Funktionen: Einleitung
|
|
|
- Alexandra Albert
- vor 9 Jahren
- Abrufe
Transkript
1 Funktionen: Einleitung Funktionen sind fundamentale Instrumente der Mathematik zur Beschreibung verschiedener Zusammenhänge. E 1
2 E 2
3 E 3
4 Der Abbildungsbegriff Abb. 1 1: Darstellung einer Abbildung Oft will man Elementen einer bestimmten Menge auf eine eindeutige Weise Elemente einer anderen Menge zuordnen. Solche Zuordnungen nennt man Abbildungen. Der Abbildungsbegriff ist für die Mathematik von grundsätzlicher Bedeutung. 1 1
5 Der Abbildungsbegriff Definition: Unter einer Abbildung f von A nach B versteht man eine Vorschrift (z. B. eine Formel, wörtliche Beschreibung), die jedem Element aus A genau ein Element aus B zuordnet. Der Begriff Abbildung ist sehr allgemein und beinhaltet keine Einschränkungen bezüglich der Objekte, die einander zugeordnet werden. Den Begriff Funktion gebraucht man in einem engeren Sinn, und zwar dann, wenn es sich bei der Abbildung um die Zuordnung reeller Zahlen handelt. Man spricht in diesem Fall von reellwertigen Funktionen oder ein fach von reellen Funktionen. 1 2
6 Der Abbildungsbegriff Eine Abbildung f von X nach Y wird auf folgende Weisen beschrieben: f 1) X Y, f: X Y 2 ) x f x Der erste Ausdruck cherakterisiert f als eine Abbildung von X nach Y, der zweite spezifiziert die Zuordnungsvor schrift, durch die x auf das Element f (x) abgebildet wird. 1 3
7 Der Abbildungsbegriff Abb. 1 2: Darstellung einer Abbildung mit der Funktionsvorschrift f (x) = x² 1 f 1 = 1 2 = 1 Deutung der Abbildung 1 2: 0 f 0 = 0 2 = 0 1 f 1 = 12 = 1 1 4
8 Der Abbildungsbegriff Abb. 1 3: Darstellung einer Abbildung von X nach Y. D ist die Definitionsmenge und W der Wertebereich der Abbildung f = f (x) 1 5
9 Zum Begriff der Abbildung (Funktion) Jedem x aus D wird nur ein Element y = f (x) zugeordnet. y ist das Bild von x bezüglich f x ist das Urbild von y bezüglich f Die Vorschrift f heißt Abbildung Zu einem y aus W können mehrere Urbilder gehören. Statt Abbildung sagt man auch Funktion. Ist X = ℝ und Y = ℝ, so nennt man f eine reelle Funktion. Meist geht man zu einer Kurzfassung über: f x = x2 statt f : ℝ ℝ, x x2 Das ist natürlich völlig legitim, solange klar ist, was die De finitions und was die Wertemenge ist. 1 6
10 Koordinatensystem Funktionen lassen sich mit Hilfe eines Koordinatensystems graphisch darstellen. Hierzu zeichnet man in der Ebene zwei sich kreuzende Zahlengeraden. Sie heißen Koordinatenachsen und werden oft x und y Achse genannt. Jeder Punkt P der Ebene kann dann durch Koordi naten, d.h. durch ein Zahlenpaar x P und y P beschrieben werden. Da bei ist x P durch die Stelle gegeben, an der eine Parallele zur y Ach se, die durch den Punkt P geht, die x Achse schneidet. Entsprechend ist y P die Stelle, and der eine Parallele zur x Achse durch P die y Achse schneidet, siehe Abbildung a
11 Schiefwinkliges Koordinatensystem Abb. 2 1: Ein schiefwinkliges Koordinatensystem 2 1b
12 Kartesisches Koordinatensystem Abb. 2 2: Ein kartesisches Koordinatensystem Ein Koordinatensystem heißt kartesisch, wenn die beiden Achsen senkrecht (orthogonal) zueinander sind und die Einheiten gleich sind, siehe z.b. das zweidimensionale kartesi sche Koordinatensystem in Abbildung 2 2. Meistens benutzt man ein rechtshändiges System, bei dem sich die y Achse durch Drehung der x Achse um 90 Grad gegen den Uhrzeigersinn ergibt. 2 2
13 Graphische Darstellung von Funktionen Eine graphische Darstellung einer Funktion f ist eine Darstellung der Gleichung y = f (x). Sie besteht aus den Punkten (x, y) = (x, f (x)) in einem kartesischen Koordinatensystem. Die Variable x, welche durch die Funktion f abgebildet wird, nennt man unabhängige Variable oder Abszisse, die durch f festgelegte Größe y nennt man abhängige Vari able oder Ordinate. Falls eine diskrete Menge abgebildet wird, z.b. die Menge der natür lichen Zahlen, so kann man die Funktion durch einzelne Punkte dar stellen. 2 3
14 Zum Begriff der Abbildung (Funktion) Die Abbildung (Funktion), welche jede reelle Zahl um 1 erhöht, wird durch f (x) : x y = x + 1 beschrieben. Im Folgenden zeichnen wir im kartesischem Koordinatensystem geordnete (x, y) = (x, x + 1) Paare zu dieser Funktion, für 1) X = Y = ℕ 2) X = Y = ℤ 3) X = Y = ℝ 2 3a
15 Zum Begriff der Abbildung (Funktion) Abb. 3 1: Darstellung der Funktion f (x) = x + 1, wobei X und Y die Menge der natürlichen Zahlen sind. 2 3b
16 Zum Begriff der Abbildung (Funktion) Abb. 3 2: Darstellung der Funktion f (x) = x + 1, wobei X und Y die Menge der ganzen Zahlen sind. 2 3c
17 Zum Begriff der Abbildung (Funktion) Abb. 3 2: Darstellung der Funktion f (x) = x + 1, wenn X und Y die Menge der reellen Zahlen sind. 2 3d
18 René Descartes ( ) Abb. 3: René Descartes, ein französischer Philosoph, Mathematiker und Naturwissenschaftler. Das kartesische Koordinatensystem ist nach dem latinisierten Namen Cartesius seines Erfinders René Descartes benannt. 3
Euklidischer Raum Kartesisches Koordinatensystem. 1 E Ma 1 Lubov Vassilevskaya
Euklidischer Raum Kartesisches Koordinatensystem 1 E Ma 1 Lubov Vassilevskaya Algebra und Geometrie Man zerlegt die Mathematik in Teildisziplinen: Arithmetik, Algebra, Geometrie und so weiter, doch diese
Kartesisches Produkt. 1-E1 M-1, Lubov Vassilevskaya
Kartesisches Produkt 1-E1 M-1, Lubov Vassilevskaya Neue Art, Mengen miteinander zu verknüpfen Abb.: Mengen und ihre Verknüpfungen Es gibt verschiedene Arten, aus zwei Mengen eine neue zu bilden, z.b. Durchschnitt,
Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7
Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3
Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen
Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)
Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, )
Mathematik bla Funktionen 1. Einführung 167 René Descartes Cartesius (Frankreich, 1596-1650)...führt das kartesische Koordinatensystem ein. Er beschreibt einen Punkt als ein Paar von reellen Zahlen und
Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)
Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
Repetitionsaufgaben: Einführung des Begriffes Funktion
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Einführung des Begriffes Funktion Zusammengestellt von Jörg Donth, KSR Lernziele: - Sie kennen die Begriffe Funktion, Funktionswert, Argument der Funktion,
Umkehrfunktionen 1-E. Ma 1 Lubov Vassilevskaya
Umkehrfunktionen 1-E Wiederholung: Funktion als eine Abbildung Abb. 1-1: Darstellung einer Abbildung Eine Funktion f (x) beschreibt eine Abbildung von X nach Y f X Y, x f x Der erste Ausdruck charakterisiert
1.4. Funktionen, Kurven und Parameterdarstellungen
.4. Funktionen, Kurven und Parameterdarstellungen Reellwertige Funktionen Eine reelle Relation ist eine beliebige Teilmenge F der Ebene (also eine ebene "Fläche"). Von einer reellen Funktion spricht man,
