|
|
|
- Kajetan Rothbauer
- vor 6 Jahren
- Abrufe
Transkript
1 Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( 3x + ) Aufgabe : ( VP) 9 Berechnen Sie das Integral 4 x dx Aufgabe 3: (3 VP) x. Lösen Sie die Gleichung ( x 8) ( e 6) = 0 Aufgabe 4: 3 Das Schaubild der Funktion f mit f(x) = x + 3x x 3 besitzt einen Wendepunkt. Bestimmen Sie eine Gleichung der Tangente in diesem Wendepunkt. Aufgabe 5: (5 VP) Die Abbildung zeigt das Schaubild einer Funktion f. F ist eine Stammfunktion von f. a) Welche Aussagen über F ergeben sich daraus im Bereich - < x < 7 hinsichtlich - Extremstellen - Wendestellen - Nullstellen? Begründen Sie Ihre Antworten. b) Begründen Sie, dass F(6) F() > gilt. Zuletzt aktualisiert: 0..0
2 Aufgabe 6: (3 VP) Hinweis: ab der Abiturprüfung 0 nicht mehr prüfungsrelevant Untersuchen Sie, ob die Vektoren 3, und linear unabhängig sind. Aufgabe 7: Gegeben sind die Ebene E: + x 4 und die Gerade g: x = x = 3 + r. 3 0 a) Veranschaulichen Sie die Ebene E in einem Koordinatensystem. b) Untersuchen Sie die gegenseitige Lage von g und E. c) Bestimmen Sie den Abstand des Ursprungs von der Ebene E. Aufgabe 8: (3 VP) Gegeben sind eine Gerade g und ein Punkt A im Raum. A liegt nicht auf g. A wird an der Geraden g gespiegelt. Beschreiben Sie ein Verfahren, um den Bildpunkt A zu bestimmen. Zuletzt aktualisiert: 0..0
3 Wahlteil - Aufgaben Analysis I Aufgabe I.: Gegeben ist eine Funktion f mit 00 f(x) = 6. ( x 6) a) Geben Sie sämtliche Asymptoten des Schaubilds von f an. Geben Sie die Nullstellen von f an. Skizzieren Sie das Schaubild von f samt Asymptoten für 7 x 7. Weisen Sie nach, dass f genau eine Extremstelle besitzt. Das Schaubild von f, die x-achse und die Gerade y = 7 begrenzen im Bereich 7 x 7 eine Fläche. Diese Fläche stellt die Seitenansicht einer 4 m langen, 7 m hohen und 0 m breiten Steinbrücke dar. b) Wie viele Kubikmeter Stein wurden für die Brücke verbaut? c) Unter dem Brückenbogen fährt mittig ein Zug hindurch. Sein Querschnitt kann als Rechteck der Breite 3 m und der Höhe 4 m angesehen werden. Wie nah kommt der Zug der gewölbten Wandfläche? Aufgabe I.: Hinweis: ab der Abiturprüfung 0 nicht mehr prüfungsrelevant Zeigen Sie mittels vollständiger Induktion die Gültigkeit der folgenden Gleichung für alle n : n+ 0 n = 4 Zuletzt aktualisiert: 0..0
4 Wahlteil - Aufgaben Analysis I Aufgabe I.: Gegeben ist die Funktion f durch Ihr Schaubild sei K. f(x) π sin x =. a) Skizzieren Sie K im Intervall [0;4]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K auf ganz an. Für welche Werte von x nimmt f im Intervall [0;] den Wert an? (5 VP) b) Die Funktion f kann auch in der Form f(x) = a cos(bx) dargestellt werden. Bestimme a und b. K und die x-achse begrenzen zwischen benachbarten Nullstellen jeweils eine Fläche. Berechnen Sie den Inhalt einer solchen Fläche exakt. c) Das Schaubild einer ganzrationalen Funktion g dritten Grades hat in P(/) einen Hochpunkt und in Q(/0) einen Tiefpunkt. Bestimmen Sie einen Funktionsterm für g. An welchen Stellen im Intervall [;] weichen die Funktionswerte von f und g am stärksten voneinander ab? (5 VP) Aufgabe I.: Zwei in gleicher Höhe h ( h 5 ) befestigte Lampen sollen einen 0 m langen Abschnitt eines ebenen Spazierwegs beleuchten (siehe Skizze). cos( ) Für die Maßzahl H der Helligkeit in der Mitte M gilt H = 00 (d in Meter). d In welcher Höhe müssen die Lampen befestigt werden, damit der Weg bei M möglichst hell beleuchtet wird? α Zuletzt aktualisiert: 0..0
