5 Erzwungene Schwingungen mit harmonischer Belastung

Größe: px
Ab Seite anzeigen:

Download "5 Erzwungene Schwingungen mit harmonischer Belastung"

Transkript

1 4 Teil I.5 Haronische Belasung Einassenschwinger 5 Erzwungene Schwingungen i haronischer Belasung Bei den erzwungenen Schwingungen i haronischer Belasung kann die Lasfunkion auf der rechen Seie der Bewegungsgleichung geschrieben werden als sinω ( Es sind wieder die zwei Fälle der ungedäfen und der gedäfen Schwingung zu unerscheiden. T Abb. 5- Haronische Belasung 5. Ungedäfe Schwingung uner haronischer Belasung ie Bewegungsgleichung (.3 ergib sich i Fall der ungedäfen Schwingung i haronischer Las zu u& &+ ku sinω ie Gleichung kann ugefor werden zu u& &+ ω u sinω (5. ie Lösung dieser ifferenialgleichung. Ordnung sez sich aus zwei Aneilen zusaen: * de hoogenen Aneil u n ( * de arikularen Aneil u ( er hoogene Aneil uss die ifferenialgleichung der freien Schwingung erfüllen u & ω u& + n Man erhäl als Lösung Acosω + Bsinω (5. u n In dieser Lösung sind die Inegraionskonsanen bereis enhalen. er arikulare Aneil uss daher nur noch die vollsändige ifferenialgleichung ohne Berücksichigung der Randbedingungen (Anfangsbedingungen erfüllen. u& + ω u sinω Ein Lösungsansaz in der For der rechen Seie und ein oeffizienenvergleich ergib: G sinω u Einsezen in Gleichung (5.

2 Einassenschwinger Teil I.5 Haronische Belasung 43 G ω sinω + G G ω sinω ( ω ω sinω Es wird nun das Verhälnis β der Belasungsfrequenz (Erregerfrequenz ω zur Eigenfrequenz ω eingeführ. ω (5.3 ω Mi ω erhäl an P G ie Gesalösung u( laue dai P u A cos ω + B sinω + ( sinω Mi den Anfangsbedingungen u( u und ů( ů folg A u u& P B ω und als Bewegungsgleichung: u& P u( u cosω + sinω + ( sinω sinω ω (5.4 er Parikularaneil wird auch als saionäre Schwingung bezeichne, da er bei gedäfen Schwingungen erhalen bleib. er hoogene Aneil wird auch als ransiener Aneil bezeichne, da er bei vorhandener äfung i der Zei abkling und verschwinde. Bei den weieren Berachungen wird vorausgesez, dass sich das Syse bei Beginn der Belasung in Ruhe befinde. u u, u& u& ( ( ai vereinfach sich die Gleichung (5.4 zu P u( ( sinω sinω (5.5 er Ter P kann als saische Verschiebung gedeue werden. u s er verbleibende Ter wird als dynaischer Lasfakor LF (dynaic load facor bezeichne u u LF ( ( s

3 44 Teil I.5 Haronische Belasung Einassenschwinger LF ( ( sinϖ β sinω (5.6 ieser Fakor is zeiabhängig. Für Berechnungen der Belasung von Bauwerken is sein Maxialwer über die Zei wichig. ie Frequenzen ω und ω sind unabhängig voneinander, so dass der Gröwer bei sin ω und sinω - aufreen wird. LF ( ( + Hieri werden aber die bei wirklichen Syseen aufreenden Were überschäz, da bei vorhandener äfung nach einiger Zei der saionäre Aneil der Schwingung wei überwieg, so dass genügend genau gil LF MF ax (5.7 ieser Wer wird auch Vergröerungsfakor genann und nach seiner Bezeichnung in der englischsrachigen Lieraur MF (Magnificaion Facor oder (ynaic Magnificaion Facor genann. Zur Beureilung des dynaischen Lasfakors LF sind drei Fälle zu unerscheiden.. Fall : << ω << ω ie Gleichungen (5.5, (5.6, (5.7 lauen dann näherungsweise P u( sinω, LF sinω, ie Erregerfrequenz is gegenüber der Eigenfrequenz so klein, dass das Syse der Belasung folg, und nur die saische Auslenkung wirksa wird. Es genüg eine saische Berechnung des Syses.. Fall : >> ω >> ω er LF sreb gegen, d. h. es erfolg nur eine sehr kleine Auslenkung, die vernachlässig werden kann. ie Erregerfrequenz is verglichen i der Eigenfrequenz so gro, dass die Energie gar nich so schnell überragen werden kann. 3. Fall 3: ω ω er LF wächs über alle Grenzen. iese Erscheinung bezeichne an als Resonanz. ie Erregerfrequenz si i der Eigenfrequenz überein oder lieg i ihr in Resonanz. er Verlauf des LF kann über eine Grenzberachung erhalen werden.