Funktionen in der Mathematik
R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft
Funktionen von mehreren Variablen Definition, Definitions- und Wertebereich
Funktionen von mehreren Variablen Definition, Definitions- und Wertebereich 4-E1 Ma 2 Lubov Vassilevskaya Die Grundfragen Was möchten wir über Funktionen von mehreren Variablen wissen: Wie definiert man
Dieses Kapitel vermittelt:
2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften
Definitions- und Wertebereich von Funktionen und Relationen
Definitions- und Wertebereich von Funktionen und Relationen -E -E2 -E3 Wiederholung: Definition einer Funktionen Definition: Unter einer Funktion versteht man eine Vorschrift, die jedem Element x aus einer
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion
5 Grundlagen der Differentialrechnung
VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man
Einführungsbeispiel Kostenfunktion
Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
Mengenlehre 1-E1. M-1, Lubov Vassilevskaya
Mengenlehre 1-E1 M-1, Lubov Vassilevskaya Abb.: Schloss (Fragment), Fulda 1-E2 M-1, Lubov Vassilevskaya Abb.: Glöcken, Darstellung einer Menge Ohne es zu wissen begegnet jedes Kleinkind dem Prinzip der
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
F u n k t i o n e n Grundbegriffe
F u n k t i o n e n Grundbegriffe Gottfried Wilhelm Leibniz (*66 in Leipzig, 76 in Hannover) war ein deutscher Philosoph und Wissenschaftler, Mathematiker, Diplomat, Physiker, Historiker, Bibliothekar
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 4. Semester ARBEITSBLATT 1 FUNKTIONEN. Was ist eine Funktion?
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt. Semester ARBEITSBLATT FUNKTIONEN Was ist eine Funktion? Stellen wir uns Folgendes vor: Wir stehen vor einem Schaufenster und betrachten die Waren, welche
FUNKTIONEN. ein Leitprogramm für die Berufsmaturität
FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:
1 Koordinatensystem. Grundlagen der Funktionentheorie Lineare Funktionen. Schuljahr 2016/2017. Inhalt
Berufskolleg Marienschule Lippstadt Schule der Sekundarstufe II mit gymnasialer Oberstufe - staatlich anerkannt - Schuljahr 06/07 Kurs: Mathematik AHR Kurslehrer: Langenbach Grundlagen der Funktionentheorie
Inhalte. Mathematische Grundlagen. Koordinatensysteme Ebene und räumliche Koordinatentransformationen Zentralperspektive
Inhalte Mathematische Grundlagen Koordinatensysteme Ebene und räumliche Koordinatentransformationen Zentralperspektive HS BO Lab. für Photogrammetrie: Koordinatensysteme Koordinatensysteme Ein kartesisches
Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 3-1 FUNKTIONEN. Was ist eine Funktion?
ARBEITSBLATT - FUNKTIONEN Was ist eine Funktion? Stellen wir uns Folgendes vor: Wir stehen vor einem Schaufenster und betrachten die Waren, welche ausgestellt sind. Da wir nicht beliebig viel Geld haben
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen
Kapitel 1. Koordinaten im Raum. 1.1 Schrägbilder - Kavalier-Perspektive Koordinaten
Kapitel Koordinaten im Raum Schrägbilder - Kavalier-Perspektive Koordinaten Im Raum benötigt man drei Angaben, um die Lage eines Punktes zu beschreiben So beschreiben Geographen durch N5 0"E07 38 7"H5m
unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren.
Funktionsbegriff 2.1 2 Funktionen mit einer unabhängigen Variablen 2.1 Funktionsbegriff Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. In den Wirtschaftswissenschaften
B Grundbegriffe zu Mengen und Abbildungen
B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch
Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen
Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:
Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt
Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren
Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts
Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Funktionen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Informationen - Überblick Datei Nr. 800 Stand:
Intervalle. 1-E1 Vorkurs, Mathematik
Intervalle 1-E1 Vorkurs, Mathematik Reelle Zahlen: Intervalle Bei Lösungen kommt es vor, dass wir eine Zahl, z.b. die Lösung einer Gleichung, nicht genau kennen, aber wissen, dass sie in einem bestimmtem
Kapitel 8: Funktionen
In der Mathematik ist eine Funktion eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert) genau ein Element der anderen Menge (Funktionswert,
Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik
Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =
Grundwissen Mathematik 8.Jahrgangsstufe G8
Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache
3. Erweiterung der trigonometrischen Funktionen
3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x
Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C
1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen
Quadratische Funktionen Der Funktionsbegriff
Der Funktionsbegriff Definition: Eine Funktion ist eine Vorschrift, die jedem Element einer Menge A ein Element einer Menge B zuordnet 1. Darstellungsform einer Funktion: Das Pfeildiagramm: Bezeichnungen:
Mathematik W2. Rainer Sickinger v 2 Rainer Sickinger Mathematik W2 1 / 93
Mathematik W2 Rainer Sickinger 11.02.15 v 2 Rainer Sickinger Mathematik W2 1 / 93 Einschub grafische Darstellung Wenn wir die Funktion f (x) = 2x grafisch darstellen wollen, dann nehmen wir jeden Wert
Grundlegendes: Mengen und Aussagen
Kapitel 1 Grundlegendes: Mengen und Aussagen Wie jedes Fachgebiet hat auch die Mathematik eine eigene Fachsprache Ohne ihre Kenntnis wird man ein mathematisches Buch, selbst wenn es für Anwender geschrieben
Was sind Funktionen, warum gibt es sie und was machen sie?
Was sind Funktionen, warum gibt es sie und was machen sie? Nimmt man eine bestimmte Menge an Menschen, z.b. eine Schulklasse mit 23 Schülern, kann man eine Liste aufstellen, in der jeder Schüler mit seiner
Lernunterlagen Vektoren in R 2
Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet
Analytische Geometrie II
Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor
Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe
Gmnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Wissen / Können Aufgaben und Beispiele. Proportionalität Proportionale Zuordnungen und sind proportional zueinander, wenn zum n-fachen Wert von der n-fache
MatheBasics Teil 3 Grundlagen der Mathematik
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der
1.12 Einführung in die Vektorrechung
. Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................
2 Funktionen mehrerer Veränderlicher
2 Funktionen mehrerer Veränderlicher 4 2 Funktionen mehrerer Veränderlicher Wir betrachten nun Funktionen, die auf einer Teilmenge des R n definiert sind. Wir betrachten eine Funktion f, deren Definitionsbereich
Lineare Funktionen Arbeitsblatt 1
Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man
Vorlesung 3: Logik und Mengenlehre
28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung
Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.
1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge
3 Werkzeuge der Mathematik
3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge
Implizite Differentiation
Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =
Zeichen und Abkürzungen. Weitere Zeichen und Abkürzungen. Relationen zwischen Zahlen bzw. Größen. Zeichen / Abkürzungen für spezielle Mengen
Zeichen und Abkürzungen Zeichen / Abkürzungen für spezielle Mengen N Menge der natürlichen Zahlen (einschließlich Null) N * Menge der natürlichen Zahlen ausschließlich Null Z Menge der ganzen Zahlen Q
Thema. Lineare Funktionen. Mathematik. Lineare Funktionen. Lernlandkarte. Datei: LB-Mathe _LinFktn_03.doc.
Thema 1 Mathematik Lineare Funktionen Lernlandkarte Lineare Funktionen Thema: Lineare Funktionen LE 1.1: 15 min Seite 1 Ich kann beschreiben, was man unter einer Funktion versteht. Ich kann die drei Darstellungsformen
1. Selbsttest Heron-Verfahren Gleichungen
1. Selbsttest 1.1. Heron-Verfahren Mit dem Heron-Verfahren soll ein Näherungswert für 15 gefunden werden. Führe die ersten drei Schritte des Heron- Verfahrens durch. Gib dann unter Verwendung der Werte
1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität.
34 1.7. Die indirekte (umgekehrte) Proportionalität a Die Funktion f : y = a 0, 0 heisst umgekehrte (indirekte) Proportionalität. Spezialfall a = 1: f: Bilde den Kehrwert der gegebenen Zahl. An der Stelle
9 Funktionen und ihre Graphen
57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man
Definition des Begriffs Funktion
Definition des Begriffs Funktion In der Mathematik ist eine Funktion (lateinisch functio) oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der Definitionsmenge (Funktionsargument,
Grundlagen der Vektorrechnung
Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt
Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)
Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.
~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k
v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf
2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen.
2 Mengen Menge Die Summenformel Die leere Menge Das kartesische Produkt Die Produktformel Die Potenzmenge Die Binomialzahlen Der Binomialsatz Unendliche Mengen Springer Fachmedien Wiesbaden 2016 A. Beutelspacher,
3 Abbildungen von Funktionsgraphen
32 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen
Lineare (Un-)Gleichungen und lineare Optimierung
Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich [email protected] 1 Einleitung In der linearen
Lineare (Un-)Gleichungen und lineare Optimierung
Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus
Beispiel 1 (MA2 Sammlung)
1 Angabe Beispiel 1 (MA2 Sammlung) LVA 118.153, Übungsrunde 5, 27.0. Markus Nemetz, [email protected], TU Wien, 0/2006 Man stelle den Definitionsbereich und den Wertebereich folgender Funktionen
Mathematik für Naturwissenschaftler II
Mathematik für Naturwissenschaftler II Dr Peter J Bauer Institut für Mathematik Universität Frankfurt am Main Sommersemester 27 Lineare Algebra Der mehrdimensionale Raum Vektoren Im Teil I dieser Vorlesung
Kapitel 2: Abbildungen und elementare Funktionen
Kapitel 2: Abbildungen und elementare Funktionen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Abbildungen und elementare Funktionen 1 / 18 Gliederung
Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen
Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der
2 Von der Relation zur Funktion
2 Von der Relation zur Funktion 2.1 Relationen Gegeben seien zwei Zahlenmengen P = 1, 2, 3, 4 und Q = 5, 6, 7. Setzt man alle Elemente der Menge P in Beziehung zu allen Elementen der Menge Q, nennt man
2 Komplexe Funktionen
2 Komplexe Funktionen Wir betrachten komplexwertige Funktionen f einer komplexen Variablen. 2.1 Begriff und geometrische Deutung Definition: Eine komplexe Funktion ist eine Funktion, deren Definitions-
3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich
Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.
Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1
.1 Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen & Gleichungssysteme Quadratische und Gleichungen
03. Vektoren im R 2, R 3 und R n
03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen
3 Abbildungen in der Ebene
18 3 Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Punkten der Ebene auf Punkte. Ziel dieser Betrachtung ist, Funktionsgraphen mit diesen Abbildungen (punktweise) abzubilden
Mathematik 9. Quadratische Funktionen
Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.1 Einführung
Mathematik II Frühlingsemester 2015 Kap 9: Funktionen von mehreren Variablen 91 Einführung wwwmathethzch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof Dr Erich Walter Farkas http://wwwmathethzch/
MatheBasics Teil 3 Grundlagen der Mathematik
MatheBasics Teil 3 Grundlagen der Mathematik Demo - Version Dieses Werk ist urheberrechtlich geschützt. Alle Rechte vorbehalten. FSGU AKADEMIE 2008-2018 1 Was haben wir vor? Mathe-Basics Teil 1 Mathe-Basics
03. Vektoren im R 2, R 3 und R n
03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen
Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik
e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen
Abitur 2016 Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