5 Wahlteil - Aufgaben Analysis I 3 Aufgabe I 3: Die normale Körpertemperatur eines gesunden Menschen liegt bei 36,5 C. Die Funktion f mit 0, t f(t) = 36,5 + t e Beschreibt modellhaft den Verlauf einer Fieberkurve bei einem Erkrankten. Dabei ist t 0 die Zeit in Stunden nach Ausbruch der Krankheit und f(t) die Körpertemperatur in C. a) Wann innerhalb der ersten 48 Stunden ist die Temperatur am höchsten? Geben Sie diese Temperatur an. Skizzieren Sie die Fieberkurve innerhalb der ersten 48 Stunden in einem geeigneten Ausschnitt eines Koordinatensystems. Zu welchen beiden Zeitpunkten innerhalb der ersten 48 Stunden nimmt die Körpertemperatur am stärksten zu bzw. ab? b) Wann sinkt die Körpertemperatur unter 37 C? Weisen Sie nach, dass die Temperatur ab diesem Zeitpunkt dauerhaft unter 37 C bleibt. Bestimmen Sie die mittlere Körpertemperatur für den Zeitraum vom Krankheitsbeginn bis zu diesem Zeitpunkt. In welchem -Stunden-Zeitraum nimmt die Temperatur um ein Grad zu? (7 VP) c) Fünf Stunden nach Ausbruch der Krankheit erhält der Erkrankte ein Fieber senkendes Medikament. Von diesem Zeitpunkt an sinkt die Temperatur nach der Gesetzmäßigkeit des beschränkten Wachstums und nähert sich der normalen Körpertemperatur. Zwei Stunden nach Einnahme des Medikaments beträgt die Temperatur 38,4 C. Bestimmen Sie eine Funktion g, welche den weiteren Temperaturverlauf beschreibt. Zu welchem Zeitpunkt nach der Einnahme des Medikaments ist die Körpertemperatur erstmals um ein Grad niedriger, als sie ohne Medikament wäre? (5 VP) Zuletzt aktualisiert: 0..0
6 Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II Die x x -Ebene beschreibt eine flache Landschaft, in der ein Flugplatz liegt. Eine Radarstation befindet sich im Punkt R (6 / 3 / 0). Das Radar erfasst eine Testflugzeug F um 7.00 Uhr im Punkt P(7/9/7) und ermittelt als Flugbahn des Flugzeugs f: 7 3 x = 9 + t (t in Minuten nach 7.00 Uhr, Koordinatenangaben in km). 7 a) In welchem Punkt befindet sich das Flugzeug um 7.0 Uhr? Woran erkennen Sie, dass sich das Flugzeug im Sinkflug befindet? Bestimmen Sie die Geschwindigkeit des Flugzeugs in km/h. Unter welchem Winkel fliegt das Flugzeug auf den Boden zu? Zu welcher Uhrzeit und in welchem Punkt würde es bei Beibehaltung dieser Flugbahn auf dem Boden aufsetzen? b) Eine weitere Radarstation befindet sich im Punkt R (7 / 9 / 0). Der Anflug des Testflugzeugs F auf den Flugplatz ist optimal, wenn die Flugbahn f und die beiden Radarstationen in einer Ebene liegen. Prüfen Sie, ob das zutrifft. Die Radarstation R übernimmt die Flugüberwachung zu dem Zeitpunkt, ab dem sich das Flugzeug von R entfernt. Um wie viel Uhr ist dies der Fall? c) Die Flugbahn des zweiten Testflugzeugs F wird beschrieben durch f : 8 x = + t (t in Minuten nach 7.00 Uhr, Koordinatenangaben in km). 7 0 Wie weit sind die Flugzeuge F und F um 7.04 Uhr voneinander entfernt? Berechnen Sie, wie nahe sich die beiden Flugzeuge kommen. Zuletzt aktualisiert: 0..0
7 Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Grundfläche einer dreiseitigen Pyramide hat die Eckpunkte P(0/-6/0), Q(/0/0) und R(0/6/0). Die Pyramide wird von einer Ebene geschnitten und der obere Teilkörper wird entfernt. Die Deckfläche des so entstandenen Pyramidenstumpfs hat die Eckpunkte P*(0/-/), Q*(/0/,5) und R*(0//,5). a) Stellen Sie den Pyramidenstumpf in einem Koordinatensystem dar. Begründen Sie, dass die Deck- und die Grundfläche des Pyramidenstumpfs nicht parallel sind. Bestimmen Sie den Winkel, den die Kante QQ* mit der x-achse bildet. Zeigen Sie, dass S(0/0/3) die Spitze der ursprünglichen Pyramide ist. b) Bestimmen Sie den Abstand des Punktes Q* von der Geraden durch Q und R. Zeigen Sie, dass die Seitenfläche QRR*Q* des Pyramidenstumpfs ein Trapez ist. Berechnen Sie den Flächeninhalt dieses Trapezes. Aufgabe II. Hinweis: ab der Abiturprüfung 0 nicht mehr prüfungsrelevant Das Rechteck OABC ist dreimal so lang wie breit. Für den Punkt T gilt OT = OA. 9 Zeigen Sie, dass die Strecken OB und TC orthogonal sind. Zuletzt aktualisiert: 0..0
Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW
Aufgabe A1.1 Gegeben ist eine Funktion mit 6 a) Geben Sie sämtliche Asymptoten des Schaubilds von an. Geben Sie die Nullstellen von an. Skizzieren Sie das Schaubild von samt Asymptoten für 77. Weisen Sie
Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW
Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1=6100/ 16 Y2= 1 Y3=1.5 14 a) Asymptoten: Waagrecht: Wir betrachten die Funktionswerte am Rande des Systems ( ). Senkrecht: Wir untersuchen, für welche Werte
Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() 3 e =. Bestimmen Sie eine Stammfunktion der Funktion f mit Aufgabe 3: (3 VP) 5 3 Lösen
Klausur Nr. 2. Einführung analytische Geometrie. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.
Klausur Nr. 2 Einführung analytische Geometrie Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,
Pflichtteil Aufgaben Aufgabe : ( VP) x Gegeben ist die Funktion f mit f(x) =. x 3 Bilden Sie die Ableitung von f und fassen Sie diese so weit wie möglich zusammen. Aufgabe : ( VP) G ist eine Stammfunktion
Skizzieren Sie das Schaubild von f einschließlich der Asymptote.
G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil
Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() ( 3) e weit wie möglich. = und vereinfachen Sie so Aufgabe : ( VP) Berechnen Sie das Integral + 4 d e Aufgabe
1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13
Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral
( ) 3 2 ( ) x dx. Aufgabe 3: [5P] Die 4 Abbildungen zeigen Schaubilder von Funktionen einschließlich aller a
K Punkte: /3 Note: Schnitt: 8.3.4 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden
Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:
Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische
Abiturprüfung 2000 LK Mathematik Baden-Württemberg
Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen
K2 KLAUSUR MATHEMATIK
K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl
Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13
Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())
Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel)
Pflichtteil (ohne Hilfsmittel) ) Berechne die. Ableitung. a) f(x) 3x sin( x ) b) f(x) 3x sin( x ) (VP) 3 ) Berechne und vereinfache x 3) Bestimme die Lösungsmenge der Gleichung sin( x) dx. (3VP) cos(x)
Pflichtteil Aufgabe 5 Funktionenkompetenz
Pflichtteil Aufgabe 5 Funktionenkompetenz 2016 (5VP) Die Abbildung zeigt den Graphen einer Stammfunktion F einer Funktion f. Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Begru nden Sie
Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e
MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste
1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.
Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,
Lösungsvorschlag Vorbereitung KA2 K
Lösungsvorschlag Vorbereitung KA K 4..7 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet
Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3
Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme
K2 MATHEMATIK KLAUSUR 4. Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K MATHEMATIK KLAUSUR 4 17.03.017 Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max 0 0 10 10 60 Punkte Notenpunkte PT 1 3 4 5 6 7 * Summe P. (max 3 3 4 4 0 Punkte WT Ana A.1a b c A 1. Summe P. (max 6
G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x
G3 KLAUSUR PFLICHTTEIL Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () (2 VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = e 2x+. x (2) (2 VP) Gegeben ist die Funktion f mit f(x)
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
Übungsklausur Analysis & Geometrie Bevölkerungsdichte & Pyramide Pflichtteil (ohne Hilfsmittel)
Pflichtteil (ohne Hilfsmittel) ) Berechne die erste Ableitung. 3x a) f(x) e cos(x x) b) 3x f(x) e cos(x x) (5VP) ) Berechne und vereinfache. a) cos x dx b) 5 dx (4VP) x 3) Bestimme die Lösungsmenge der
Der folgende Katalog soll Beispiele dafür aufzeigen, was konkret verlangt werden kann, ohne dabei den Anspruch auf Vollständigkeit zu erheben.
Fundus für den Pflichtbereich / Mathematik-Abitur ab 4 Themenbereiche Der Pflichtteil soll aus kleineren Aufgaben bestehen, die ohne Hilfsmittel zu bearbeiten sind. Er soll die Grundkompetenzen abprüfen.
K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 2 27.11.2014 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 5 3 2 1 WT Ana A.1a) b) c) Summe P. (max) 6 4 5 15
M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x
Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt
Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen
A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale
K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Abiturprüfung 2013 mit Lösungen (Baden-Württemberg)
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Abiturprüfung 203 mit Lösungen (Baden-Württemberg) Das komplette Material finden Sie hier: School-Scout.de Abitur-Prüfung 203
Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung
Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion
Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion
a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B
I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4
Inhalt der Lösungen zur Prüfung 2015:
Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen
K2 KLAUSUR Pflichtteil
K2 KLAUSUR 10.02.2012 MATHEMATIK Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 Punkte (max) 2 2 3 4 5 3 4 3 Punkte Wahlteil Analysis Aufgabe a b c Punkte (max) 9 5 4 Punkte Wahlteil Geometrie Aufgabe a b c Punkte
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
Abiturprüfung an den allgemein bildenden Gymnasien
MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Hinweise für die Abiturientinnen und Abiturienten Abiturprüfung an den allgemein bildenden Gymnasien Haupttermin 017 Prüfungsfach: Bearbeitungszeit: Hilfsmittel:
Aufgabe A2 1.1 Die Funktion ist gegeben durch 3P 21 mit Berechne die Gleichung der Tangente an das Schaubild von im Schnittpunkt mit der -Achse. 1.2 E
Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Abitur-Prüfung 2015 mit Lösungen (Baden-Württemberg)
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Abitur-Prüfung 015 mit Lösungen (Baden-Württemberg) Das komplette Material finden Sie hier: School-Scout.de Abitur-Prüfung 015 mit
Analysis: Klausur Analysis
Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com
5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation
5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion
K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x
K2 KLAUSUR 2 PFLICHTTEIL 202 Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () Bestimmen Sie die Ableitung von f(x) = 2 x 2 + 4. (2) Berechnen Sie das Integral 4 ( ) x 2 dx. (3) Lösen Sie die
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Wahlteil - Aufgaben Analysis I Aufgabe I : Gegeben sind die Funktionen f und g durch f(x) cos( π x) und g(x) ( x) f(x) ; x Ihre Schaubilder sind K
Abiturprüfung Baden-Württemberg
Abiturprüfung Baden-Württemberg Pflichtaufgaben Analysis / Geometrie / Stochastik Hauptprüfungen der Jahrgänge ab 004 Hier nur als Aufgabensammlung ohne Lösungen. Die Analysisaufgaben stehen mit ihren
Ministerium für Kultus, Jugend und Sport Schriftliche Abiturprüfung Mathematik ab Pflichtteil
Ministerium für Kultus, Jugend und Sport Schriftliche Abiturprüfung Mathematik ab Aufgabensatz A Seite von Pflichtteil Aufgabe Lösen Sie die Gleichung e e. Aufgabe Bilden Sie die Ableitung der Funktion
Kursarbeit Nr.1 LK Mathematik NAME :
Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen
Analysis: Klausur Analysis
Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com
ABITURPRÜFUNG 2004 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN)
ABITURPRÜFUNG 2004 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 270 Minuten Computeralgebrasystem Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben A1 und A2 eine und von den
Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 20 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Diverse Aufgaben zur Abi-Vorbereitung - Entwurf -
Abiturvorbereitung Abi-Aufgaben S. von 5 Basis-Aufgaben Analysis Diverse Aufgaben zur Abi-Vorbereitung - Entwurf - Aufgabe "Allgemeines" a) Bestimme eine Stammfunktion F(x) von f ( x)= 4 sin (x) mit F
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... 7 Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analytische Geometrie... 9 Wahlteil Analytische Geometrie... 008 Pflichtteil Lösungen zur Prüfung 008: Pflichtteil
K2 MATHEMATIK KLAUSUR 2
K2 MATHEMATIK KLAUSUR 2 12.12.2018 Aufgabe 1 2 3 4 5 9 Punkte (max) 2 2 2 4 4 1 Punkte Wahlteil A a b c d Punkte (max) 4 5 3 3 Punkte Wahlteil B 6 7a b c Punkte (max) 7 4 1 3 Punkte Gesamtpunktzahl /30
K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 1 14.03.2016 Aufgabe PT WTA WTGS Gesamtpunktzahl (max) 30 15 15 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 3 4 4 3 WT Ana A.1a) b) c) Summe P. (max) 7 5 3 15 WT Geo G.a)
Trigonometrische Funktionen
Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K
Gegeben ist die Funktion f durch. Ihr Schaubild sei K.
Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,
ABITURPRÜFUNG 2010 LEISTUNGSFACH MATHEMATIK
ABITURPRÜFUNG 2010 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht graphikfähig) Tafelwerk
MATHEMATIK. Fachabiturprüfung 2012 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik
Fachabiturprüfung 2012 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 25. Mai 2012, 9.00-12.00 Uhr Die Schülerinnen und Schüler
Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen
Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel
Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen
Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen [email protected] www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung
Abitur 2014 Mathematik Infinitesimalrechnung II
Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2014 Mathematik Infinitesimalrechnung II Geben Sie jeweils den Term einer in R definierten periodischen Funktion an, die die angegebene Eigenschaft hat.
SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten
Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Aufgabe 1. Aufgabe 2. 5 Punkte. 5 Punkte. SZ Rübekamp. Gegeben ist die Funktion f mit f(x) = (x + 2) 2 e x und ihre Ableitung f (x) = (x 2 + 2x) e x.
Hilfsmittelfreie Aufgaben Aufgabe 1 Gegeben ist die Funktion f mit f(x) = (x + 2) 2 e x und ihre Ableitung f (x) = (x 2 + 2x) e x. a) Bestimmen Sie die Nullstellen von f. b) Berechnen Sie f (x). c) In
Hauptprüfung Abiturprüfung 2018 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 08 (ohne CAS) Baden-Württemberg Wahlteil Analysis A Hilfsmittel: GTR und Merkhilfe allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Juni 08 Aufgabe A. Der
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten
Mathematik Abiturprüfung 2015 Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie
MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte
MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen
Pflichtteilaufgaben zur Integralrechnung
Testklausur K Integralrechnung# Pflichtteilaufgaben zur Integralrechnung Aufgabe : Gib jeweils eine Stammfunktion an: a) f () = ² + f () = Aufgabe : Ermittle eine Stammfunktion für a) f() = n Für welche
Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion
Analysis: Exponentialfunktionen Analysis
www.mathe-aufgaben.com Analysis: Eponentialfunktionen Analysis Klausur zu Eponentialfunktionen ohne Wachstum (Ableitung, Stammfunktion, Fläche, Rotationsvolumen, Etremwertaufgabe) Gymnasium ab J Aleander
K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3
Abitur 2017 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben
1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist.
Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Abitur 2014 Mathematik Infinitesimalrechnung I
Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln
. Ihr Schaubild sei &. a) Geben Sie die Asymptoten von & an. b) Bestimmen Sie den Schnittpunkt der Tangente an & im Punkt 1 1 mit der Achse.
Aufgabe A4/04 Gegeben ist die Funktion mit 2; 0. Das Schaubild von hat im Punkt 1 die Tangente. Ermitteln Sie eine Gleichung von. Die Tangente schneidet die Achse im Punkt. Bestimmen Sie die Koordinaten
Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg
Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt
a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung
Analysis Aufgabe 1.1 Gegeben ist die Funktion f mit 1 3 2 f x x 4 3x 9x 5 und G f Definitionsmenge IR. Die Abbildung zeigt den Graphen von f. a) Bestimmen Sie rechnerisch die Koordinaten und die Art der
Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:
Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: [P] Bestimmen
Aufgabe A1. Aufgabe A2. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen.
Aufgabe A1 Bilden Sie die Ableitung der Funktion mit 4. Aufgabe A2 Geben Sie eine Stammfunktion der Funktion mit an. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen.
Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben
Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Gymnasium Oberstufe J oder J Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Pflichtteilaufgaben (ohne GTR): Aufgabe : Leite die folgenden
Analysis: Klausur Analysis
Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com
Matur-/Abituraufgaben Analysis
Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
ABITURPRÜFUNG 2009 GRUNDFACH MATHEMATIK
ABITURPRÜFUNG 009 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Bearbeitungszeit: 10 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Abitur-Prüfung 2014 mit Lösungen (Baden-Württemberg)
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Abitur-Prüfung 201 mit Lösungen (Baden-Württemberg) Das komplette Material finden Sie hier: School-Scout.de Abitur-Prüfung 201 mit
Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 06 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 06 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com
Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:
K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden
SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (GRUNDLEGENDES ANFORDERUNGSNIVEAU) Prüfungsaufgaben
() Prüfungsaufgaben Auswahlzeit: Bearbeitungszeit: 30 Minuten 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Entscheiden Sie sich für eine Wahlpflichtaufgabe und kreuzen
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten G 1, G 2
Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung
GS.06.0 - m_nt-a_lsg_gs.pdf Abschlussprüfung 0 - Mathematik Nichttechnik A I - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. x x x mit der Definitionsmenge Teilaufgabe. (7
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 004 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 4. Juni 004 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte
Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung
GS 9.6.7 - m7_nt-a_lsg_gs.pdf Abschlussprüfung 7 - Mathematik Nichttechnik A II - Lösung Teilaufgabe. Der Graph einer ganzrationalen Funktion f vierten Grades mit D f IR ist symmetrisch zur y-achse und
Abituraufgaben Analytische Geometrie Wahlteil 2016 BW
Abituraufgaben Analytische Geometrie Wahlteil 216 BW Aufgabe B1.1 In einem Koordinatensystem be-schreiben die Punkte 15, 15 2 und 2 6 Eckpunkte der rechteckigen Nutzfläche einer Tribüne (alle Koordinatenangaben
