Formelsammlung Mathematik
|
|
|
- Sofia Dunkle
- vor 9 Jahren
- Abrufe
Transkript
1 Formelsammlung Mathematik Inhaltsverzeichnis 1 Bezeichnungen und Symbole 1.1 Zahlenmengen Griechisches Alphabet Logische Symbole Arithmetik und Algebra.1 Voraussetzungen Potenz- und Wurzelgesetze Binomische Formeln Lineare und quadratische Gleichungen Lineare und quadratische Funktionen Unterrichtsinhalt Exponential- und Logarithmusfunktionen Folgen und Reihen Geometrie Voraussetzungen Ebene Figuren Körper Winkel Kongruenz und Ähnlichkeit Unterrichtsinhalt Winkelmasse Trigonometrie am rechtwinkligen Dreieck Trigonometrie am allgemeinen Dreieck Trigonometrie am Einheitskreis Trigonometrische Grundbeziehungen Formel von Pick Wahrscheinlichkeitsrechnung und Kombinatorik Einführung in die Wahrscheinlichkeitsrechnung Kombinatorik Vertiefung in die Wahrscheinlichkeitsrechnung Version vom 18. Februar 015 Lg, Fr 1
2 1 Bezeichnungen und Symbole 1.1 Zahlenmengen N = {1,, 3,...} Z = {...,, 1, 0, 1,,...} Q = { p p Z, q N} q R 1. Griechisches Alphabet natürliche Zahlen ganze Zahlen rationale Zahlen reelle Zahlen A, α Alpha H, η Eta N, ν Nü T, τ Tau B, β Beta Θ, θ, ϑ Theta Ξ, ξ Xi Υ, υ Ypsilon Γ, γ Gamma I, ι Iota O, o Omikron Φ, ϕ Phi, δ Delta K, κ Kappa Π, π Pi X, χ Chi E, ε Epsilon Λ, λ Lambda P, ρ Rho Ψ, ψ Psi Z, ζ Zeta M, µ Mü Σ, σ, ς Sigma Ω, ω Omega 1.3 Logische Symbole <, kleiner, kleiner gleich und Teilmenge von >, grösser, grösser gleich oder keine Teilmenge von ungefähr Schnittmenge Element von ungleich Vereinigung / kein Element von Arithmetik und Algebra.1 Voraussetzungen.1.1 Potenz- und Wurzelgesetze a, b > 0 und n, m R a, b > 0 und k, n, m N a m a n = a m+n a n b n = (a b) n a m = a m n a n a n ( a ) n = b n b (a m ) n = a m n a n = 1 a ( n a ) ( n b = b a ) n n am = a m n a 1 n = 1 n a n a n b = n a b n a n b = n a b ( n a m ) k = n a mk n k am = nk a m kn a km = n a m.1. Binomische Formeln (a + b) = a + ab + b (a b) = a ab + b (a + b) (a b) = a b
3 .1.3 Lineare und quadratische Gleichungen a) lineare Gleichungen ax + b = 0 x = b a b) quadratische Gleichungen ax + bx + c = 0 x 1, = b ± b 4ac a Satz von Vieta: x 1 + x = b a und x 1 x = c a.1.4 Lineare und quadratische Funktionen a) lineare Funktionen y = mx + q m = y ist die Steigung x q ist der y-achsenabschnitt b) quadratische Funktionen Normalform y = ax + bx + c Scheitelpunkt S( b, 4ac b ) a 4a Scheitelpunktform y = a(x u) + v Scheitelpunkt S(u, v) Nullstellenform y = a(x x 1 )(x x ) Nullstellen x 1, x (falls es Nullstellen hat) a > 0: Parabel nach oben geönet a < 0: Parabel nach unten geönet c) Nullstellen und Schnittpunkte i) Nullstelle der linearen Funktion: x 0 = q m ii) Nullstellen x 1, x der quadratischen Funktion: Lösungen der Gleichung ax + bx + c = 0 resp. a(x x 1 )(x x ) = 0 iii) Zur Bestimmung der Schnittpunkte SP 1, SP sind die Funktionen gleichzusetzen. 3
4 . Unterrichtsinhalt..1 Exponential- und Logarithmusfunktionen Denition Dekadischer Logarithmus natürlicher Logarithmus Basiswechselsatz Logarithmengesetze x = log a (b) a x = b log 10 (b) = lg(b) log e (b) = ln(b) log a (x) = lg(x) lg(a) log a (pq) = log a (p) + log a (q) log a ( pq ) = log a (p) log a (q) log a (p n ) = n log a (p) y = e x e.7188 natürliche Exponentialfunktion y = b a x a > 0, a 1, b Anfangswert allgemeine Exponentialfunktion a = 1 ± p 100 Wachstum resp. Zerfall y = log a (x) x > 0, a > 0, a 1 allgemeine Logarithmusfunktion y = ln(x) x > 0 natürliche Logarithmusfunktion.. Folgen und Reihen Folge (a n ) n N, a n n-tes Folgenglied Reihe (Teilsummenfolge) s n = a 1 + a + a a n = n arithmetische Folge: d = a n+1 a n a n = a 1 + (n 1) d a n+1 = a n + d arithmetische Reihe: s n = n (a 1 + a n ) = a 1 n + n (n 1) d konstante Dierenz explizite Darstellung rekursive Darstellung geometrische Folge: q = a n+1 a n konstanter Quotient, q 0, q 1 a n = a 1 q n 1 explizite Darstellung a n+1 = a n q rekursive Darstellung geometrische Reihe: s n = a 1 1 qn 1 q s = a q für q < 1 a k k=1 4
5 3 Geometrie 3.1 Voraussetzungen A Flächeninhalt M Inhalt der Manteläche h Höhe O Inhalt der Oberäche V Volumen u Umfang G Inhalt der Grundäche π Kreiszahl r Radius Ebene Figuren Dreieck: allgemeines Dreieck: A = g h g Grundlinie h zugehörige Höhe rechtwinkliges Dreieck: A = a b = c h Satz des Pythagoras: a + b = c Höhensatz: h = p q Kathetensatz: a = p c, b = q c gleichseitiges Dreieck: A = 3 4 s h = 3 s Viereck: Trapez: A = (a + c) h Deltoid: A = e f Parallelogramm: A = a h a Rechteck: A = a b d = a + b Rhombus (Raute): A = s h = e f Quadrat: A = s d = s Kreis: A = r π u = rπ = dπ mit d Durchmesser Kreissektor: A = r πα 360 Kreisbogen: b = rπα 180 5
6 3.1. Körper Prisma: O = G + M V = G h Quader: O = (ab + ac + bc) V = abc Raumdiagonale d = a + b + c Würfel: O = 6s V = s 3 Raumdiagonale d = 3 s Zylinder: O = r πh + rπh M = rπh V = r πh Kugel: O = 4r π V = 4 3 r3 π Pyramide: O = G + M V = G h 3 Pyramidenstumpf: O = G 1 + G + M V = h 3 (G 1 + G 1 G + G ) gerader Kegel: O = r π + rπs M = rπs V = r πh 3 gerader Kegelstumpf: O = r 1 π + r π + (r 1 + r )πs M = (r 1 + r )πs V = πh 3 (r 1 + r 1 r + r ) 6
7 3.1.3 Winkel Winkel an Geraden: Nebenwinkel: Zwei Nebenwinkel ergeben zusammen einen gestreckten Winkel. α + β = 180 Scheitelwinkel: Scheitelwinkel (α) sind gleich gross. Stufenwinkel: Stufenwinkel (α) an geschnittenen Parallelen (h g) sind gleich gross. Wechselwinkel: Wechselwinkel (β) an geschnittenen Parallelen sind gleich gross. Winkel am Kreis: b = AB Kreisbogen AB Kreissehne γ Peripheriewinkel (Umfangswinkel) auf dem Bogen b δ Peripheriewinkel auf dem Ergänzungsbogen zu b ϕ Zentriwinkel (Mittelpunktswinkel) Alle Peripheriewinkel auf demselben Bogen b sind gleich gross. Ein Peripheriewinkel ist halb so gross wie der zugehörige Zentriwinkel: γ = ϕ Ein Peripheriewinkel und ein solcher auf dem Ergänzungsbogen ergeben zusammen einen gestreckten Winkel. γ + δ = 180 Satz des Thales: Liegt ein Punkt C auf dem Kreis mit dem Durchmesser AB, so gilt ACB = 90. Umkehrsatz: Hat das Dreieck ABC bei C einen rechten Winkel, so liegt C auf dem Kreis über AB Kongruenz und Ähnlichkeit Kongruenzsätze: Zwei Dreiecke sind kongruent, wenn sie in Folgendem übereinstimmen: sss in ihren drei Seitenlängen. sws in zwei Seitenlängen und in dem eingeschlossenen Winkel. Ssw in zwei Seitenlängen und in jenem Winkel, der der längeren Seite gegenüberliegt. wsw in einer Seitenlänge und in den dieser Seite anliegenden Winkeln. 7
8 Ähnlichkeitssätze: Zwei Dreiecke sind ähnlich, wenn sie in Folgendem übereinstimmen: sss im Verhältnis aller drei entsprechenden Seiten. sws im Verhältnis zweier entsprechender Seiten und dem eingeschlossenen Winkel. Ssw im Verhältnis zweier entsprechender Seiten und dem der längeren Seite gegenüberliegenden Winkel. ww in zwei Winkeln. In ähnlichen Dreiecken sind einander entsprechende Seitenverhältnisse gleich. Strahlensätze: 1. Strahlensatz: AB A B SA : SA = SB : SB und SA : AA = SB : BB. Strahlensatz: AB A B SA : SA = AB : A B Die Strahlensätze gelten auch, falls der Scheitel S zwischen den beiden Parallelen liegt. Die Umkehrung des. Strahlensatzes gilt nicht. Das kleinere Fünfeck (A, B) wird mit dem Faktor k am Zentrum Z gestreckt. Dabei entsteht das grössere Fünfeck (A, B ) mit ZA = k ZA. Sein Flächeninhalt ist k -mal so gross. 3. Unterrichtsinhalt 3..1 Winkelmasse Gradmass α = 180 b π Bogenmass b = α π 180 Gradmass π π π π Bogenmass 0 π π Trigonometrie am rechtwinkligen Dreieck G Gegenkathete, A Ankathete, H Hypotenuse sin α = G H cos α = A H tan α = G A = sin α cos α cot α = A G = 1 tan α 8
9 3..3 Trigonometrie am allgemeinen Dreieck Sinussatz a sin α = b sin β = c sin γ = r (r Umkreisradius) Cosinussatz Flächenberechnung a = b + c bc cos α b = a + c ac cos β c = a + b ab cos γ ab sin γ A = = bc sin α = = r sin α sin β sin γ ac sin β = abc 4r = s (s a) (s b) (s c) (s = a + b + c ; Heron) Inkreisradius ϱ = A s = (s a) (s b) (s c) s 3..4 Trigonometrie am Einheitskreis 3..5 Trigonometrische Grundbeziehungen cos α + sin α = 1 Trigonometrischer Pythagoras sin(90 α) = sin(90 + α) = cos α = cos( α) cos(90 α) = sin(180 α) = sin α cos(90 + α) = sin(180 + α) = sin α = sin( α) cos(180 + α) = cos(180 α) = cos α 3.3 Formel von Pick Für die Fläche von Gitterpolygonen gilt F = r + i 1 r = Anzahl Punkte auf dem Rand i = Anzahl Punkte im Inneren 9
10 4 Wahrscheinlichkeitsrechnung und Kombinatorik 4.1 Einführung in die Wahrscheinlichkeitsrechnung Ω Ergebnisraum n Anzahl Versuche ω Ergebnis n ω absolute Häugkeit von w E Ereignis h ω relative Häugkeit von w E Gegenereignis P (E) Wahrscheinlichkeit von E A B: A oder B (alles farbige) A B: A und B (alles zweifarbige) relative Häugkeit Gleichwahrscheinlichkeit h ω = n ω n P (E) = g m = Anzahl der günstigen Fälle Anzahl der möglichen Fälle Gegenwahrscheinlichkeit P (E) = 1 P (E) Additionssätze P (A B) = P (A) + P (B) P (A B) P (A B) = P (A) + P (B) für A, B unvereinbar Baumdiagramm: 1. Pfadregel: Die Wahrscheinlichkeit eines Ergebnisses eines mehrstugen Zufallsexperiments ist gleich dem Produkt der Wahrscheinlichkeiten entlang des zugehörigen Pfades. Beispiel: P (A B) = p q 1. Pfadregel: Die Wahrscheinlichkeit eines Ereignisses E ist die Summe der Wahrscheinlichkeiten aller Pfade, die in E enden. Beispiel: P (B) = p q 1 + p q 10
11 4. Kombinatorik im Folgenden gilt: n, k N mit k n Fakultät Binomialkoezient n! = n 0! = 1 1! = 1 ( ) n = n! k k! (n k)! n (n 1)... (n k + 1) = 1... k ( ) ( ) n n = = 1 n 0 ( ) n = n 1 Variation (mit Beachtung der Reihenfolge) (a, b) (b, a) aus n Objekten k auswählen Kombination (ohne Beachtung der Reihenfolge) {a, b} = {b, a} aus n Objekten k auswählen Permutation (k i Elemente der i-ten Art) n Objekte, alle kommen vor ohne Wiederholung mit Wiederholung (ohne Zurücklegen) (mit Zurücklegen) {a, b, c} {a, a, b} n! (n k)! n k ( ) ( ) n n + k 1 k k n! n! k 1! k!... k s! 11
12 4.3 Vertiefung in die Wahrscheinlichkeitsrechnung Bernoulli - Experiment (Ziehen mit Zurücklegen) (Binomische Verteilung) n Gesamtumfang der Stichprobe k Anzahl der Erfolge p Wahrscheinlichkeit für Erfolg q = 1 p Wahrscheinlichkeit für Misserfolg P n (k) = P (genau k Erfolge in n Versuchen) ( ) n = p k k q n k Hypergeometrische Verteilung (Ziehen ohne Zurücklegen) N Gesamtumfang der Stichprobe n kleine Stichprobe aus dem Gesamtumfang T 1 1. Teilmenge T. Teilmenge T 1 + T = N k Anzahl der Erfolge aus T 1 P n (k) = P (genau k der Teilmenge T 1 ) = T 1 k T N n n k 1
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Grundlagen der Planimetrie und Stereometrie
Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,
GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK 9 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P
Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile
Geometrie I (Sommersemester 006, Dr. Christian Werge, [email protected]) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst
Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2
Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a
Rechnen mit Quadratwurzeln
9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür
Formelsammlung für das Niveau II
PH Bern, Vorbereitungskurs MATHEMATIK, Niveau II Formelsammlung 1 Formelsammlung für das Niveau II Binomische Formeln (a + b) = a + ab + b (a b) = a ab + b Potenzregeln a b = (a b)(a + b) a m a n = a m+n
PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE
PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE 21. Auflage Mit 581 Bildern, 556 Aufgaben mit Lösungen 150 Wiederholungsaufgaben ohne Lösungen, einer Beilage mit 15 Raumbildern und einer Formelsammlung
Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19
Grundlagen für die Mittelstufe 7 Inhaltsverzeichnis 1. SYMBOLE UND ZEICHEN...17 2. DIE NATÜRLICHEN ZAHLEN N...19 2.1. Ziffernsysteme...19 2.1.1. Dekadisches Zehnersystem...19 2.1.1.1. Darstellung am Zahlenstrahl...20
1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9
Zahlen. Die Quadratwurzel Die Quadratwurzel a ist die nicht negative Lösung der Gleichung x a. a 0 0 0 a heißt Radikand Ein Teil der Quadratwurzeln sind rationale Zahlen (z.b. 9, 0,0 oder ), 9 andere dagegen
Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017
Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,
Mathematik für Ahnungslose
Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1
Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks
Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks
Curriculum Mathematik
Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von
1. Grundlegendes in der Geometrie
1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden
Quadratwurzeln. Reelle Zahlen
M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081
Grundwissen 9. Klasse
Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Wissen und Können. Zahlenmengen Aufgaen, Beispiele, Erläuterungen N Z Q R natürliche ganze rationale reelle Zahlen Zahlen Zahlen
Curriculum Mathematik
Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von
Grundlagen der Geometrie
Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode
MATHEMATIKLEHRPLAN 5. SCHULJAHR SEKUNDARSTUFE
Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref. : 011-01-D-7-de- Orig. : EN MATHEMATIKLEHRPLAN 5. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTEN PÄDAGOGISCHEN
Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen
auf der Basis des Kernlehrplans für das Fach an Lehrwerk: Lambacher Schweizer, für Gymnasien 5 1. Zahlen und Größen Darstellen - Strichlisten- Säulendiagramme - Große Zahlen - Größen messen und schätzen
Minimalziele Mathematik
Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen
1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.
Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.
Ausführliche Lösungen
Ausführliche Lösungen 11.1 Die Aussage gilt für a) Rechteck, Quadrat b) Raute, Quadrat, Drachen c) Parallelogramm, Raute, Rechteck, Quadrat d) Rechteck, Quadrat e) Parallelogramm 11.2 Bei einem Parallelogramm
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen
Repetitionsaufgaben Zentrische Streckung/Strahlensätze/Ähnlichkeit
Repetitionsaufgaben Zentrische Streckung/Strahlensätze/Ähnlichkeit Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkungen... 1 B) Lernziele... 1
Zusammenstellung der wichtigsten Formeln.
Zusammenstellung der wichtigsten Formeln. Rechteck. Parallelogramm. Quadrat. Rhombus. J=g h. rft - J = s = ; d= sv (d =Diagonale). Dd J=gh=~,r Tangenten vielec k. ~' J = r(u =Umfang). Trapez. J = a I b
MatheBasics Teil 1 Grundlagen der Mathematik Version vom
MatheBasics Teil 1 Grundlagen der Mathematik Version vom 01.09.2016 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte vorbehalten. FSGU AKADEMIE 2008-2016 1 Was haben wir vor? Mathe-Basics Teil 1
2. Die Satzgruppe des Pythagoras
Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a
Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist
7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d
@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite
Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Formelsammlung zum Starterstudium Mathematik
Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und
1 Einleitung. 2 Sinus. Trigonometrie
1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
1 Funktionen Wir sprechen von einer Funktion f, wenn jedem Wert einer veranderlichen Groe, meist x genannt, eindeutig ein Wert einer anderen Groe y =
WS2001/02 A.Putzer Mathematische Hilfsmittel zur Vorlesung Physik fur Mediziner 1 Funktionen 2 Algebraische Gleichungen 3 Dierentialrechnung 4 Integralrechnung 5 Vektorrechnung 6 Fehlerrechnung 7 Das griechische
Luisenburg-Gymnasium Wunsiedel
Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von
Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:
Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht
Geometrie Begriffe und Formeln
Geometrie Begriffe und Formeln Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres Universums
Grundwissen Mathematik 9. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative
Lösungen zu den Übungsaufgaben Übergang 10/ /2009 0hne Gewähr!
Lösungen zu den Übungsaufgaben Übergang 0/ 008/009 0hne Gewähr!. Lineare Funktionen und lineare Gleichungen; Terme 4 a. g : y = x h : y = 4 x - 4 b. A = 4 = FE U = ( + 9 + 6 ) = 6LE c. Bestimmung von Z(,5
Brückenkurs Mathematik
Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1
Themen des schulinternen Curriculums Mathematik
Brüche I Figuren und Körper I Rechnen in N und Z Größen Beschreibende Statistik Themen des schulinternen Curriculums Mathematik Klasse 5 Fragebögen auswerten Diagramme erstellen und Informationen daraus
1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.
Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften
Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften
GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P
I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7
Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen
Geometrie. Homepage zur Veranstaltung: Lehre Geometrie
Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Computertechnik / Automatisierungstechnik Elektrotechnik
MATHEMATIK: Übergang von der Mittelstufe zur Oberstufe
LEITIDEE 1 : Zahl und Operationen Zahlentheoretische Grundkenntnisse und Rechentechniken Zahlbereiche Prozent und Zinsrechnung Terme Gleichungen und Ungleichungen Rechengesetze für Potenzen Ich beherrsche
M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)
M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier
M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)
M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier
Fachwörterliste Mathematik für Berufsintegrationsklassen
Fachwörterliste Mathematik für Berufsintegrationsklassen Lerngebiet 2.4: Grundkenntnisse der Geometrie München, Februar 2019 ISB Berufssprache Deutsch Erarbeitet im Auftrag des Bayerischen Staatsministeriums
Grundwissen Mathematik 9. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative
MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM
MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM NEU-ULM Lessing-Gmnasium Neu-Ulm Seite von I. Funktionen. Direkt proportionale Zuordnungen und sind direkt proportional, wenn, zum n-fachen Wert für der
Realschule Abschlussprüfung
Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................
Grundwissensaufgaben Klasse 10
Grundwissensaufgaben Klasse 10 1.Grundwissensaufgaben zu Potenz- und Wurzelgesetzen: [Verwendung willkürlicher Zahlen und Buchstaben; eigene Aufgabenstellung] Fasse soweit wie möglich zusammen. a) ( 1,456)
Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001.
Digitaler Mathe-Adventskalender 2006 Lehrplan Mathematik Sekundarstufe I Geschwister-Scholl-Gymnasium Pulheim, August 2001 Klasse 5 Klasse 8 Klasse 6 Klasse 9 Klasse 7 Klasse 10 Klasse 5 Natürliche Zahlen
Definitions- und Formelübersicht Mathematik
Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar
Trigonometrie aus geometrischer und funktionaler Sicht
Trigonometrie aus geometrischer und funktionaler Sicht Der Kosinussatz und der Sinussatz: Wenn in einem Dreieck nur zwei Seiten und der eingeschlossene Winkel gegeben sind, oder nur die drei Seiten bekannt
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Themen des schulinternen Curriculums Mathematik
Themen des schulinternen Curriculums Mathematik Die Mathematik findet ihre Anwendung in vielen Bereichen des Alltags. Ein Erlernen der Grundlagen der Mathematik fördert das Verständnis vieler Situationen
Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I
Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I Klasse 5 Inhaltliches Fachwissen Fachmethodische Kompetenzen Formalia - Natürliche Zahlen (incl.
Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen
Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie
Buch: Mathematik heute [Realschule Niedersachsen], Schroedel
Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen
Zusammenstellung der wichtigsten Formeln.
Zusammenstellung der wichtigsten Formeln. Rechteck. Parallelogramm. Quadrat. Rhombus. Tangenten vielec k. J=g h.,jj - J = s2 = 2 ; d= sy2 (d= Diagonale). Dd.I=gh=T u J = 2 r(u =Umfang). Trapez. J = at
Brückenkurs Mathematik
Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis
Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8
Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung
Inhaltsverzeichnis: Lösungswege 5 E-BOOK+
1. Zahlen und Zahlenmengen Inhaltsverzeichnis: Lösungswege 5 E-BOOK+ kommentierte Linksammlung: Videos, Zeitungsartikel, Websites zum Thema Zahlen und S. 6 Zahlenmengen GeoGebra-Anleitung: Rechnen mit
Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I
Gymnasium St. Wolfhelm Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I Mit ihrer Hilfe kannst du selbstständig kontrollieren, ob du die abgefragten Kompetenzen
Grundwissen Mathematik 7. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P
Formelsammlung. Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. erstellt von Manfred Präsoll
Formelsammlung erstellt von Manfred Präsoll Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. 01 1 Flächen Parallelogramm Quadrat u = 4 a A = a² u = (a+b) oder u = a
MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)
MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert
Klausur zur Akademischen Teilprüfung, Modul 2,
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung
Wissenschaftliches Arbeiten Quantitative Methoden
Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden
Trigonometrie - Funktionale Abhängigkeiten an Dreiecken
1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des
(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz
(3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist
ELEMENTAR-MATHEMATIK
WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis
Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.
Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie
Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie
Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe
Stoffplan Mathematik G9. Klasse 5. Zahlen. Größen. ebene Geometrie. Terme. Flächen und Körper. Stand 5/2016
Stoffplan Mathematik G9 Stand 5/2016 Klasse 5 Zahlen natürliche Zahlen, Anordnung auf dem Zahlenstrahl. Vorgänger, Nachfolger. Stellenwertsystem. Grundrechenarten, schriftliche Verfahren. Begriffe: Summand/Summe,
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a
Algebra 1. Termen mit Variablen Ein Term ist ein Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Variablen sind Platzhalter für Zahlen oder für Größen. Eine Variable steht immer
Curriculum 2012 Mathematik. Der Kreis ist eine geometrische Figur, bei der an allen Ecken und Enden gespart wurde.
Der Kreis ist eine geometrische Figur, bei der an allen Ecken und Enden gespart wurde. Lehrer, die an unserer Schule Mathematik unterrichten: Frau Axer Frau Hoven Herr Petrzik Herr Baral Herr Käfer Herr
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
BMS Bern, Aufnahmeprüfung 004 Technische Richtung Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
