Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Größe: px
Ab Seite anzeigen:

Download "Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006"

Transkript

1 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

2 Hypothesentesten, Fehlerarten und Güte 2

3 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7. Auflage,

4 MVP MVP Hypothese: Unabhängige Versagenswahrscheinlichkeiten Statistik S bestimmte Anzahl der Mehrfachversager bei Tests S war Binomialverteilt mit n= und p MVP = 0,12... Promille W << 0,5 Promille S=1255 zu erhalten Folge: MVP Hypothese abgelehnt 4

5 Was wäre gewesen bei S=166? Hypothese immernoch abgelehnt Aber: Wie groß W Hypothese beizubehalten obwohl sie falsch ist? Oder anders ausgedrückt: Wie groß W Hypothese abzulehnen wenn Alternative zutrifft Dazu... 5

6 Hypothesentesten 6

7 Hypothesentest allgemein Parameterwert u gesucht Hypothese: u = u 0 Alternative: u = u 1 Stichprobenfunktion g(x 1,...,x n ) liefert Schätzwert ũ für u 7

8 Arten von Tests Je nach Art der Hypothese werden zwei Arten von Tests unterschieden Einseitige Tests: u 1 > u 0, u 1 < u 0 Zweiseitige Tests: u 1 u 0 8

9 Bereiche Der Bereich in dem die Hypothese abgelehnt wird, heisst Verwerfungsbereich Bereich in dem die Hypothese angenommen wird, heisst Annahmebereich 9

10 Verwerfungsbereich Formulierung der Hypothese bestimmt Verwerfungsbereich Einseitig: kritischer Wert c, Verwerfungsbereich zusammenhängend Zweiseitig: zwei kritische Werte c 1 und c 2 und der Verwerfungsbereich besteht aus zwei Teilen 10

11 Verwerfungsbereich u 1 > u 0 Annahmebereich Verwerfungsbereich u 0 c 11

12 Verwerfungsbereich u 1 < u 0 Verwerfungsbereich Annahmebereich c u 0 12

13 Verwerfungsbereich u 1 u 0 Annahmebereich Verwerfungsbereich Verwerfungsbereich u 0 c 2 c 1 13

14 Fehler beim Testen Fehler 1. Art Die Hypothese wird verworfen, obwohl sie richtig ist Fehler 2. Art Die Hypothese wird angenommen, obwohl sie falsch ist 14

15 W α für Fehler 1. Art W α ist Signifikanzzahl des Tests u 1 > u 0 : u 1 < u 0 : u 1 u 0 : P( X > c) u= u 0 P( X < c) u= u 0 = α = α P ( X 1 2 u < c ) + P( X > c ) u u0 u= = 0 = α 15

16 W 1-β für Fehler 2. Art u 1 > u 0 : u 1 < u 0 : P P ( X u u1 c) = 1 β = ( X u u1 c) = 1 β = u 1 u 0 : P ( X c ) 1 u 1 2 = u1 + P( X c ) = 1 β = u u 16

17 Fehler 1. und 2. Art beim Testen einer Hypothese u=u 0 gegen Alternative u=u 1 Unbekannte Wirklichkeit u=u 0 u=u 1 Angenommen u=u 0 u=u 1 Richtige Entscheidung P=1-α Fehler 1.Art P=α Fehler 2.Art P=1-β Richtige Entscheidung P=β (Güte) 17

18 Fehler 1. und 2. Art schematisch Dichte bei u=u 0 Dichte bei u=u 1 1-β α u 0 c u 1 Annahmebereich Verwerfungsbereich 18

19 Güte β eines Test Güte β eines Tests ist W Fehler 2. Art nicht zu begehen Alternative Sicht: W die Alternative anzunehmen, wenn sie stimmt 19

20 Güte schematisch Dichte bei u=u 0 Dichte bei u=u 1 1-β α β u 0 c u 1 Annahmebereich Verwerfungsbereich 20

21 Güteberechnung für Normalverteilung Zufallsvariable X normalverteilt mit Varianz σ 2 =9 Stichprobe mit n=10 Werten Mit Mittelwert teste Hypothese µ= µ 0 = 24 x Alternative µ µ 0 Signifikanzzahl α =

22 Güteberechnung (cont d) Stichproben X 1,..., X n Stichprobenfunktion für Mittelwert der X k 1 =... ( X ) X n X n Trifft Hypothese zu dann ist X nach N(µ,σ 2 /n)-verteilt 22

23 Exkurs Warum ist X N(µ,σ 2 /n)-verteilt? 23

24 Warum ist X N(µ,σ 2 /n)-verteilt? Zufallsvariable X = X X n Summe von n unabhängigen Zufallsvariablen X k X k sei N(µ k,σ k2 )-verteilt X hat Mittelwert µ = µ µ n X hat Varianz σ 2 = σ σ n 2 Beweis durch Induktion über n 24