4 Einassenschwinger Teil I.5 Haronische Belasung 45 LF LF li β li β sinω β sinω β ω cos ω sinω β ω cos ω + sinω (5.8 LF ω ie Aliuden des ersen Aneils und dai die Aliuden des LF wachsen linear i der Zei über alle Grenzen. Abb. 5- Schwingungsverlauf dei Resonanz ω ω 5. Gedäfe Schwingung uner haronischer Belasung Wie schon bei der freien Schwingung gezeig, is der Bereich i der unerkriischen äfung c < c kr bzw. ξ < für viele rakische Zwecke ineressan. ie ifferenialgleichung (.3 u& + c u& + k u sinω laue ugefor i c ξ c kr, c kr ω u& &+ ξ ω u& + ω u sinω (5.9 ie Lösung sez sich wieder aus eine hoogenen Aneil u n und eine Parikularaneil u zusaen. u u n + u er hoogene Aneil ensrich der Eigenschwingung eines gedäfen Syses ξω un e ( Acosω + B sinω i ω ω ξ Für den Parikularaneil wird als Lösungsansaz gewähl G sin G cos ω u ω + Eingesez in Gleichung (5.9 ergib ein oeffizienenvergleich der sin- und cos-tere: P G + ζ G P ( ( ζ ( + ( ζ Für die Gesalösung ergib sich ξω u( e A cos ω + B sin ω + ( ( β sinϖ ξ β ( β + ( ξ β cos ϖ ransien saionär (5.

5 46 Teil I.5 Haronische Belasung Einassenschwinger er erse (ransiene Aneil an der Eigenschwingung kling sehr rasch ab (er wird "herausgedäf", so dass nach kurzer Zei nur noch der saionäre Aneil der Bewegungsgleichung erhalen bleib. I folgenden wird daher nur noch dieser Aneil berache. P ( sinω ξ cosω u( (5. + ξ ( ( iese Beziehung kann wieder in eine sin-funkion i der Aliude ρ und de Phasenwinkel Θ ugefor werden. P u( sin ( ω θ + ξ i θ an ( ( ξ (5. Für ξ (keine äfung geh diese Beziehung in den saionären Aneil der erzwungenen ungedäfen Schwingung über (vgl. Gleichung (5.5. Bei der Aliude is der führende Fakor die saische Auslenkung u s P o /. er übrige Teil wird wieder als dynaischer Lasfakor LF bezeichne. LF( sin ( ω θ (5.3 + ξ ( ( Von Ineresse is sein Maxialwer (ynaischer Vergröerungsfakor LF ax sin ( ω θ + ξ ( ( (5.4 er Wer von häng wieder vo Verhälnis ω /ω und de äfungsa ξ ab. Wenn über aufgeragen wird, ergib sich für verschiedene Were von ξ das in Abb. 5-3 gezeige iagra.

6 Einassenschwinger Teil I.5 Haronische Belasung 47 3,,,,5,5,5,35,5, ξ c c kr,5,, 3, 4, 5, I II III Abb. 5-3 Abhängigkei des dynaischen Lasfakors von bei äfung Man erkenn, dass das Maxiu von nahe bei der Resonanz ω ω ( lieg (genauer gesag bei eine ewas niedrigeren Wer. Aus Gleichung (5.4 kann an für den Wer des Maxius herleien ax für ω ω ξ (5.5 en gesaen Verlauf der urven kann an in die drei Bereiche aufeilen, die in Abb. 5-3 gekennzeichne sind. Bereich I: <, 5, ω < ω / Hier is unabhängig von und ξ. Es genüg eine saische Berechnung der Belasung. er dynaische Aneil ergib eine nur unwesenliche Erhöhung der Beansruchung aus saischer Belasung. In Bezug auf die Resonanz lieg eine unerkriische Belasung vor, das hei, die Belasung is so langsa für das Baueil, dass keine dynaische Anwor aufri. Bereich II:, 5, ω / ω ω In diese Bereich lieg die Resonanzselle. er Einfluss der äfung is hier a gröen. Bereis für eine (für echnische Sysee relaiv hohe äfung von ξ.5 is i Resonanzfall rozde > 3. Bezogen auf die Beansruchung aus saischer Belasung ergeben sich u ehrere Fakoren höhere Beansruchungen. Bei Baueilen, die dynaisch beansruch werden, versuch an daher, diesen Bereich öglichs zu vereiden (z. B. Brücken, Maschinenfundaene. ies geschieh durch eine Vereidung der Lasen i diesen Frequenzen oder ein Versien des Baueils (Ubau, Änderung der Posiion von Massen und Seifigkeien oder Zusazassen oder eine Beriebsweise, bei der dieser Frequenzbereich öglichs schnell assier wird und die hohen Aliuden der Verforungen und Beansruchungen sich nich enwickeln können.

7 48 Teil I.5 Haronische Belasung Einassenschwinger Bereich III: >, ω ω Hier wird sehr klein, bei 3 is <. unabhängig von ξ. ie dynaische Beansruchung kann vernachlässig werden. Es lieg eine überkriische Belasung vor, das hei, die Belasung is so schnell für das Baueil, dass keine dynaische Anwor aufreen kann. Eine weiere charakerisische Gröe is die Phasenverschiebung θ, deren Verlauf in Abb. 5-4 abhängig vo äfungsa aufgeragen is. Man erkenn, dass unabhängig von der äfung i Resonanzfall die Phasenverschiebung zwischen der Erregerschwingung und der Schwingung des Syses 9 beräg.,5,5,375, Abb. 5-4 Phasenverschiebung bei gedäfen Aus Abb. 5-3 und 5-4 kann an ableien, Syseen dass bei geringer Frequenz die Trägheis- und äfungskräfe vernachlässigbar sind. In diese Bereich wirk der Belasung i wesenlichen die Federkraf engegen. I Resonanzbereich wird die Belasung durch die äfungskraf ausgeglichen, während Feder- und Trägheiskraf gegeneinander geriche sind. Bei hohen Frequenzen wirk der Belasung i wesenlichen die Trägheiskraf engegen. iese Wirkungen können auch anhand von Zeigerdiagraen klargesell werden. θ 8 9 ξ β

8 Einassenschwinger Teil I.5 Haronische Belasung 49 Beisiel In diese Beisiel wird dargesell, wie die Auswirkung einer Schwingungserregung auf ein Maschinenfundaen reduzier werden kann. ie Ursache der Schwingungserregung sind Unwuchkräfe ( auf das Maschinenfundaen. ie Lasfunkion kann dai beschrieben werden i sinω ( fs f fs u( Saionäre Schwingung u( sin u( & ϖ cos f ( k u( s ( β P S ax ( ϖ Θ + ( ϖ Θ sin ax ( ϖ Θ c f ( c u( & ϖ cos ( ϖ Θ i (5.6 c ξ ; ω ω f f f ax ax f ξ cos + f ( ϖ Θ ( ξ β Manchal wird die Transissibiliä (ransissibiliy daraus abgeleie. as is das Verhälnis der axialen dynaischen Auslenkung bezogen auf die saische Belasung fax TR + ( ξ (5.7 P Abb. 5-5 Elasisch und gedäf gelagere Maschine

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

15 Erzwungene Schwingungen

15 Erzwungene Schwingungen 11 Unwuchen in elasischen Rooren oder Fahrbahnunebenheien bei Fahrzeugen führen auf erzwungene Schwingungen. Berache werden soll im Folgenden der Fall der Schwingungserregung durch eingepräge Kräfe. Bei

Mehr

2. Grundlagen Schwingungslehre

2. Grundlagen Schwingungslehre Zusammenfassung Harmonische Anregung (5) Zusammenfassung Harmonische Anregung (6) .4 Akive Schwingungsisolaion (1) a) Schuz der Umgebung von Maschinen, die Schwingungen erzeugen (akiv) b) Schuz eines Geräes,

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Freie Schwingung - Lösungsfälle

Freie Schwingung - Lösungsfälle Freie Schwingungen Seie von 6 Peer Schüller peer.schueller@bbw.gv.a Freie Schwingung - Lösungsfälle Maheaische / Fachliche Inhale in Sichworen: Differenialgleichung.Ornung i onsanen Koeffizienen, Schwingung

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Prognoseverfahren: Gewogener gleitender Durchschnitt, Exponentielle Glättung erster und zweiter Ordnung

Prognoseverfahren: Gewogener gleitender Durchschnitt, Exponentielle Glättung erster und zweiter Ordnung 4202 KE2 Quaniaive verfahren verfahren: Gewogener gleiender Durchschni, Exponenielle Gläung erser und zweier Ordnung Ein Unernehen öche die Nachfrage nach eine Produk prognosizieren. Dabei sollen ier die

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

λ + ω 0 2 = 0, Lösung: λ 1,2

λ + ω 0 2 = 0, Lösung: λ 1,2 SDOFs Der lineare Einassenschwinger Bewegungsgleichung!!x + c!x + k x = f () = p()...krafanregung!!x g ()...Weganregung!!x + ζω!x + ω x = f (), ω = k, ζ = c k... Lehr'sches Däpfungsaß AB : x( = ) = x,!x(

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

5.6: SM: Stoßkurzschluss Seite 1

5.6: SM: Stoßkurzschluss Seite 1 5.6: SM: Soßkurzschluss Seie 1 Soßkurzschluss Die Ausgangsanornung es reiphasigen Klemmenkurzschlusses is in Bil 5.6-1 argesell. Eine leerlaufene Synchronmaschine wir zum Zeipunk mi allen rei Anschlussklemmen

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

In einem linearen System können sich Schwingungen ungestört überlagern. Die Schwingungen beeinflussen sich dabei nicht gegenseitig.

In einem linearen System können sich Schwingungen ungestört überlagern. Die Schwingungen beeinflussen sich dabei nicht gegenseitig. 6_Superposiionsprinzip_B_W000.doc - /6. Sysee i ehreren Freiheisgraden. Das Superposiionsprinzip für Lineare Sysee Die Schwingungsdifferenialgleichung is eine lineare DGL. Lineare Sysee (Sysee die i linearen

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

7 Harmonischer Oszillator & Schwingungen

7 Harmonischer Oszillator & Schwingungen 7 Haronischer Oszillator & Schwingungen 7.1 Motivation Als haronischen Oszillator bezeichnet an in der Mechanik ein Syste, das ein Potentialiniu besitzt und bei einer Auslenkung x aus diese Miniu eine

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Lebensdaueruntersuchungen an Energiesparlampen

Lebensdaueruntersuchungen an Energiesparlampen Wilfrie Rohm Leensauerunersuchungen Seie von 6 Wilfrie Rohm wrohm@aon.a Leensauerunersuchungen an Energiesparlampen Link zur Beispielsüersich Mahemaische / Fachliche Inhale in Sichworen: Weiullvereilung,

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad

D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad 00 13 Mechanische harmonische Schwingungen T Schwingungsdauer = 1/ f, Dauer einer vollen Schwingung, J Trägheismomen des die Drehschwingung ausführenden Körpers, bezogen auf seine Drehachse, dann gelen

Mehr

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynaik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 7. März 05 Aufgabe (7 Punke) Das Rad (Radius r ) roll i der Winkelgeschwindigkei. I Punk A (Absand r / o Mielpunk) is

Mehr

10 Gleichspannungs-Schaltvorgänge RL-Reihenschaltung

10 Gleichspannungs-Schaltvorgänge RL-Reihenschaltung GleichspannungsSchalvorgänge eihenschalung Seie von 6 222 Prof. Dr.Ing. T. Harriehausen Wolfenbüel.9.2. Beziehung zwischen en lemmengrößen einer konsanen Inukiviä Die Abhängigkei zwischen en lemmengrößen

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit 24 Versuche ohne Ausfälle Success un 24. Mindeszuverlässigkei und Aussagewahrscheinlichkei Um eine Aussage üer die Zuverlässigkei eines Baueiles oder einer Baugruppe zu erhalen, werden vor der eigenlichen

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik MK.7.05 B5_T_A MK_Loes.xmc Abschlussprüfung an Fachoberschulen in Bayern Mahemaik mi 05 Analysis A Ausbilungsrichung Technik.0 Gegeben sin ie reellen Funkionen f a : x --> x x x Definiionsmenge D fa R

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Aufgabe (5 Punke) Aufgabe : Koninuierliche und diskree Signale. a) Zeichnen Sie jeweils den geraden Aneil v g ( ) und den ungeraden Aneil v u ( ) des in Abb.. dargesellen Signals v (). b) Es gelen folgende

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

20 Teil I.3 Belastungsarten Einmassenschwinger

20 Teil I.3 Belastungsarten Einmassenschwinger 20 eil I.3 Belasungsaren Einmassenschwinger 3 Belasungsaren Der zeiliche Verlauf der Belasung, die auf das Baueil wirk, is von enscheidender Bedeuung dafür, mi welchen Mehoden die srukurdynamische Aufgabensellung

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Berechnung der Wickelgüter

Berechnung der Wickelgüter Seie 5 erechnung der Wickelgüer Als Wickelgüer bezeichne man alle indukiven auelemene des Schalnezeils. Dies sind zum einen die Speicherdrosseln (hierzu gehör auch der Speicherransformaor des Sperrwandlers!)

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

20 Gleichspannungswandler

20 Gleichspannungswandler 0 Gleichspannungswandler Häufig soll eine Gleichspannung definierer Größe einer anderen Gleichspannung gewonnen werden. Eine kleinere Spannung läss sich im einfachsen Fall mi einem Spannungseiler erzeugen.

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizschule Hannover - Seminararbei - Medikameneneinnahme -Modellierung- M D Schuljahr: 20 Fach: Mahemaik Inhalsverzeichnis 1 Einleiung 2 2 Einfache Verabreichung 3 21 Die inravenöse Variane 3 22 Die

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

Das lineare H-unendlich Problem

Das lineare H-unendlich Problem Das lineare H-unendlich Problem Salah-Eddine Sessou Seminarvorrag vom. Juli 6. Problemsellung Bild z P x u K Der Regler (Konroller)K ha zei Eingänge, x und den exogenen Eingang. Das H-unendlich Problem

Mehr

Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad

Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad Federschwinger mit zwei Federn Federmassenschwinger sind schön geeignet, um in Vorlesung der Ingenieurmathematik die Brücke zwischen

Mehr

m A Wärme Q Kolben Winkelmarkengeber

m A Wärme Q Kolben Winkelmarkengeber Energiebilanz zr Berehnng er Zsansänerngen i Zyliner Einlasskanal Aslasskanal E A Pzyl Wäre Q Kolben Arbei W Winkelarkengeber Berahee Sysegrenzen Der Zylinerinhal eines Moors sell ein heroynaishes Syse

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

Zusammengesetzte Beanspruchungen

Zusammengesetzte Beanspruchungen Zusammengeseze Beanspruchungen Lieraur Lesen Sie zu diesem Thema bie das Kapiel D 3 im Handbuch Maschinenbau. Übungsaufgaben finden Sie in der Aufgabensammlung TM (Böge) Nr.97 bis Nr.949 Allgemeines In

Mehr

Der lineare harmonische Oszillator

Der lineare harmonische Oszillator Als Beispiel für ein schwingungsfähiges Syse haen wir ereis das aheaische Pendel kennengelern. Der Auslenkwinkel ϕ des Pendels schwing haronisch u einen Gleichgewichswer ϕ = 0. Schwingungen ähnlicher Ar

Mehr

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

Fouerierreihen - eine Einführung

Fouerierreihen - eine Einführung HBL Kapfenberg Fourierreiehen - eine Einführung Seie 1 von 19 Roland Pichler roland.pichler@hl-kapfenberg.ac.a Fouerierreihen - eine Einführung Mahemaische / Fachliche Inhale in Sichworen: Inegralrechnung,

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

Elastisch nachgiebige Wellenkupplungen

Elastisch nachgiebige Wellenkupplungen Elasisch nachgiebige Wellenkupplungen - Eigenschafen - Axiale Nachgiebigkei aschinenelemene: 29-01 Radiale Nachgiebigkei Winklige Nachgiebigkei Drehfeder Achung! Wegen elasischer Rücksellkräfe reen Verspannungskräfe

Mehr

Medikamentendosierung A. M.

Medikamentendosierung A. M. Medikamenendosierung A M Inhalsverzeichnis 1 Einleiung 2 2 Ar der Einnahme 3 3 Tropfenweise Einnahme 4 31 Differenialgleichung 4 32 Exake Lösung 5 33 Näherungsweise Lösung 5 4 Periodische Einnahme 7 41

Mehr

Übungsbuch Physik. Grundlagen - Kontrollfragen - Beispiele - Aufgaben. Bearbeitet von Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer

Übungsbuch Physik. Grundlagen - Kontrollfragen - Beispiele - Aufgaben. Bearbeitet von Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer Übungsbuch Physi Grundlagen - Konrollfragen - Beispiele - Aufgaben Bearbeie von Hilar Heineann, Heinz Kräer, Peer Müller, Hellu Zier 12., aualisiere Auflage 213. Taschenbuch. 44 S. Paperbac ISBN 978 3

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Grundlagen der Statistik der BA: Hinweise zur Interpretation der Arbeitslosenzahlen nach Rechtskreisen

Grundlagen der Statistik der BA: Hinweise zur Interpretation der Arbeitslosenzahlen nach Rechtskreisen Grundlagen der Saisik der BA: Hinweise zur Inerpreaion der Arbeislosenzahlen nach Rechskreisen Chrisopher Grimm Saisik Augus 2005 INHALT Saisik 1 ZIEL DIESER BESCHREIBUNG 3 2 ARBEITSLOSE INSGESAMT BESTANDSVERÄNDERUNG,

Mehr

Die numerische Erzeugung eines durchstimmbaren Sinussignals

Die numerische Erzeugung eines durchstimmbaren Sinussignals Die numerische Erzeugung eines durchsimmbaren Sinussignals Jakob Fröhling Die Hersellung eines sinusförmigen Signals is eine Aufgabensellung aus der Messechnik. Für die Messung bei einer Frequenz soll

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

Aufgaben zu den verschiedenen Wachstumsmodellen

Aufgaben zu den verschiedenen Wachstumsmodellen Aufgaben zu den verschiedenen Wachsumsmodellen 1. Beispiel: Spezialdünger Durch den Einsaz von Spezialdünger kann der Errag von Feldfrüchen verbesser werden. Erräge können aber nich grenzenlos geseiger

Mehr

Messungen am Prüfgenerator für 868 MHz mit dem VNWA als Spektrumanalysator

Messungen am Prüfgenerator für 868 MHz mit dem VNWA als Spektrumanalysator Messungen a Prüfgeneraor für 868 MHz i de VNWA als Spekruanalysaor Für Teszwecke an der Groundplane-Anenne von G1 hae Ludwig aus seine Fundus einen Prüfgeneraor für 868 MHz igebrach, den er als Bausaz

Mehr

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung KW /15 Prof. Dr. R. Reifarh, Dr. J. Glorius Übungen zur Experimenalphysik II Aufgabenbla 3 - Lösung Aufgabe 1: a) Die Laung q im Volumen V beräg: q = ρ(r) V = ρ(r)4πr r = 4πAr 3 r Für ie Laung Q erhalen

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr