polynoms x x + x x + 9. Geben Sie auÿerdem jeweils die Nullstellen und ihre Vielfachheiten an. ( Durch Ausprobieren kann man feststellen, dass x = eine Nullstelle ist. x x + x x + 9 ) : ( x ) = x x + 9x 9 x + x x + x x x 9x x 9x + 9x 9x + 9 9x 9 ( Oenbar ist x = auch Nullstelle des Polynoms: x x + 9x 9 x x + 9x 9 ) : ( x ) = x + 9 x + x 9x 9 9x + 9 Das Polynom x + 9 hat zwei komplexe Nullstellen: x, = ±i. Damit können wir das angegebene Polynom auf folgende weise zerlegen: x x + x x + 9 = (x i)(x + i)(x ) Das Polynom x x + x x + 9 besitzt eine doppelte Nullstelle bei x = und eine zwei einfache Nullstelle bei x, = ±i

4 Aufgabe ( Punkte (++)). Bestimmen Sie den Grenzwert nachstehender Folgen: n + n c) (n+) (n +n+) n(n+)(n+) n n + + n n + n =( n + n) n + + n = n + n n + + n = für n n + + n (n + ) + n + (n + n + ) =n n + n + = n + n + n n + n + n da n und n c) n(n + )(n + ) n für n gegen konvergieren gilt: n = ( + n )( + n ) n + n + n n + n + n für n =

5 Anhang: Abbildungen zu der Aufgabe Abb. : Aufgabe Abb. : Aufgabe Abb. : Aufgabe c)

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

1.3. Beträge, Gleichungen und Ungleichungen

1.3. Beträge, Gleichungen und Ungleichungen .3. Beträge, Gleichungen und Ungleichungen Das Maimum zweier Zahlen a, b (also die größere von beiden) wird mit ma(a,b) bezeichnet, ihr Minimum (also die kleinere von beiden) mit min(a,b). Der Absolutbetrag

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013. z 3 + 4z 2 + z 26 z 2. = z 2 + 6z i und 2

2. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013. z 3 + 4z 2 + z 26 z 2. = z 2 + 6z i und 2 O. Alaya, S. Demirel M. Fetzer, B. Krinn M. Wied. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 4. Komplexe

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

1.3. Beträge, Gleichungen und Ungleichungen

1.3. Beträge, Gleichungen und Ungleichungen 1.3. Beträge, Gleichungen und Ungleichungen Das Maximum zweier Zahlen a, b wird mit max(a,b) bezeichnet, ihr Minimum mit min(a,b). Der Absolutbetrag einer reellen Zahl a ist a = max ( a, a ) oder auch

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

1. Ermitteln Sie zunächst sämtliche Nullstellen und deren Vielfachheit und geben Sie den Funktionsterm als Produkt an

1. Ermitteln Sie zunächst sämtliche Nullstellen und deren Vielfachheit und geben Sie den Funktionsterm als Produkt an Aufgabenblock. Ermitteln Sie zunächst sämtliche Nullstellen und deren Vielfachheit und geben Sie den Funktionsterm als Produkt an a = + Nullstellen = + = / Um die Nullstellen zu ermitteln, muss der Funktionsterm

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv)

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv) Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 01/016 Übung Aufgabe 1 : Lineare Gleichungen (a) Für welche x R gilt (i) 31 6(x + 1) = 9 (ii) 11(x ) = ( + 1x) (iii) + = 33

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen

Mehr

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16 Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS018/19 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 7x+3y 6}.

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundlagen der Mathematik (LPSI/LS-M1) Lösungen Blatt 10 WiSe 010/11 - Curilla/Koch/Ziegenhagen Präsenzaufgaben (P3) Wir wollen die Ungleichung

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis A) HS 2015 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis A) HS 2015 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis A) HS 015 Theo Bühler Lösung 3 1. Führe die folgenden Polynomdivisionen mit Rest durch. a) x 3 x 5x + 5) : x 3) Lösung. Also gilt oder x 3 x 5x +5) : x 3) x

Mehr

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Vertiefungskurs Mathematik. Anforderungen für das Universitäts-Zertifikat zum Schuljahr 2016/17 (unverändert seit 2012/13)

Vertiefungskurs Mathematik. Anforderungen für das Universitäts-Zertifikat zum Schuljahr 2016/17 (unverändert seit 2012/13) Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat zum Schuljahr 016/17 (unverändert seit 01/13) Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik im Schuljahr 016/17. Inhaltliche

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Vorkurs Mathematik Grad n p(x) =a n x n + a n 1 x n 1 +...+ a 1 x + a 0 führender Koeffizient Absolutglied a n, a n 1,..., a 1, a 0... Koeffizienten a n = 1... normiertes Polynom

Mehr

Musterlösung zur Probeklausur zur Mathematik für Biologen

Musterlösung zur Probeklausur zur Mathematik für Biologen Lehrstuhl A für Mathematik Aachen, den 15.01.04 Prof. Dr. R. Stens P. - M. Küpper Musterlösung zur Probeklausur zur Mathematik für Biologen Aufgabe 1: a) Vereinfachen Sie die folgenden Terme so weit wie

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Probestudium Übungsblatt 1 -

Probestudium Übungsblatt 1 - Probestudium 018 - Übungsblatt 1 - Prof Dr Werner Bley Dominik Bullach Martin Hofer Pascal Stucky Aufgabe 1 (mittel) Sei m Z Wir definieren für zwei ganze Zahlen a und b a b mod m : m ( a b) Seien a, b,

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Lo sungen zu den U bungsaufgaben, Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS/ Dipl.-Math. T. Pawlaschyk,.0. Themen: Wurzeln, Gleichungen, Ungleichungen

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden

Mehr

Lösung Serie 5 (Polynome)

Lösung Serie 5 (Polynome) Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösung Serie 5 (Polynome) Büro: 4613 Semester: 2

Mehr

-Immer wenn man eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl teilt

-Immer wenn man eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl teilt A.26 Ungleichungen 1 A.26 Ungleichungen Die Ungleichheitszeichen: < kleiner. größer. >1 bedeutet,

Mehr

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses Mathematik-Referenzaufgaben zum Rahmenlehrplan für die

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

6. Übungsblatt zur Vorlesung Mathematik I für Informatik

6. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof Dr Thomas Streicher Dr Sven Herrmann Dipl-Math Susanne Pape 6 Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 009/00 7/8 November 009 Gruppenübung Aufgabe

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden Mathematik I für Naturwissenschaften Dr. Christine Zehrt 11.10.18 Übung 4 (für Pharma/Geo/Bio Uni Basel Besprechung der Lösungen: 15. Oktober 018 in den Übungsstunden Aufgabe 1 (a Sei f(x = cosx. Der Graph

Mehr

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht 2 Rechentechniken Übersicht 2.1 Potenzen und Wurzeln.............................................. 7 2.2 Lösen linearer Gleichungssysteme..................................... 8 2.3 Polynome.........................................................

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen 1. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y = x + x 6 b) y = x 3 3x + x c) y = (x + 4)(x + x ) d) y = x 4 5x + 4 e) y = x 3 + x

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

Mathematik W7. Mag. Rainer Sickinger LMM, BR. v 1 Mag. Rainer Sickinger Mathematik W7 1 / 25

Mathematik W7. Mag. Rainer Sickinger LMM, BR. v 1 Mag. Rainer Sickinger Mathematik W7 1 / 25 Mathematik W7 Mag. Rainer Sickinger LMM, BR v 1 Mag. Rainer Sickinger Mathematik W7 1 / 25 Problem Angenommen wir haben eine quadratische Funktion ϕ : R R mit ϕ(x) = 1 3 x 2 2 3x 1 und wir wollen die Nullstellen

Mehr

Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo)

Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo) Arbeitsblätter zum Ausdrucken von sofatutor.com Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo) 2 Gib an, wie du allgemein eine quadratische Ungleichung lösen kannst.

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Mathematik für Sicherheitsingenieure II (MScS, MScQ)

Mathematik für Sicherheitsingenieure II (MScS, MScQ) Priv.-Doz. Dr. J. Ruppenthal Wuppertal,..28 Mathematik für Sicherheitsingenieure II (MScS, MScQ) Modulteil: Mathematik II Aufgabe. (6+7+7 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x +

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe)

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) TU Kaiserslautern Fachbereich Mathematik Prof. Dr. Andreas Gathmann Inga Schwabrow Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) Aufgabe 1. Wintersemester 2016/17 (1 + i) (1 i) 3 (2 +

Mehr

QUADRATISCHE GLEICHUNGENN

QUADRATISCHE GLEICHUNGENN Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik Arbeitsblatt A -.: Quadratische Gleichungen LehrerInnenteam m/ Mag Wolfgang Schmid Unterlagen QUADRATISCHE GLEICHUNGENN Definition: Eine

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)

Mehr

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe 1: Zeigen Sie die folgenden Identitäten zu Idealen: In Z[ 5] gilt () = (, 1 + 5) (, 1 5) und (1 + 5) = (, 1 + 5)

Mehr

Institut für Stochastik, Fernstudienzentrum

Institut für Stochastik, Fernstudienzentrum Institut Stochastik, Fernstudienzentrum Vorkurs Mathematik die Fachrichtung Wirtschaftswissenschaften im Herbst 01 Präsenzwoche Übungsaufgaben zum Thema Zahlbereiche Aufgabe 7 Im Yellowstone Nationalpark

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Motivierendes eispiel Lineare Abbildungen werden durch Matrizen dargestellt: Abbildung : Spiegelung A =. Abbildung A = : Verzerrung. ei der Spiegelung wird ~e auf sich selbst

Mehr

Nullstellen ganzrationaler Funktionen

Nullstellen ganzrationaler Funktionen Nullstellen ganzrationaler Funktionen 1 Nikolausproduktion Gewinnoptimierung bei der Nikolausproduktion Weihnachten steht vor der Tür! Die Firma des Unternehmers Niko Laus will herausfinden, ab welcher