25 Warum ist X N(µ,σ 2 /n)-verteilt? Lineare Skalentransformation X sei N(µ,σ 2 ) verteilt X* = b 1 X + b 2 (b 1,b 2 konstant, b 1 0) X* N(b 1 X + b 2, b 12 σ 2 ) verteilt Beweis durch Nachrechnen 25

26 Güteberechnung (cont d) Normalverteilung ist symmetrisch Wähle kritische Werte c 1, c 2 symmetrisch um µ=24 c 1 = 24 k und c2 = 24 + k Bestimme c 1, c 2 aus P( 24 k X 24 + k) 1 = 24 = α µ 26

27 27 Güteberechnung (cont d) 0,95 0,9 0,9 1 0,9 ) (24 0,9 ) (24 1 ) 24 ( ) 24 ( 1 ) 24 ( = Φ Φ = Φ + Φ = < + = + = = k k k k k X P k X P k X k P α µ µ α α µ µ

28 Güteberechnung (cont d) Φ Φ k 0,9 k 0,9 k 0,9 Φ = Φ = 1 k 0,9 0,975 = und 0,95 Φ 0,9 0,025 ( 0,975) = 1,960 (Symmetrie) k = 28

29 Güteberechnung (cont d) Damit k = 1,86 und c 1 =24-1,86=22,14 und c 2 =25,86 Ist x nicht kleiner als 22,14 und nicht größer als 25,86 so nehme Hypothese an Liegt x ausserhalb dieses Bereiches, so lehne Hypothese ab 29

30 Güteberechnung (cont d) Test hat Güte β(µ) µ bezeichnet jetzt die Alternative β ( µ ) = = = P( X P( X 1+ Φ < < 22,14) 22,14) µ µ + P( X + 1 P( X 25,86) ( 23,34 1,05µ ) Φ( 27,26 1,05µ ) > µ 25,86) µ 30

31 Güte für n=10 β(µ) µ 0 µ 31

32 Interpretation der Güte Alternative µ nahe bei µ 0 Dann ist Güte schlecht D.h.: die W die Alternative im Test zu erkennen ist klein Oder: der Fehler 2. Art ist groß 32

33 Operations-Charakteristik Die Funktion 1-β(µ) heisst die Operations- Charakteristik des betreffenden Tests W Fehler 2. Art zu begehen 33

34 Was passiert bei größerer Stichprobe? Bisher n=10 Mit n=100 ändert sich Verteilung von X zu N(24;9/100) Varianz wird um Faktor 10 kleiner! k ändert sich von 1,86 auf k = 1,96 * 0,09 = 0,588 34

35 Was hat das für Folgen? Damit kleinerer Annahmebereich: c 1 =23,41 und c 2 =24,59 Daraus folgt: größere Güte β(µ) bei gleichen Abständen von µ zu 24 Damit kleinerer Fehler 2. Art Bei großen Stichprobenumfängen ist Risiko einer verpassten Chance geringer 35

36 Güte für n=10 und n=100 β(µ) µ 36

37 Fazit: Güteberechnung Güte β hängt von Wahl von α ab: je kleiner α desto kleiner β Bei festen α größere Güte β, wenn größerer Stichprobenumfang n 37

38 Beispiel: Welche Güte hatte MVP? n= p MVP =0, S Stichprobenfunktion = Statistik = Anzahl der Mehrfachversager 38

39 MVP Hypothese Gesucht W für Mehrfachversagen p Hypothese: p = p MVP Alternative: p p MVP Wenn Hypothese gilt, dann Stichprobenfunktion S Binom(n,p MVP ) verteilt S hat Mittelwert µ=n*p MVP 126 α = 0,001 39

40 Beobachtet S = 1255 Mehrfachversager Entspricht W p 1,26 Promille p >>p MVP Hypothese wird verworfen 40

41 Annahmebereich Für Annahmebereich gilt P(c 1 S c 2 ) pmvp = 1-α Binomialverteilung symmetrisch P(n*p MVP k S n*p MVP + k) pmvp =1-α Damitc 1 = 91 und c 2 = 165 Annahmebereich für gesuchten Wert p: p

42 Güte von MVP β(p) = P(S < 91) p + P(S > 165) p 42

43 Güte von MVP n= β (p) Grenzen für Annahmebereich p 43

44 Güte für S=1255 S=1255 beobachtet Impliziert S=n*p= * β( )~1 44

45 Verändern der Stichprobengröße Bei festem α wird β größer, wenn n größer wird Schranken für S bei n=1,3 Mio: c 1 =124; c 2 =209 Gegenüber n=1 Mio nach rechts verschoben und breiter Aber Intervall (c 2 -c 1 ) / (n*p MVP *(1-p MVP )) kleiner 45

46 Annahmebereich Annahmebereich für gesuchten Wert p: p Enger als Annahmebereich bei n=1 Mio n=1 Mio: p

47 Güte mit verschiedenen n β(p) p 47

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Güteanalyse Prof. Walter F. Tichy Fakultät für Informatik 1 Fakultät für Informatik 2 Nochmal zur Erinnerung: Hypothesentest Am Beispiel

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Statistische Tests Übersicht

Statistische Tests Übersicht Statistische Tests Übersicht Diskrete Stetige 1. Einführung und Übersicht 2. Das Einstichprobenproblem 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben) 4. Vergleich zweier abhängiger

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Tests für Erwartungswert & Median

Tests für Erwartungswert & Median Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =

Mehr

Hypothesentests. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht.

Hypothesentests. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht. Wissenschaftliche Vorgehensweise beim Hypothesentest Forscher formuliert eine Alternativhypothese H 1 (die neue Erkenntnis, die

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Hypothesen über die Grundgesamtheit Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Behauptungen) über die unbekannte Grundgesamtheit anhand einer Stichprobe als richtig oder falsch

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 : Binomial, Gauß Prof. Dr. Achim Klenke http://www.aklenke.de 10. Vorlesung: 20.01.2012 1/31 Inhalt 1 Einführung Binomialtest 2/31 Beispiel Einführung Bohnenlieferant liefert

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt Konfidenzintervalle Annahme: X 1,..., X n iid F θ. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt P θ (U θ O) = 1 α, α (0, 1). Das Intervall [U, O] ist ein Konfidenzintervall

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Hypothesentests für Erwartungswert und Median für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Normalverteilung X N(μ, σ 2 ) : «X ist normalverteilt mit Erwartungswert μ und Varianz σ 2» pdf: f x = 1 2 x μ exp

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

D-CHAB Frühlingssemester 2017 T =

D-CHAB Frühlingssemester 2017 T = D-CHAB Frühlingssemester 17 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 13 1) Die relevanten Parameter sind n = 3, x = 1867, σ x = und µ = 18 (a) Die Teststatistik T = X µ Σ x / n ist nach Annahme

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Statistische Tests Version 1.2

Statistische Tests Version 1.2 Statistische Tests Version 1.2 Uwe Ziegenhagen ziegenhagen@wiwi.hu-berlin.de 7. Dezember 2006 1 Einführung Ein statistischer Test dient der Überprüfung einer statistischen Hypothese. Mithilfe des Tests

Mehr

Testen von Hypothesen

Testen von Hypothesen Elke Warmuth Humboldt-Universität zu Berlin Sommersemster 2010 1 / 46 2 / 46 1 Testen von Hypothesen 3 / 46 Signifikant, signifikant, signifikant,... 4 / 46 Signifikant, signifikant, signifikant,... 5

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

How To Find Out If A Ball Is In An Urn

How To Find Out If A Ball Is In An Urn Prof. Dr. P. Embrechts ETH Zürich Sommer 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Kapitel III: Einführung in die schließende Statistik

Kapitel III: Einführung in die schließende Statistik Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 1 4. Basiskonzepte der induktiven

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik Grundlagen der Stochastik Johannes Recker / Sep. 2015, überarbeitet Nov. 2015 Fehlermeldungen oder Kommentare an recker@sbshh.de Inhalt 1. Grundlegende Begriffe der Wahrscheinlichkeitsrechnung... 2 1.1.

Mehr

Stochastik Serie 11. ETH Zürich HS 2018

Stochastik Serie 11. ETH Zürich HS 2018 ETH Zürich HS 208 RW, D-MATL, D-MAVT Prof. Marloes Maathuis Koordinator Dr. Marvin Müller Stochastik Serie. Diese Aufgabe behandelt verschiedene Themenbereiche aus dem gesamten bisherigen Vorlesungsmaterial.

Mehr

Nachklausur Mathematik für Biologen WS 08/09

Nachklausur Mathematik für Biologen WS 08/09 Aufgabe 1: (5 Punkte) In einer diploiden Population beobachten wir die Ausprägung eines bestimmten Gens, das zwei Allele V und W annimmt. Somit besitzt jedes Individuum V V, V W oder W W als Genotyp. Die

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Kurze Zusammenfassung der letzten Vorlesung Schätzung und Modellentwicklung Überblick Statistische Signifikanztests

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Serie 9, Musterlösung

Serie 9, Musterlösung WST www.adams-science.org Serie 9, Musterlösung Klasse: 4U, 4Mb, 4Eb Datum: FS 18 1. Mädchen vs. Knaben 442187 Unter 3000 in einer Klinik neugeborenen Kindern befanden sich 1578 Knaben. Testen Sie mit

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

Zusammenfassung PVK Statistik

Zusammenfassung PVK Statistik Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr