1 Dreiecke. 1.3 Teilungsverhältnisse. Mathematische Probleme, SS 2019 Montag $Id: dreieck.tex,v /04/16 09:08:06 hk Exp $

Größe: px
Ab Seite anzeigen:

Download "1 Dreiecke. 1.3 Teilungsverhältnisse. Mathematische Probleme, SS 2019 Montag $Id: dreieck.tex,v /04/16 09:08:06 hk Exp $"

Transkript

1 $Id: dreieck.tex,v /04/16 09:08:06 hk Exp $ 1 Dreiecke 1.3 Teilungsverhältnisse Wir kommen nun zum Begriff des Teilungsverhältnis und allgemeiner des Verhältnis zweier Strecken AB und CD. Eine einfache Möglichkeit dieses Verhältnis zu definieren ist es dieses als Quotient der Längen AB / CD aufzufassen, das Verhältnis ist dann eine positive reelle Zahl. Dies ist auch der im wesentlichen von uns verwendete Standpunkt. Zur begrifflichen Einordnung wollen wir diesen Verhältnisbegriff mit dem Standpunkt der klassischen euklidischen Geometrie vergleichen. Euklid spricht nicht von der Länge einer Strecke, in der antiken Geometrie wird Strecken überhaupt keine Zahl zugeordnet. Alles was man hat ist der Begriff der Gleichheit, oder besser Kongruenz, von Strecken, es gibt also einen Begriff des gleich lang sein aber keinen Begriff von Länge. Mit dem Kongruenzbegriff kann man dann definiert wann eine Strecke CD kleiner als eine Strecke AB ist, dies heißt einfach das man CD in AB abtragen kann, dass es also eine zu CD kongruente Strecke AE für einen Punkt E zwischen A und B gibt. Auch das Verhältnis zweier Strecken läßt sich allein auf Basis des Kongruenzbegriffs einführen, man benötigt dafür überhaupt keine Längen. Wir wollen uns dies an einem Beispiel anschauen, was bedeutet es das die beiden Strecken AB und CD im Verhältnis 2 : 3 stehen? Dies soll heißen, dass es eine dritte Strecke EF gibt die sich zweimal in AB und dreimal in CD abtragen läßt, es soll also Punkte A zweischen A und B sowie C zwischen C und D und C zwischen C und D geben so, dass alle Strecken AA, A B, CC, C C, C D zu EF kongruent sind. Diese Strecke EF ist dann ein gemeinsames Maß der beiden gegebeen Strecken AB und CD, das Verhältnis 2 : 3 bedeutet das AB von EF zweifach und CD von EF dreifach gemessen wird. Dieser Definitionsversuch hat allerdings eine entscheidende Schwachstelle der zur Urkatastrophe der griechischen Mathematik führte, hat man zwei beliebige Strecken AB und CD so müssen diese überhaupt kein gemeinsames Maß besitzen, sie können auch inkommensurabel, also nicht gemeinsam meßbar, sein. Entdeckt wurde dies wohl von den Pythagoräern am Verhältnis von Kanten zu Diagonalen im Ikosaeder beziehungsweise gleichwertig im regulären Fünfeck. Einfacher und auch schon in der Antike als Beispiel verwendet sind die Seiten zur Diagonale eines Quadrats inkommensurabel. Dass AB und CD inkommensurabel sind bedeutet in Termen des Längenbegriffs gerade das AB / CD irrational ist. In der Antike wurde dieses Problem durch die Proportionenlehre des Eudoxus gelöst, von diesem ist zwar nichts direkt überliefert die Theorie findet sich aber als eines der Bücher in den Elementen des Euklid. Definiert man Verhältnisse als Quotienten von Längen so tritt das ganze Problem 3-1