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben Wiederholung:. Abschnitt mit Übungsaufgaben Grundwissen (GW) GW. Lösen Sie folgende algebraische Gleichungen bzw. Ungleichungen in der Grundmenge R: a) 5 = 0 a) 5 0 Teilergebnis: ] ;,5] b) Lösen Sie die

Mehr

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können: Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt

Mehr

ANGEWANDTE MATHEMATIK POLYNOMFUNKTIONEN. Autor: Wolfgang Kugler

ANGEWANDTE MATHEMATIK POLYNOMFUNKTIONEN. Autor: Wolfgang Kugler Autor: Wolfgang Kugler Inhaltsverzeichnis Definition Nullstellen und Linearfaktorzerlegung 5. Einfache reelle Nullstellen 5. Reelle Nullstellen mit höherer Vielfachheit 7.3 Komplee Nullstellen. Zusammenfassung

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 018/019 5.10.018 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

Mathematik Lösung der Klassenarbeit Nr. 3 Klasse 8a Seite

Mathematik Lösung der Klassenarbeit Nr. 3 Klasse 8a Seite Klasse 8a Seite 1 18.5.15 Aufgabe 1: Bestimme die Lösungsmenge. Zwischenschritte (Hauptnenner, kürzen) sind gefordert aber auch sinnvoll! a) [3P] 3x 6x 9 0 b) [3P] 1 1 c) [3P] x 1 x 0 3 Lösungsvorschlag

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren VERTIEFUNGSKURS MATHEMATIK ÜBUNGEN Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren Funktionen: () Mit der Partialbruchzerlegung lässt sich jede gebrochen-rationale Funktion

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

Lösungen der Probleme aus der dritten bis fünften Werkstatt

Lösungen der Probleme aus der dritten bis fünften Werkstatt Die WURZEL Werkstatt Mathematik Lösungen der Probleme aus der dritten bis fünften Werkstatt Es ist eine Binsenweisheit: Man kann nicht allein durch Zuschauen Mathematik erlernen. Nur im Umgang mit komplexen

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1 Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Lineare Abbildungen, Eigenwerte Lösungen Lösungshinweise: a nicht linear, denn zb fα α, αy +, α + αz T α, αy +, α + z

Mehr

A1-1 Kubische Gleichung

A1-1 Kubische Gleichung A1-1 Kubische Gleichung Wir betrachten das kubische Polynom p(x) = x 3 + a 2 x 2 + a 1 x + a 0, x R bzw. die kubische Gleichung mit reellen Koeffizienten a 0, a 1 und a 2. x 3 + a 2 x 2 + a 1 x + a 0 =

Mehr

Polynome und Polynomgleichungen

Polynome und Polynomgleichungen Polynome und Polynomgleichungen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Polynomgleichungen 1 1.1 Polynomfunktionen........................ 1 1.1.1

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Lösung Serie 6 (Polynome)

Lösung Serie 6 (Polynome) Fachhochschule Nordwestschweiz FHNW Hochschule für Techni Institut für Geistes- und Naturwissenschaft Dozent: Roger Burhardt Klasse: Studiengang ST Lösung Serie 6 Polynome Büro: 4.6 Semester: Modul: Algebra

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Sommersemester < 2 2 < 1+π = g,

Sommersemester < 2 2 < 1+π = g, D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 04 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 53. Gleichheitsproblem

Mehr

Stroppel Musterlösung , 180min

Stroppel Musterlösung , 180min Stroppel Musterlösung 040907, 80min Aufgabe (8 Punkte) (a) Seien A, D, T R d d für ein d N Weiter sei T invertierbar und es gelte T AT D Zeigen Sie durch vollständige Induktion, dass A n T D n T gilt für

Mehr

Auswertung Probeklausur

Auswertung Probeklausur 0. Intensivkurse ab Januar 07! Auswertung Probeklausur Fakultät Elektrotechnik und Informationstechnik Christoph Laabs christoph.laabs@tu-dresden.de www.k-quadrat.biz/pk-et/ 0. Profil Intensivkurse ab

Mehr

Ungleichungen Das Buch Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung

Ungleichungen Das Buch  Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung 1 Das Buch: Dieses Kapitel ist Teil eines Buches. Das vollständige Buch können Sie unter www.mathe-laden.de bestellen (falls Sie das möchten). Sie werden in diesem Buch ein paar Sachen finden, die nicht

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Prüfungsteil 1, Aufgabe 2. Analysis. Nordrhein-Westfalen 2012LK. Aufgabe a (1) Aufgabe a (2) Aufgabe a (3) Abitur Mathematik: Musterlösung

Prüfungsteil 1, Aufgabe 2. Analysis. Nordrhein-Westfalen 2012LK. Aufgabe a (1) Aufgabe a (2) Aufgabe a (3) Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 1, Aufgabe 2 Nordrhein-Westfalen 2012LK Aufgabe a (1) Anhand der Graphen ist erkennbar, dass sowohl in der Stadt als auch auf Land die Ozonbelastung im Verlauf des Morgens

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr