2.3 Polynom vom Grad 2
|
|
|
- Bertold Schmitz
- vor 9 Jahren
- Abrufe
Transkript
1 2.3 Polynom vom Grad 2 Titel V2-2-3 Polynom vom Grad 2 Version Mai 200 Themenbereich Von der Sekanten- zur Tangentensteigung Themen Verfeinerung der Intervalle zur Bestimmung der Steigung an einzelnen Punkten eines Graphen Rolle des CAS Methoden Hinweise Berechnungen mit einer Tabellenkalkulation bzw. Aufstellen von Wertetabellen Einführungsaufgabe Diese Aufgabe dient als ein Beispiel zur Hinführung zur Tangentensteigung weitere müssen folgen. Sekantensteigungen wurden im vorher stattfindenden Unterricht bereits bestimmt. Hier soll nun die Verfeinerung der Sekantensteigung zur Tangentensteigung zunächst rechnerisch an einer Stelle durchgeführt werden. Empfehlenswert ist es die Schülerinnen und Schüler zunächst den Prozess manuell an einer Stelle durchführen zu lassen (Aufgabenteil a)) das CAS übernimmt dabei nur die Rolle eines (intelligenten) Taschenrechners zur Funktionswertbestimmung. Für den Kreis gibt es eine recht gelungene Demonstration mit Übungen im Internet unter: Gerade weil die Schülerinnen und Schüler noch keinen formalen Grenzwertbegriff kennen, wird die immer bessere Annäherung an die Tangentensteigung für immer kleiner werdende h gut veranschaulicht. Die (kleinen) Taschencomputer haben eine Grenze, was die Anzahl der vertrauenswürdigen Stellen betrifft. Es bietet sich an, hier die DERIVE-Datei aus der Materialsammlung einzusetzen, mit der man die Steigung mit immer besser werdender Genauigkeit bestimmen kann. Quelle CiMS Zeitlicher Rahmen Schulstunde CiMS Landesinstitut Hamburg Seite 36
2 Gegeben ist die Funktion f mit f x 2 ( ) x. Den Graphen finden Sie in der Anlage. a. Bestimmen Sie grafisch die Steigung der Funktion f an der Stelle x 0. mit dem Geodreieck, mit der Spiegelmethode. Die Spiegelmethode ist eine grafische Möglichkeit recht genau Tangenten an Kurven zu zeichnen. Grundidee dabei ist, den (planen) Spiegel so an die Kurve zu legen, dass diese sich im Spiegelbild knickfrei fortsetzt. Die Spiegeloberfläche (genauer gesagt deren Schnittgerade mit der Zeichenebene) entspricht dann der Normalen. Die Tangente liegt dann senkrecht dazu. 2 Vergleichen Sie die Ergebnisse. b. Ermitteln Sie nun rechnerisch die Steigung der Funktion f an der Stelle x 0. Bestimmen Sie dabei die Steigungen der Sekanten durch P ( 2) und Q ( h f ( h)) und lassen Sie das h immer kleiner werden. In der unten stehenden Tabelle sind nur einige Werte für h angeben. Bestimmen Sie die Steigung der Sekanten für sinnvoll viele h und übertragen Sie die vervollständigte Tabelle in Ihre Unterlagen. h h f ( h) Steigung der Sekanten 2 0, 00,0 000, ,9 00 0, ,999 c. Geben Sie eine Vermutung über die Steigung der Tangente an dem Graphen von f an der Stelle x an. Das entspricht der Steigung des Graphen an der Stelle x. d. Bestimmen Sie analog die Steigung des Graphen an den Stellen a. x 2, x 3, x 4, x 0, x, x 2, x 3 und x 4. 2 Zur Spiegelmethode erhalten Sie weitere Informationen unter: CiMS Landesinstitut Hamburg Seite 37
3 Anlage CiMS Landesinstitut Hamburg Seite 38
4 a. Je nach Genauigkeit ergeben sich unterschiedliche Ergebnisse. Siehe Aufgabenteil b) b. Hinweis: Schülerinnen und Schüler werden wahrscheinlich nicht (wie im Folgenden) mit einer Folge für h arbeiten, sondern die entsprechenden Werte direkt eingeben. Das sollte man dann auch so akzeptieren. Bestimmt werden die Sekantensteigungen nach der f ( h) f () Formel m; h ( h) Je nach Rechnerkapazität erhält man die folgenden Werte. Anhand dieser Daten bietet es sich an, mit den Schülerinnen und Schüler auch über Rechenkapazitäten und Genauigkeit von Ergebnissen zu reden. c. Als Vermutung ergibt sich für die Steigung der Tangenten der Wert 2. Die Steigung wird als Grenzwert der Sekantensteigungen (für immer kleiner werdendes h) angesehen. d. Rechtsseitige Annäherung. Die Stellen kann man in den Tabellenüberschriften ablesen. e. CiMS Landesinstitut Hamburg Seite 39
5 Linksseitige Annäherung. CiMS Landesinstitut Hamburg Seite 40
V2-2-5 Steigung eines Polynoms
2.5 Steigung eines Polynoms Titel Version Juli 2011 Themenbereich Themen Rolle des GTR Methoden & Hinweise Quelle Zeitlicher Rahmen V2-2-5 Steigung eines Polynoms Von der Sekanten- zur Tangentensteigung
V2-2-4 Polynom vom Grad 3
2.4 Polynom vom Grad 3 Titel V2-2-4 Polynom vom Grad 3 Version Mai 20 Themenbereich Von der Sekanten- zur Tangentensteigung Themen Verfeinerung der Intervalle zur Bestimmung der Steigung an mehreren Punkten
Anwendungsaufgaben zur Differenzialrechnung. Berechnungen von Ableitungen Umformungen von Termen Zeichnen von Graphen
5.4 Trassierung 1 Titel V2 5-4Trassierung 1 Version Mai 2011 Themenbereich Anwendungsaufgaben zur Differenzialrechnung Themen Trassierungsaufgaben Rolle des CAS Lösen von Gleichungen Berechnungen von Ableitungen
5.4 Trassierung 1. Von der mittleren zur lokalen Änderung. V2 5-4Trassierung 1. Anwendungsaufgaben zur Differenzialrechnung. Trassierungsaufgaben
5.4 Trassierung 1 Titel V2 5-4Trassierung 1 Version Mai 2011 Themenbereich Anwendungsaufgaben zur Differenzialrechnung Themen Trassierungsaufgaben Rolle des GTR Lösen von Gleichungen Berechnungen von Ableitungen
Berechnungen mit der Tabellenkalkulation. Die Daten stammen vom Statistischem Bundesamt Deutschland (http://www.destatis.de) Stand
1.3 Bevölkerungswachstum Titel V2 1-Z1 Bevölkerungswachstum Version Dezember 2010 Themenbereich Vorbereitung des Änderungsbegriffes Themen Durchschnittliche Wachstumsraten Rolle des CAS Methoden Hinweise
Einführung Differenzialrechnung
Einführung Differenzialrechnung Beispiele: (1 Ein Auto fährt fünf Sekunden lang mit konstanter Geschwindigkeit Wertetabelle: Zeit in Sekunden 1 2 3 4 5 Strecke in Meter 28 56 84 112 14 Graph (s-t-diagramm:
5. Anwendungsaufgaben
5. Anwendungsaufgaben 5.1 Dose Titel V2 5-1 Dose 2 Version Mai 2011 Themenbereich Themen Rolle des CAS Methoden Hinweise Quelle Zeitlicher Rahmen Anwendungsaufgaben zur Differenzialrechnung Optimierung
Unterstützung durch den ClassPad II bei der Einführung des Ableitungsbegriffs
Unterstützung durch den ClassPad II bei der Einführung des Ableitungsbegriffs Jens Weitendorf Kurzfassung des Inhalts: In dem Artikel wird keine einzelne Lerneinheit dargestellt; sondern es wird gezeigt,
Ableitungen von Funktionen
Ableitungen von Funktionen Differenzialrechnung, Philip Denkovski Institut für Physik 06. Juni 2012 Gliederung 1 Verschiedene Schulbücher 2 Historischer Einstieg 3 Tangentenproblem 4 Änderungsrate Verschiedene
Unterrichtsgang für die Sek II mit Computer-Algebra-System
CiMS Hamburg Unterrichtsgang für die Sek II mit Computer-Algebra-System Mit Lösungen für CASIO ClassPad II 3. Auflage Unterrichtsversuch CiMS der Behörde für Schule und Berufsbildung Hamburg Autoren: Jörg
Unterrichtsgang zur Differentialrechnung mit dem GTR
CiMS Hamburg Unterrichtsgang zur Differentialrechnung mit dem GTR Mit Lösungen für CASIO FX-CG20 2. Auflage Unterrichtsversuch CiMS der Behörde für Schule und Berufsbildung Hamburg Autoren: Jörg Kreyser,
Lernsituation 3.2: Analysis (26 UStd.) Titel: Analysis- Einführung in die Differenzialrechnung
Bildungsgang: Zweijährige Höhere Berufsfachschule (Höhere Handelsschule) Lernsituation 3.2: Analysis (26 UStd.) Titel: Analysis- Einführung in die Differenzialrechnung Einstiegsszenario 1 Lernergebnis
Geschwindigkeiten, Steigungen und Tangenten
Geschwindigkeiten, Steigungen und Tangenten 1-E Die Geschwindigkeit cc Wir beginnen mit dem Problem der Geschwindigkeit: Wie können wir die Geschwindigkeit eines bewegten Objektes in einem bestimmten Augenblick
Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis
Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung
5.2. Differentialrechnung
.. Differentialrechnung... Die mittlere Steigung einer Funktion zwischen zwei Punkten Die mittlere Steigungder Funktion f() zwischen zwei Punkten P( f()) und Q( + Δ f( + Δ)) ist definiert als der Differenzenquotient
10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.
49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche
Kontrollfragen zur Unterrichtsstunde
Kontrollfragen zur Unterrichtsstunde Frage 1: Das Newtonverfahren ist eine Methode zur Bestimmung A: der Extremstellen eines C: des Verhalten im Unendlichen. B: der Nullstellen eines D: der Fallzeit eines
Johannes-Althusius-Gymnasium Emden
Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren
Lernspirale zum Thema. Einführung in die Differentialrechnung. 7. Klasse. von Markus Hohenwarter und Evelyn Stepancik
Lernspirale zum Thema Einführung in die Differentialrechnung von Markus Hohenwarter und Evelyn Stepancik zum Lernpfad von Gabriele Jauck und Markus Hohenwarter Themenbereich/Inhalte: Einführung in die
Linearisierung einer Funktion Tangente, Normale
Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion
Approximation von Nullstellen mit Hilfe der Ableitung Mit Tangenten geht es oft einfacher und schneller als mit Sehnen oder Sekanten
Gegeben ist die Funktion f mit f(x :' x 4 & 2@x 3 & 3@x 2 % 3@x % 2 Man erkennt leicht, dass es durch die Dominanz des vierten Potenzterms ( x 4 genügt, die Funktion über dem Intervall [ -3 ; 3 ] zu betrachten,
Der Ableitungsbegriff
GS - 24.08.04 - abl_01_grundbegr.mcd Der Ableitungsbegriff - Die Steigung von Graphen - 1. Einführung in die Problematik: Bekannt ist der Funktionswert einer Funktion f an einer bestimmten Stelle x 0.
Differenzialrechnung Einführung 1
0.0.06 Änderungstendenz einer Funktion Differenzialrechnung Einführung Eines der wichtigsten Merkmale einer Funktion ist die Änderungstendenz, womit angegeben wird, wie stark die Funktionswerte f() zu-
GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN
GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN Graph von f mit Epsilonstreifen und Asymptoten.5.5 y-achse 0.5 6 0 8 6 0 6 8 0 6 0.5.5 -Achse Inhaltsverzeichnis Kapitel Inhalt Seite Einführung Der Grenzwertbegriff.
I. Verfahren mit gebrochen rationalen Funktionen:
I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt
Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung
Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung 1. Lösen Sie folgendes Gleichungssystem mit Hilfe des Gauß-Verfahrens. Überprüfen Sie Ihr Ergebnis mit dem Taschenrechner. ganzzahlig
= (Differenzenquotient).
Micael Bulmann Matematik > Analysis > Ableitungen > Änderungsrate Von der mittleren zur momentanen Änderungsrate Für zwei versciedene Punkte P( 1 y 1 und Q( y auf der Zalenebene ergibt sic die Steigung
Alle zu orthogonalen Tangenten müssen die Steigung 4,32 1 haben. 0, ,2723* 1,2** 6 Punktprobe mit %&1,2'1,2( 2* 3,6* 64,272 4,272 2* 3,6* 1,7280
Lösung A1 6 3 a) 1,21,2 64,272 1,23 1,2 4,32 1,2 1,21,2 4,32 1,24,2724,329,456 b) Alle Tangenten zu parallel müssen die Steigung 4,32 haben. 4,323 :3 1,44, 1,2 Für 1,2 siehe Aufgabenteil a). 1,21,2 67,728
Drei Aspekte des Differenzierbarkeitsbegriffs
1. Dezember 2010 Gliederung 1 Rahmenplan und zu beobachtende Kriterien 2 3 Grenzwertproblematik Modellierungsbeispiel Ausblick 4 Rahmenplan Fundamentalbereich Diffenzialrechnung (2. Halbjahr Einführungsphase)
Zusammenfassung und Wiederholung zu Geraden im IR ²
Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 8: Satz von Rolle - Mittelwertsatz - Monotoniekriterium Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 24. November 2010 1 Stetige Verteilungen Normalapproximation Gleichverteilung Exponentialverteilung Normalapproximation
Ableitung einer Betragsfunktion Differenzierbarkeit
Ableitung einer Betragsfunktion Differenzierbarkeit 1-E Differenzierbarkeit einer Funktion Eine Funktion y = f (x) heißt an der Stelle x differenzierbar, wenn der Grenzwert f ' ( x) = lim Δ x 0 Δ y Δ x
und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4
7 Aufgaben im Dokument Aufgabe P5/2010 Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Geraden & Parabeln - Was mache ich, wenn?
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Was mache ich, wenn? Das komplette Material finden Sie hier: School-Scout.de Inhalt Seite Vorwort 5 Spickzettel 6-7 MindMap Geraden
Schulinterner Stoffverteilungsplan Mathematik. auf der Basis des Schulbuchs EdM (Schroedel) Einführungsphase (G9) Arbeitsfassung Stand
Seite 1 Gymnasium Neu Wulmstorf r Stoffverteilungsplan Mathematik auf der Basis des Schulbuchs EdM (Schroedel) Einführungsphase (G9) Arbeitsfassung Stand 26.04.2018 Vorbemerkung: Da der Kompetenzerwerb
Grenzwert und Stetigkeit
Kapitel 6 Grenzwert und Stetigkeit Josef Leydold Auffrischungskurs Mathematik WS 07/8 6 Grenzwert und Stetigkeit / 39 Grenzwert einer Funktion Was passiert mit dem Funktionswert einer Funktion f, wenn
Schulinternes Curriculum Mathematik EF. Kompetenzerwartungen bzgl. der Kenntnisse, Fähigkeiten und Fertigkeiten und Reflexionsfähigkeit. Kap.
I I.1 - I.6 untersuchen die Eigenschaften von linearen und quadratischen Funktionen (Wiederholung SI) Potenzfunktionen Ganzrationalen Funktionen können Gleichungen linearer und quadratischer Funktionen
Logarithmische Skalen
Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1
Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG16-26D Gruppe A NAME:
R. Brinkmann Seite 8..03 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di.05.07 SG6-6D Gruppe A NAME: Hilfsmittel: Taschenrechner. Alle Ergebnisse sind soweit möglich durch Rechnung zu begründen..
Newtonverfahren Die folgende Abbildung beschreibt das Newtonverfahren zur näherungsweisen Berechnung von Nullstellen:
BspNr: J0011 Themenbereich Näherungsverfahren zur Nullstellenberechnung (Newtonverfahren) Ziele Probleme, die bei der näherungsweisen Nullstellenberechnung auftreten können, erkennen. Analoge Aufgabenstellungen
Abiturprüfung nach dem neuen Kernlehrplan Beispielaufgabe
Ministerium für Schule und Weiterbildung NRW Qualitäts- und UnterstützungsAgentur Landesinstitut für Schule Seite 1 von 3 Abiturprüfung nach dem neuen Kernlehrplan Beispielaufgabe Mathematik, Grundkurs
Schulinternes Curriculum 11 Jg. (Einführungsphase) Thema Kompetenzen Methoden Fachspezifische
Fachbereich MATHEMATIK GYMNASIUM ISERNHAGEN Schulinternes Curriculum 11 Jg. (Einführungsphase) Thema Kompetenzen Methoden Fachspezifische Kriterien Funktionen Potenzfunktionen - Mit natürlichen Exponenten
Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen.
Dokument mit 16 Aufgaben Aufgabe A1 Gegeben ist die Funktion mit 6. a) Bestimme die Gleichung der Tangente an den Graphen von im Punkt 1,21,2. b) Bestimme alle Tangenten an den Graphen, die zu parallel
Thüringer CAS-Projekt
Darstellen von Funktionen Grit Moschkau Thüringer CAS-Projekt Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Funktionsgraphen zeichnen, Fenstereinstellungen, Wertetabellen, grafische Funktionsuntersuchungen
Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.
MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren
7 Aufgaben im Dokument. Aufgabe P5/2010
Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt
Arbeiten mit Funktionen
Arbeiten mit Funktionen Wir wählen den Funktioneneditor (Ë W) und geben dort die Funktion f(x) = x³ - x² - 9x + 9 ein. Der TI 92 stellt uns eine Reihe von Funktionsbezeichnern zur Verfügung (y 1 (x), y
5. Anwendungsaufgaben
5. Anwendungsaufgaben 5.1 Dose Titel 5-1 Dose ersion Mai 011 Themenbereich Anwendungsaufgaben zur Differenzialrechnung Themen Optimierung Rolle des GTR Lösen von Gleichungen Berechnungen von Ableitungen
Zentrale Klausur am Ende der Einführungsphase Mathematik
Teil I (hilfsmittelfrei) Seite von Name: Zentrale Klausur am Ende der Einführungsphase Teil I: Hilfsmittelfreier Teil Aufgabe : Analysis 05 Mathematik Die Abbildung zeigt den Graphen der Funktion f mit
Welcher Balken trägt am meisten?
Unterschiedliche Lösungswege für Extremwertaufgaben Karl-Heinz Keunecke, Altenholz Angelika Reiß, Berlin Steckbrief der Aufgabe Sekundarstufe I und II Extremwertwertaufgaben mit geometrischen Nebenbedingungen
Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a
. Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------
Allgemeine Hinweise und Vereinbarungen für den Mathematikunterricht an der IGS Buchholz
Allgemeine Hinweise und Vereinbarungen für den Mathematikunterricht an der IGS Buchholz Zeichnungen mit Bleistift und Lineal anfertigen Beim Messen und Zeichnen gilt: max. 1 2 mm bzw. 1-2 Toleranz Aufgaben,
Die Parabel als Ortskurve
Die Parabel als Ortskurve Autor: Andreas Nüesch, Gymnasium Oberwil/BL, Schweiz Idee: Gegeben ist eine Konstruktionsvorschrift für einen Punkt P im Koordinatensystem. 1. Konstruieren der Ortskurve mit HIlfe
Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk
Schulinternes Curriculum Mathematik Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Legende: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche
Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG...2 Arbeitsbogen
Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG... Arbeitsbogen -...............5 5...5 6...6 7...6 8...7 9...8 Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG Arbeitsbogen - Bestimmen Sie a) b) + a) Bei so
Die Ableitung der allgemeinen Exponentialfunktion
Die Ableitung der allgemeinen Exponentialfunktion September 2016 Autoren: Klaus Busse, Jens Dahmen, Ingo Koschinski GE Weierheide, Oberhausen / Leibniz Gymnasium. Dortmund / GE Greven, Greven Kurzbeschreibung
Mathematik GK m1/m2/m3, 2. Kl. Funktionenuntersuchung Lösung A
Aufgabe 1: Kurvendiskussion Führe eine vollständige Funktionsuntersuchung für die Funktion f x = 1 2 x5 1 4 x4 3 2 x3 durch. Dazu gehören alle Teilaufaben, wie sie im Unterricht besprochen wurden und auf
Kapitel 5: Differentialrechnung
Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen
Mathematisch modellieren eine Situation in ein mathematisches Modell transferieren und bearbeiten (z.b. Bestimmung einer Höhe).
MAT 09-01 Ähnlichkeit 14 DS Thema im Buch: Konstruieren und Projizieren ähnliche Figuren erkennen. den Ähnlichkeitsfaktor bestimmen. anhand des Ähnlichkeitsfaktors erkennen, ob es sich um eine Vergrößerung
Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2016 Mathematik
Seite von Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 06 Mathematik. Aufgabenart Analysis, Stochastik. Aufgabenstellung Teil I: Hilfsmittelfreier Teil Aufgabe : Analysis
Raketenstart. t Zeit in Sekunden (s) s(t) zurückgelegter Weg in Metern (m) zum Zeitpunkt t
Raketenstart Aufgabennummer: B_54 Technologieeinsatz: möglich S erforderlich Trägerraketen ermöglichen es, schwere Nutzlasten in die Erdumlaufbahn zu befördern. Ariane 5 ist die leistungsfähigste europäische
Verlauf Material LEK Glossar Lösungen. Üben, üben, üben zur Berechnung der Ableitung. Christian Rühenbeck, Bovenden VORANSICHT
Reihe S Verlauf Material LEK Glossar Lösungen Üben, üben, üben zur Berechnung der Ableitung Christian Rühenbeck, Bovenden Voraussetzung: Das Tangentenproblem (I/C Reihe 7 auf CD-ROM 59) Können Sie auf
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()
Quadratische Funktionen
Quadratische Funktionen Die einfachste quadratische Funktion besitzt die Funktionsgleichung =. Die graphische Darstellung der quadratischen Funktion ergibt eine Kurve, welche Normalparabel heisst und folgendes
Stetigkeit und Differenzierbarkeit
Bergische Universität Wuppertal Fachbereich C Mathematik Wintersemester 2009/2010 Didaktik der Analysis Herr Passon Stetigkeit und Differenzierbarkeit Andrea Paffrath 540836 9. Semester [email protected]
Mathematisch modellieren eine Situation in ein mathematisches Modell transferieren und bearbeiten (z.b. Bestimmung einer Höhe).
MAT 09-01 Ähnlichkeit 14 DS Leitidee: Raum und Form Thema im Buch: Konstruieren und Projizieren ähnliche Figuren erkennen. den Ähnlichkeitsfaktor bestimmen. anhand des Ähnlichkeitsfaktors erkennen, ob
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
GF MA Differentialrechnung A2
Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
Zusammenfassung: Differenzialrechnung 1
LGÖ Ks M Schuljahr 7/8 Zusammenfassung: Differenzialrechnung Inhaltsverzeichnis Aufgabenformulierungen Gleichungen Graphen, Trigonometrie und Geraden Ableitung Ableitungsregeln, höhere Ableitungen 3 Kettenregel
Übungen zu Splines Lösungen zu Übung 20
Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)
ARBEITSBLATT 6-5. Kurvendiskussion
ARBEITSBLATT 6-5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe
Hausaufgaben und Lösungen
Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.
Zusammenfassung der Kurvendiskussion
Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit
Merksatz Begriff der Funktion
Der Begriff Funktion Um uns klar zu machen, was eine Funktion (lateinisch functio) ist, betrachten wir uns die Gegenüberstellung nachfolgender Situationen. Die Temperatur eines Gewässers wird in verschiedenen
Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79
Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine
1 /40. dargestellt werden.
Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von
Lösungen zur Prüfung 2014: Pflichtteil
Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten mit Produktregel, Integral mit Stammfunktion berechnen, Gleichung lösen, Kosinusfunktion, Nullstellen, Funktionswerte
Mathematikaufgaben. Matura Session
Mathematikaufgaben Matura 05. Session Angaben 05. Session 05. Session Problemstellung Ein Telefonanbieter sieht für Auslandgespräche eine Figebühr von 0 Euro monatlich und zusätzlich 0 Cent pro Gesprächsminute
Fachdidaktik Mathematik. Universität Ulm
Fachdidaktik Mathematik Universität Ulm Veranstaltungen: Fachdidaktisches Seminar Mathematik SS Böhm Schülerseminar Mathematik WS Lamche/Böhm Ausgewählte Kapitel aus der Mathematik im Gymnasium WS Beckmann
Übungsaufgaben Analysis hilfsmittelfrei
Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)
Mathematik. Juni 2016 AHS. Kompensationsprüfung 4 Angabe für Kandidatinnen/Kandidaten
Name: Datum: Klasse: Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2016 Mathematik Kompensationsprüfung 4 Angabe für Kandidatinnen/Kandidaten Hinweise
Mathematik 9. Quadratische Funktionen
Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert
Einführung des Differentialquotienten und des Ableitungsbegriffes
Einführung des Differentialquotienten und des Ableitungsbegriffes Thema Übergang vom Differenzen- zum Differentialquotient Stoffzusammenhang Einführung der Differentialrechnung Jahrgangsstufe 11 Inhaltsbezogene
Kompetenzcheck. Konzept
Kompetenzcheck Konzept In der fachdidaktischen Literatur findet man immer häufiger sogenannte Kompetenzchecks, in denen die Lernenden ihre Kompetenzen selbst einschätzen. Diese Idee haben die Referenten
Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400
Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400 Die Bildschirmabdrucke veranschaulichen die aufgeführten Kompetenzen. Sie erheben keinen Anspruch auf Vollständigkeit
Die Ableitung der trigonometrischen Funktionen Seite 1
Die Ableitung der trigonometrischen Funktionen Seite 1 Kapitel mit 108 Aufgaben Seite WIKI Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (25 Aufgaben) 07 Lösungen zum Aufgabenblatt 1 08 Level
Erste Schularbeit Mathematik Klasse 8A G am
Erste Schularbeit Mathematik Klasse 8A G am 23.11.216 KORREKTUREN und HINWEISE Aufgabe 1. (2P) Funktionsklassen ihren Eigenschaften zuordnen. In der linken Tabelle sind vier Eigenschaften von Funktionen
Abschlussaufgabe Nichttechnik - Analysis I - Lsg.
Analysis NT GS -.6.7 - m7_nta_l.mcd Abschlussaufgabe 7 - Nichttechnik - Analysis I - Lsg.. Gegeben sind die reellen Funktionen f k ( x) und ID fk ( ) x k x k x mit k IR k IR. Der Graph einer solchen Funktion
Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung
Aufgabe 1: Grenzwerte 2 x 3 1.1 Berechne unter Anwendung der 3( +12 x 10 Grenzwertsätze für Funktionen: lim x 3 x 3 +2 x+10 2 x 2 x 3 +12 x 10 1+ 6 lim x 3 x 3 +2 x+10 = lim x 10 3) 2 x 2 x 2 3 x 3( 1
Impressum. Autor: Torsten Möller Augustastraße Flensburg. 1. Auflage. c Umschlaggestaltung: Torsten Möller
Impressum Autor: Torsten Möller Augustastraße 6 24937 Flensburg 1. Auflage c 2018 Umschlaggestaltung: Torsten Möller Illustrationen: Torsten Möller Das Werk, einschließlich seiner Teile, ist urheberrechtlich