2 nur noch versteckt auf, es ist ganz in die Konstruktion der reellen Zahlen verschoben. Im wesentlichen werden wir daher diese längenbasierte Definition benutzen. Hauptsächlich interessieren uns Teilungsverhältnisse, d.h. wir haben eine Strecke AC und einen Punkt B zwischen A und C und betrachten das Verhältnis AB / BC der durch B gebildeten Teilstrecken. Etwas allgemeiner wollen wir auch zulassen das B nicht unbedingt zwischen A und C liegt sondern irgendwo auf der Verbindungsgeraden von A und C ist. Kommen wir nun zur Vorbereitung der Definition. Da wir diese im Rahmen der Vektorrechnung beschreiben verwenden wir wieder Kleinbuchstaben für die Punkte. Seien a, b, c R 2 kollinear mit a c. Dann ist b a c = a + R(c a) und es gibt ein eindeutiges t R mit b = a + t(c a). In dieser Darstellung sind a und c nicht mehr symmetrisch zueinander, um eine symmetrisierte Form dieser Formel zu erhalten setzen wir λ := 1 t, µ := t und haben λ + µ = 1 sowie b = (1 t)a + tc = λa + µc. Sind umgekehrt λ, µ R mit λ + µ = 1 und b = λa + µc so ist auch λ = 1 µ und b = (1 µ)a + µc = a + µ(c a) also µ = t und λ = 1 t. Damit haben wir a c = {λa + µc λ, µ R, λ + µ = 1} und in dieser Darstellung ist jedem Punkt auf a c ein eindeutiges Paar λ, µ reeller Zahlen zugeordnet. Dann entspricht λ = 1, µ = 0 dem Punkt λa + µc = a und λ = 0, µ = 1 dem Punkt λa + µc = c, ist also b = λa + µc a, c so haben λ, µ 0. Definition 1.3 (Affine Teilungsverhältnisse) Seien a, b, c R 2 kollinear und paarweise verschieden. Dann liegt b auf der Verbindungseraden a c von a und c und wir können b = λa + µc mit eindeutigen λ, µ R mit λ + µ = 1 schreiben. Definiere das affine Teilungsverhältnis als (abc) := µ λ R\{0}. Beachte das (abc) auch negativ sein kann, das Vorzeichen wird die Lage von b zu a, c beschreiben. Das folgende Lemma stellt nun den Zusammenhang des affinen Teilungsverhältnis mit den oben besprochenen Längenverhältnissen her. Lemma 1.8 (Affine Teilungsverhältnisse sind signierte Längenverhältnisse) Seien a, b, c R 2 drei paarweise verschiedene, kollineare Punkte. Dann gilt ab, b liegt zwischen a und c, bc (abc) = ab sonst. bc, Beweis: Seien λ, µ R mit λ + µ = 1 und b = λa + µc = a + µ(c a). Dann haben wir ab = b a = µ(c a) = µ c a = µ ac 3-2

3 sowie bc = c b = c (λa+µc) = (1 µ)c λa = λ(c a) = λ c a = λ ac und es folgt ab bc µ ac = λ bc = µ = (abc). λ Wir müssen uns also nur nich das Vorzeichen von (abc) anschauen. Ist µ > 1 so liegt c zwischen a und c also ist b nicht zwischen a und c und wir haben µ > 0 und λ = 1 µ < 0. Ist 0 < µ < 1 so ist b zwischen a und c und es sind µ > 0 und λ = 1 µ > 0. Im verbleibenden Fall µ < 0 ist a zwischen b und c also ist b nicht zwischen a und c und wir haben µ < 0, λ = 1 µ > 1 > 0. Damit ist genau dann (abc) > 0 wenn b zwischen a und c liegt und alles ist bewiesen. Nachdem wir nun einiges an Kalkül bereitgestellt haben wollen wir zu einer ersten Anwendung all dieser Dinge kommen und zwei der klassischen Sätze der Dreiecksgeometrie beweisen. c c r q r g q l h a Satz von Menelaos b p a p Satz von Ceva b Seien hierzu a, b, c R 2 drei nicht kollineare Punkte, die uns als Eckpunkte unseres Dreiecks dienen. Auf jeder der drei als Geraden interpretierten Seiten unseres Dreiecks sei ein weiterer von den Ecken des Dreiecks verschiedener Punkt gegeben, also p a b\{a, b}, q b c\{b, c} und r c a\{c, a}. Wir betrachten das Produkt der drei entstehenden Teilungsverhältnisse, also := (apb) (bqc) (cra) = ± ap pb bq qc cr ra und unsere beiden Sätze werden von diesem Produkt handeln. Der erste dieser Sätze ist der sogenannte Satz von Menelaos, dieser besagt das die drei Punkte p, q, r genau dann kollinear sind wenn = 1 gilt. Dieser Satz ist sehr alt, er findet sich in der Sphärik des Menelaos aus dem ersten Jahrhundert. Der zweite Satz ist der Satz von Ceva, bei diesem bilden wir die drei sogenannten Ecktransversalen, also die Verbindungsgeranden von p mit c, von q mit a und schließlich von r mit b, und stellt fest das diese drei 3-3

4 genau dann kopunktal oder paarweise parallel sind wenn = 1 ist. Dieser Satz ist wesentlich jünger als der Satz des Menelaos, Ceva lebte von 1648 bis Der Beweis wird rechnerisch wesentlich übersichtlicher wenn eine der drei Ecken des betrachteten Dreiecks der Nullpunkt ist, daher überlegen wir uns zunächst einmal wie sich all unsere eingeführten Größen unter Translationen verhalten. Lemma 1.9 (Wirkung von Translationen auf die affinen Größen) Sei t R 2 gegeben. (a) Für alle a, b, c R 3 gilt [a, b]c + [b, c]a + [c, a]b = 0. (b) Schreiben wir für a, b, c, u, v, w R 2 C(a, b, c; u, v, w) := [c, w] [u, v] + [a, u] [v, w] + [b, v] [w, u] so gilt C(a + t, b + t, c + t; u, v, w) = C(a, b, c; u, v, w). (c) Sind a, b, c R 2 paarweise verschieden und kollinear, so sind auch a + t, b + t, c + t paarweise verschieden und kollinear mit ((a + t) (b + t) (c + t)) = (abc). Beweis: (a) Für i = 1, 2 haben wir [a, b]c i + [b, c]a i + [c, a]b i = a i b i c i a 1 b 1 c 1 a 2 b 2 c 2 = 0. (b) Mit (a) und der Linearität der Klammerfunktion rechnen wir C(a + t, b + t, c + t; u, v, w) = C(a, b, c; u, v, w) + [ t, [u, v]w + [v, w]u + [w, u]v ] = C(a, b, c; u, v, w). (c) Es gibt λ, µ R\{0} mit λ + µ = 1 und b = λa + µc und damit ist auch b + t = λa + µc + (λ + µ)t = λ(a + t) + µ(c + t) = a + t + µ((c + t) (a + t)), d.h. a + t, b + t, c + t sind kollinear mit ((a + t) (b + t) (c + t)) = µ λ = (abc). 3-4

5 Damit kommen wir zu den beiden angekündigten Sätzen, da sich das obige Produkt affiner Teilungsverhältnisse aus sechs Termen zusammensetzt fasst man diese beiden Sätze gerne als Regula sex quantitatum zusammen. Satz 1.10 (Die Regel von den sechs Größen) Seien a, b, c R 2 nicht kollinear und weiter seien p a b\{a, b}, q b c\{b, c} sowie r c a\{c, a} gegeben. Setze dann := (apb) (bqc) (cra) und betrachte die drei Geraden l := p c, g := q a und h := r b sowie ihre Richtungsvektoren u := p c, v := q a und w := r b. Dann gelten: (a) Es sind [a, b, c] 2 [p, q, r] = (1 + )[p, b, c] [q, c, a] [r, a, b], [a, b, c] C(c, a, b; u, v, w) = (1 )[p, b, c] [q, c, a] [r, a, b]. (b) Genau dann sind p, q, r kollinear wenn = 1 gilt. (c) Genau dann sind l, g, h kopunktal oder paarweise parallel wenn = 1 gilt. Beweis: (a) Nach Lemma 9.(b,c) können wir durch eventuelle Translation von a, b, c, p, q, r um a ohne Beschränkung der Allgemeinheit a = 0 annehmen. Weiter gibt es λ, µ, ϱ R\{0, 1} mit p = λb, q = (1 µ)b + µc und r = (1 ϱ)c und wir haben (apb) = λ 1 λ, (bqc) = µ 1 µ, (cra) = ϱ 1 ϱ also = λµϱ (1 λ)(1 µ)(1 ϱ). Für die erste Gleichung ergibt sich [p, q, r] = [p, q] + [q, r] + [r, p] = (λµ + (1 µ)(1 ϱ) λ(1 ϱ)) [b, c] = (1 λ µ ϱ + λµ + µϱ + ϱλ) [b, c] = ( (1 λ)(1 µ)(1 ϱ) + λµϱ ) [b, c] Zum Nachweis der zweiten Gleichung rechnen wir = (1 + ) (1 λ)(1 µ)(1 ϱ)[b, c]. C(c, a, b; u, v, w) = C(c, 0, b; p c, q, r b) = [b, r b] [p c, q] + [c, p c] [q, r b] = [b, r] [p c, q] + [c, p] [q, r b] = ((1 ϱ)[p c, q] λ[q, r b]) [b, c] und mit [p c, q] = [λb c, (1 µ)b + µc] = (λµ + 1 µ) [b, c] sowie [q, r b] = [(1 µ)b + µc, (1 ϱ)c b] = ( (1 µ)(1 ϱ) + µ ) [b, c] = (1 ϱ + µϱ) [b, c] 3-5

6 wird dies zu C(a, b, c; u, v, w) = (1 µ ϱ + λµ + µϱ λµϱ λ + ϱλ λµϱ) [b, c] 2 = ( (1 λ)(1 µ)(1 ϱ) λµϱ ) [b, c] 2 = (1 ) (1 λ)(1 µ)(1 ϱ)[b, c] 2. Schließlich haben wir [b, c] = [0, b, c] = [a, b, c] und [p, b, c] = [λb, b, c] = [(1 λ)b, c λb] = (1 λ)[b, c], [q, c, a] = [0, q, c] = [(1 µ)b + µc, c] = (1 µ)[b, c], [r, a, b] = [0, b, r] = [b, (1 ϱ)c] = (1 ϱ)[b, c] und beide Formeln sind bewiesen. (b,c) Die Punktetripel abc, pbc, qca, rab sind nicht kollinear, nach Lemma 4 sind also [a, b, c], [p, b, c], [q, c, a], [r, a, b] 0. Wieder nach Lemma 4 sind p, q, r damit genau dann kollinear wenn 1 + = 0, also = 1, gilt. Weiter ist auch genau dann C(c, a, b; u, v, w) = 0 wenn 1 = 0, also = 1 gilt, und ersteres ist nach Lemma 7 genau dann der Fall wenn l, g, h kopunktal oder paarweise parallel sind. 3-6

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.34 018/04/19 14:11:43 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit Aussagen über ebene Geraden und haben einige

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.8 017/04/4 15:51:58 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene In der letzten Sitzung hatten wir die Sätze von Ceva und Menelaos bewiesen. Wir

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.36 2018/04/24 14:50:37 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit dem Schwerpunkt eines Dreiecks, gegeben sind

Mehr

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $ $Id: dreieck.tex,v 1.53 2019/04/12 17:03:16 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Wir beschäftigen uns gerade mit den primitiven pythagoräischen Tripeln. Haben wir ein solches Tripel, also teilerfremde

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.4 2017/04/13 14:48:29 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir hatten einen affinen Teilraum A des R d als eine Teilmenge der Form A = a + U definiert,

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $ $Id: dreieck.tex,v 1.61 019/05/07 10:51:36 hk Exp $ 1 Dreiecke 1.7 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks

Mehr

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6 $Id: dreieck.tex,v 1.35 017/06/15 13:19:44 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck In diesem Abschnitt wollen wir die sogenannten speziellen Punkte im Dreieck, also den Schwerpunkt, die

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.37 2018/04/26 14:09:00 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.4 Anordnungseigenschaften Am Ende der letzten Sitzung hatten wir begonnen uns mit den konvexen Teilmengen des

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Vorlesung Winter 2009/2010 Elementare Geometrie

Vorlesung Winter 2009/2010 Elementare Geometrie Vorlesung Winter 2009/2010 Elementare Geometrie 1 Homothetien Es sei Z E ein Punkt der Ebene. Es sei λ 0 eine reelle Zahl. Die zentrale Homothetie mit dem Zentrum Z und dem Streckungsfaktor λ ist folgende

Mehr

Elementare Geometrie Vorlesung 11

Elementare Geometrie Vorlesung 11 Elementare Geometrie Vorlesung 11 Thomas Zink 29.5.2017 1.Verhältnisse Es sei g eine Gerade. Es seien A, B, C, D g vier Punkte, so dass A B und C D. Wir definieren: AB CD = AB CD, wenn die Strahlen AB

Mehr

Aufgabe G.1: Definitionen, Begriffsbildungen

Aufgabe G.1: Definitionen, Begriffsbildungen Aufgabe G.1: Definitionen, Begriffsbildungen a) Der Begriff Dreieck sei definiert. Definieren Sie den Begriff Innenwinkel eines Dreiecks. (2 Punkte) b) Definieren Sie den Begriff Inneres eines Winkels

Mehr

Elementare Geometrie Wiederholung 3

Elementare Geometrie Wiederholung 3 Elementare Geometrie Wiederholung 3 Thomas Zink 10.7.2017 1.Schwerpunkt und Teilverhältnis, V13, Es seien A, B, C, D Punkte, die auf einer Geraden liegen, und so dass A B und C D. AB = λ CD λ = AB CD.

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

4. Parallelität ohne Metrik

4. Parallelität ohne Metrik 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.31 2018/04/10 15:11:07 hk Exp hk $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir beschäftigen uns gerade mit den affinen Teilräumen des R d, diese erlauben

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

Elementare Geometrie Vorlesung 13

Elementare Geometrie Vorlesung 13 Elementare Geometrie Vorlesung 13 Thomas Zink 7.6.2017 1.Vektoren Es sei E eine Ebene. Eine Translation T : E E wird auch als Vektor bezeichnet. Wenn O, A E, so gibt es genau einen Vektor T, so dass T

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 208 Dienstag 0.4 $Id: vektor.tex,v.30 207/07/7 08:09:23 hk Exp hk $ Analytische Geometrie und Grundlagen In dieser Vorlesung wollen wir uns mit Fragen der sogenannten Elementargeometrie

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe PH Heidelberg, Fach Mathematik Klausur zur Akademischen Vorprüfung Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe Wintersemester 12/13 12. Februar 2013 Aufgabe 8: Definieren Nr.

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 06.12.2013 Alexander Lytchak 1 / 16 Wiederholung Ist V ein Vektorraum, so heißen Abbildungen T v : V V der Form w w

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.21 2017/05/13 16:28:55 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Noch ein Beispiel aus Vorl. 1, Seite 10) Zuerst zeigen wir, dass jede

Mehr

3 Konstruktion von Maßräumen

3 Konstruktion von Maßräumen $Id: caratheodory.tex,v 1.10 2011/11/17 11:43:55 hk Exp hk $ 3 Konstruktion von Maßräumen 3.4 Der Fortsetzungssatz von Caratheodory Wir hatten in der letzten Sitzung mit dem Beweis des Satzes von Caratheodory

Mehr

1.12 Einführung in die Vektorrechung

1.12 Einführung in die Vektorrechung . Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.19 217/5/11 12:3:56 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir eine metrische Form des Strahlensatzes hergeleiten,

Mehr

1 Angeordnete Körper und Anordnung

1 Angeordnete Körper und Anordnung 1 ANGEORDNETE KÖRPER UND ANORDNUNG 1 1 Angeordnete Körper und Anordnung Die nächste Idee, die wir interpretieren müssen ist die Anordnung. Man kann zeigen, dass sie nicht über jeden Körper möglich ist.

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 06 Lineare Algebra analytische Geometrie II Vorlesung 35 Winkeltreue Abbildungen Definition 35.. Eine lineare Abbildung ϕ: V W zwischen euklidischen Vektorräumen V W heißt

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Christoph Vogelsang Matr.Nr. 66547 Nils Martin Stahl Matr.Nr. 664 Seminar: Geometrie Dozent: Epkenhans Wintersemester 005/006 Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Ausarbeitung der

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $ $Id: dreieck.tex,v 1.5 016/04/6 17:9:37 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Nachdem wir in der letzten Sitzung den Schwerpunkt S m eines Dreiecks = als den Schnittpunkt der Seitenhalbierenden,

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

4.22 Buch XI der Elemente

4.22 Buch XI der Elemente 4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

Der Satz des Pythagoras. Kein Darwinscher Zufall

Der Satz des Pythagoras. Kein Darwinscher Zufall Der Satz des Pythagoras. Kein Darwinscher Zufall Detlef Dürr duerr@rz.mathematik.uni-muenchen.de 1. Mai 2012 1 Zahlen-Verhältnisse Die Grunderkenntnis der Gesetzmäßigkeit in der Natur ist Harmonie. Heute

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Elementare Geometrie Vorlesung 12

Elementare Geometrie Vorlesung 12 Elementare Geometrie Vorlesung 12 Thomas Zink 31.5.2017 1.Die Winkelhalbierende Es seien s und t zwei Strahlen, die sich in einem Punkt O schneiden. Es sei (s, t) < 180 o. Die Winkelfläche besteht aus

Mehr

Beweisen mithilfe von Vektoren

Beweisen mithilfe von Vektoren 330 9 Abstände und Winkel zwischen Geraden und Ebenen Beweisen mithilfe von Vektoren In den vorherigen Abschnitten sind Vektoren dazu benutzt worden, Geraden und Ebenen im Raum zu beschreiben und ihre

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie

Mehr

Musterlösungen Klausur Geometrie

Musterlösungen Klausur Geometrie Musterlösungen Klausur Geometrie Aufgabe 1 (Total: 8 Punkte). Seien A, B, C die Eckpunkte eines nichtentarteten Dreiecks in der euklidischen Ebene. Seien D, E, F derart gewählt, dass folgende Teilverhältnisse

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $ $Id: dreieck.tex,v 1.3 2013/04/12 15:30:18 hk Exp hk $ 1 Dreiecke 1.2 Der Strahlensatz Nachdem wir in der letzten Sitzung rechtwinklige Dreiecke betrachtet haben, kommen wir nun zur Einführung der trigonometrischen

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

MAT746 Seminar über Euklidische Geometrie Philipp Becker

MAT746 Seminar über Euklidische Geometrie Philipp Becker MAT746 Seminar über Euklidische Geometrie Philipp Becker R David Hilbert (1862-1943) Den Begriffen aus der Anschauungswelt fehlt die notwendige mathematische Exaktheit. Gebäude der Geometrie soll nicht

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: )

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: ) A A1a 2197120 on on A A1a 2311330 on on on on on on on A A1a 2316420 on on A A1a 2332345 on on on on on on on A A1a 2371324 on on on on on on on A A1a 2382962 on on A A1a 2384710 on on on on on on on A

Mehr

Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie

Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie Dr. Christoph Luchsinger Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie Allgemeine Masse Herausgabe des Übungsblattes: Woche 13, Abgabe der Lösungen: Woche 14 (bis Freitag, 16.15 Uhr), Besprechung:

Mehr

10 Kapitel I: Anschauliche Vektorrechnung

10 Kapitel I: Anschauliche Vektorrechnung 10 Kapitel I: Anschauliche Vektorrechnung haben. In Mengenschreibweise ist G = {x x = a + tb für ein t R}. Wir werden für diese einführenden Betrachtungen im Interesse einer knappen Redeweise jedoch häufig

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

a,b, c R nicht kollinear. Die Höhen sind kopunktal mit eindeutigem

a,b, c R nicht kollinear. Die Höhen sind kopunktal mit eindeutigem 1 Vorlesungsausarbeitung vom 11.01.010 vorgelegt von Bastian Freese und Laura Höffer Einordnung in die Vorlesung Die Vorlesung vom 11.01.010 gehört zu 6 Anfänge der euklidischen Elementargeometrie. Ein

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

7 Matrizen über R und C

7 Matrizen über R und C $Id: matrix.tex,v.9 08// :3:7 hk Exp $ 7 Matrizen über R und C In 6 hatten wir Matrizen nur als eine kompakte Schreibweise für lineare Gleichungssysteme eingeführt. In diesem Kapitel wollen wir die Matrizen

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

1. Elementare Dreiecksgeometrie

1. Elementare Dreiecksgeometrie 1. Elementare Dreiecksgeometrie Die Menge s A1B 2 der Punkte, die von zwei Punkten A und B gleich weit entfernt sind, bilden die Streckensymmetrale der Punkte A und B. Ist A B, so ist dies eine Gerade.

Mehr

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für 2 Angeordnete Körper 2.1 Grundrechenregeln für < in einem angeordneten Körper 2.3 Weitere Rechenregeln für < und 2.4 Positive und negative Elemente 2.5 Ungleichung des arithmetischen Mittels 2.7 Betrag

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Übungen zur Vorlesung Elementare Geometrie

Übungen zur Vorlesung Elementare Geometrie Westfälische Wilhelms-Universität Münster Mathematisches Institut al. Prof. Dr. Lutz Hille Dr. Karin Haluczok Übungen zur Vorlesung Elementare Geometrie Sommersemester 00 Musterlösung zu Blatt 3 vom 6.

Mehr

Musterlösung zur Klausur Grundwissen Schulmathematik am

Musterlösung zur Klausur Grundwissen Schulmathematik am Musterlösung zur Klausur Grundwissen Schulmathematik am 24.2.2012 Aufgabe 1 (10 Punkte) Zeigen Sie: Für alle n N ist n 3 3n 2 +2n durch 6 teilbar. svorschläge Beweis durch Induktion nach n n = 1. Es ist

Mehr

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $ $Id: dreieck.tex,v 1.21 20/04/15 14:02:10 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Am Ende der letzten Sitzung hatten wir begonnen die primitiven pythagoräischen Tripel zu bestimmen, und in einem

Mehr

Seminar Sommersemester 2011: Geometrie Lehramt Gymnasium

Seminar Sommersemester 2011: Geometrie Lehramt Gymnasium Technische Universität Dortmund Fakultät für Mathematik Lehrstuhl VII: Differentialgeometrie Seminar Sommersemester 2011: Geometrie Lehramt Gymnasium Prof Dr Lorenz Schwachhöfer Vortrag 3 am 2742011: Gruppen

Mehr

Städtewettbewerb Frühjahr 2008

Städtewettbewerb Frühjahr 2008 Städtewettbewerb Frühjahr 2008 Lösungsvorschläge Hamburg 5. März 2008 [Version 7. April 2008] M Mittelstufe Aufgabe M.1 (3 P.). Die gegenüberliegenden Seiten eines konvexen Sechsecks ABCDEF seien jeweils

Mehr

2 Affine und projektive Ebenen

2 Affine und projektive Ebenen $Id: ebenen.tex,v 1.3 2018/11/06 12:51:04 hk Exp $ 2 Affine und projektive Ebenen Nachdem wir in der letzten Sitzung affine Ebenen definiert und ein wenig untersucht haben kommen wir nun zu den sogenannten

Mehr

4.18 Buch IV der Elemente

4.18 Buch IV der Elemente 4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen

Mehr

6 Die Lenz Klassifikation

6 Die Lenz Klassifikation $Id: lenz.tex,v 1.6 2018/12/19 19:38:42 hk Exp $ $Id: trans.tex,v 1.3 2018/12/20 08:02:27 hk Exp $ 6 Die Lenz Klassifikation Wir sind gerade mit dem Beweis des folgenden Lemmas beschäftigt. Lemma 6.16

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Elementare Geometrie Vorlesung 19

Elementare Geometrie Vorlesung 19 Elementare Geometrie Vorlesung 19 Thomas Zink 28.6.2017 1.Gleichungen von Kreisen Es sei OAB ein kartesisches Koordinatensystem der Ebene E. Für einen Punkt P mit den Koordinaten (x, y) schreiben wir auch

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Grundlagen Stefan Witzel Punkte, Abstand Die Euklidische Ebene E 2 besteht aus Punkten. Zwei Punkte P, Q E 2 haben einen Abstand PQ 0. Axiome

Mehr