Mechanik der Kontinua Guido Schmitz,

Größe: px
Ab Seite anzeigen:

Download "Mechanik der Kontinua Guido Schmitz,"

Transkript

1 Mechanik der Kontinua Guido Schmitz, Beispiel : Schubmodul (shear modulus) Das Schubmodul beschreibt die eaktion der Probe auf eine Scher (Schub)spannung. Wie in der Abbildung angedeutet, wirkt jetzt die Kraft tangential auf zwei gegenüberliegenden Seitenflächen des quaderförmigen Volumens. Das Schubmodul beschreibe den Zusammenhang zwischen Scherwinkel und Schubspannung τ s G α (4.6) Um den Zusammenhang zwischen G und sowie ν abzuleiten zerlegen wir das Problem in zwei Schritte. Wesentlich hier wieder das Superpositionsprinzip der linearen Theorie: Zunächst berechnen wir in einer Vorüberlegung die Dehnung eines Würfels, der in einer ichtung durch eine Zugkraft gedehnt und in dazu senkrechter ichtung durch eine betragsgleiche Kraft gestaucht wird: l 1 F A F 1+ ν + ν (4.7) l A (Auch die Druckspannung führt über die Querkontraktion zu einer Verlängerung.) Aus Symmetriegründen muss für die Höhenabnahme der Probe gelten h F A l h l Jetzt betrachten wir unser Scherproblem. Soll die Belastung nur eine Verformung und keine Drehung der Probe hervorrufen, so müssen 4 Schubspannungen τ S F/A wie in der Zeichnung gezeigt an vier Seitenflächen angreifen. Wir betten den zu scherenden Würfel in ein um den Faktor grösseres Volumen ein. Offensichtlich erreichen wir die Spannung zur Abscherung auch durch eine Kombination von Zug und Druck-Kräften auf dieses äussere Volumen, wenn diese Kräfte proportional zur grösseren Oberfläche um einen Faktor grösser angesetzt werden. Für die Zug- und Druckspannung auf das große Volumen gilt also: F F σ Zug σ Druck A A Die Diagonalen des abzuscherenden Volumens stellen die Kanten des großen Volumens dar. Deren Längenänderungen ergeben sich gemäß unserer Vorüberlegung (Gl. 4.7) zu D 1+ ν F ± D A

2 Der Scherwinkel α hängt mit dieser Längenänderung zusammen (infache Trigonometrie): D D α D / D 1+ ν α τ S G (4.8) (1 + ν ) Gl. 4.8 ist der gesuchte Ausdruck für das Schubmodul. Ähnlich wie beim Kompressionsmodul muss auch hier für ein stabiles System gelten:! G > 0 ν > 1 (4.9) (Wir hatten allerdings schon gesehen, dass ν experimentell immer grösser als 0 gefunden wird.) Im Folgenden demonstrieren wir den insatz der elastischen Moduln zur Lösung von praktischen Problemen Biegung eines Balkens in zylindrischer Stab eines elastisch homogenen Materials werde einseitig eingespannt und am freien nde durch ein Gewicht belastet. Wir berechnen die Biegung des Balkens als eine Funktion y(x) unter der Annahme, dass der lokale Krümmungsradius immer sehr viel grösser bleibt als der Durchmesser des Stabes (kleine Biegungen, bei großer Biegung müssten wir ohnehin mit plastischer Verformung rechnen). Offensichtlich führt die Biegung an der Oberseite zu einer Dehnung des Materials, an der Unterseite hingegen zu einer Stauchung. Dazwischen muss sich die sogenannte neutrale Faser befinden, deren Länge bei der elastischen Verformung unverändert bleibt. Definieren wir die lokale y- Achse ausgehend von der neutralen Faser, wie in nebenstehender Skizze, so finden wir für die lokale Dehnung l + l l l l ( + y)ϑ ϑ y Aufgrund dieser Längenänderung trägt die Faser bei der radialen Höhe y mit einem Moment dm σ ( y) da y y da y zum ückstellmoment des gesamten Stabes bei. (da: Querschnitt der Faser bei y) Letzteres ergibt sich durch eine Integration über den Querschnitt des Stabes:

3 M M A dm I y : I da (4.10) Die geometrische Grösse I ist als Trägheitsmoment aus Physik I bekannt. Wir erkennen, um einen Stab möglichst steif gegen Verbiegung zu machen, muss möglichst viel Material in die Außenbereiche weit weg von der neutralen Faser gebracht werden. So erklärt sich die Verwendung von T- und H-Profilen bei Brücken und Kränen. Die Trägheitsmomente für einen Zylinder und einen Quader sind in der Abbildung angegeben. Bei einem rechteckigen Balken ist die Biegung viel geringer, wenn die längere Kante in ichtung der Krümmung ausgerichtet wird (Demonstrationsversuch in der Vorlesung). Bei komplizierteren Profilen geht die neutrale Faser durch den Schwerpunkt des Querschnitts, wegen Gleichheit der Zug und Druckkraft ober- und unterhalb der Faser. Den Verlauf der Krümmung entlang des Stabes ermitteln wir jetzt durch wenige weitere Schritte: Mathematisch ist die Krümmung einer Funktion z(x) gegeben durch 1 d z / dx d z (4.11) 3 / ( 1+ ( dz / dx) ) dx (Bei schwacher Krümmung können wir den Term (dz/dx) im Nenner vernachlässigen). Das Drehmoment, das das Gewicht am rechten nde auf den Stab bei x ausübt, muss durch das Biegemoment des Stabes kompensiert werden. Also: W ( L x) M ( x) I ( x) d z I dx Zweimaliges Integrieren mit andbedingung z(0)0 und dz/dx(0)0 liefert schließlich z( x) W I L x 3 x 6 (4.1) (Praktische Beispiele in der Vorlesung: i) Cantilever bei asterkraftmikroskopie, ii) Messung von Spannungen in dünnen Schichten über die Durchbiegung des Substrates)

4 4..7 lastische Stabilität Modellversuch in der Vorlesung: Wir belasten eine Stütze mit einer Druckkraft. Unter dieser Kraft wird die Stütze sich verbiegen. rstaunlicherweise tut sie das erst bei Überschreiten einer kritischen Kraft. Für eine weitere Verbiegung ist dann kaum eine rhöhung der Druckkraft nötig. Wir untersuchen dieses Phänomen quantitativ und berechnen insbesondere die Abhängigkeit der kritischen Kraft von Durchmesser und Länge der Stütze. Mit den Überlegungen aus 4..6 (Gl. 4.10) stellen wir die Bilanz der Momente bei Position x auf (siehe Skizze) I M ( x) F z( x) d z F z dx I DGl hat als Lösung (4.13) π x z C sin L I F π L : mit F c d z dx π L (4.14) z Wir sehen: Für kleine Biegungen ist F unabhängig von der Biegungsamplitude C. Unsere Interpretation ist: Für eine exakt axiale Kraft kann aus Symmetriegründen kein Biegemoment auftreten (In welche ichtung sollte sich die Stütze denn knicken?) Allerdings sind in der ealität immer kleine seitliche Fluktuationen vorhanden. Für Druckkräfte F<F c ist die Stütze stabil gegen solche Fluktuationen; für Druckkräfte F>F c gerät das System in ein instabiles Gleichgewicht. Jede noch so kleine Fluktuation führt dann zum Kollaps des elastischen Systems (Allerdings nimmt für große Biegungen das elastische ückstellmoment noch etwas zu. Das sieht man, wenn anstatt der Näherung für kleine Krümmung die vollständige Gl verwendet wird.) Das Stabilitätskriterium Gl wurde bereits von Leonhard uler im Jahre 1744 abgeleitet. Jeder Architekt oder Bauingenieur sollte es wohl kennen! 4.3. Kristalline Festkörper Bei sorgfältiger Vermessung werden viele igenschaften von Festkörpern anisotrop gefunden, d.h. ihre Stärke ändert sich mit der Messrichtung relativ zur Probe. Physiker sind oft geneigt, diese Komplikation zu vernachlässigen und wie in Abschnitt 4. als eine gute Näherung Isotropie anzunehmen. Die komplizierteren, realen Fälle werden dann den Ingenieuren überlassen. Dennoch gibt es in der Natur eben Phänomene, die erst durch die Anisotropie verstanden werden können (z.b. Drehung von Polarisationsebenen, Modellversuch in der Vorlesung: bevorzugte

5 Spaltflächen in LiF). Wir werden deshalb hier einen kurzen Abriss über den Zusammenhang zwischen der Anisotropie von igenschaften und dem inneren, zumeist kristallinen Aufbau von Materie geben Der Kristall: Spontane Brechung der Symmetrie des Kontinuums Die Thermodynamik erfordert für eine Probe im Gleichgewicht ein Minimum der Freien nthalpie. G H TS min! Mit abnehmender Temperatur nimmt der influß der ntropie ab, so dass für hinreichend tiefe Temperatur praktisch immer Konfigurationen minimaler nthalpie ( nergie, bei kondensierten Systemen) beobachtet werden. Hat ein Atom im Verbund zu seinen Nachbarn lokal eine Konfiguration geringster nergie, d.h. bester Bindung gefunden, so ist es nicht erstaunlich, dass die Natur diese Konfiguration auch an allen anderen Stellen des Gesamtsystems einstellen will. Bei tiefer Temperatur wird sich die Konfiguration der Materie folglich als eine regelmäßige Aneinanderreihung gleichartiger Bausteine darstellen, es wird ein Kristall gebildet. Letzterer zeichnet sich durch eine Translationssymmetrie aus. Verschiebe ich das Gesamtsystem um gewisse ausgezeichnete Translationsvektoren t t h a + k b + l c ; h, k, l Ζ (4.15) so kommt der Kristall wieder mit sich selbst zur Deckung. (Die Materie wird so zu einem Diskontinuum. Im Vergleich zu einem Kontinuum überführen nicht mehr alle Verschiebungen die Struktur in sich selbst, sondern nur noch die durch Gl ausgezeichneten. Also eine Verringerung / Brechung der Symmetrie) Die drei linear unabhängigen Vektoren a, b, und c heißen Basisvektoren. Für eine übersichtliche Darstellung wird man diese möglichst kurz wählen, so dass sie die sogenannte primitive Basis repräsentieren, durch deren periodische Hintereinanderreihung der Gesamtkristall aufgebaut wird. ntsprechend der thermodynamischen Überlegungen zeigen fast alle Festkörper einen solchen kristallinen Aufbau. Allerdings setzen sich makroskopische Proben zumeist aus vielen einzelnen Kristalliten ( Körnern ) zusammen. Die Größe der Körner liegt in polykristallinen Materialien typisch zwischen 1 µm und 1 mm und ist durch sogenannte thermomechanische Behandlung einstellbar (Al-Streifen in der Vorlesung).

6 4.3. Wichtige Gitterstrukturen Aus der Vielzahl der verschiedenen Kristallstrukturen greifen wir einige besonders übersichtliche Strukturen heraus, die von einfachen Substanzen in der Natur bevorzugt eingestellt werden. Metalle zeichnen sich durch die sogenannte metallische Bindung aus (lektronen werden an einen gemeinsamen lektronen see abgegeben-> F.K. Physik-Vorlesung). Die Bindung ist ungerichtet und strebt nur eine gleichmässig dichte Packung der Atome an. ine solche dichte Packung kann geometrisch auf zwei verschiedene Arten erreicht werden. Betrachten wir Kugeln in einer bene, dichte Packung in Honigwabenstruktur. Durch Stapelung solcher benen füllen wir den 3D aum aus. Allerdings ist diese Stapelung auf zwei verschiedene Weisen möglich. (siehe Abbildung). ntweder deckt sich die laterale Lage jeder zweiten oder jeder dritten bene. Wir sprechen hier von Stapelfolge ABAB oder ABCABC. rstere führt zum Aufbau einer hexagonal dichtgepackten (hdp/hcp), letztere zu einer kubisch flächenzentrierten Struktur (kfz/fcc). In der Tat werden viele reine Metalle in einer von diesen beiden Gitterstrukturen gefunden. Die hohe Packungsdichte dieser Strukturen spiegelt sich in der hohen Zahl von nächsten Nachbarn wieder (Koordinationszahl z1). Davon hatten wir bereits bei der Abschätzung von Oberflächenenergien (Abschnitt ) Gebrauch gemacht. Werden beim Aufbau des Festkörpers kovalente also richtungsabhängige Bindungsanteile wesentlich, findet man offenere Gitterstrukturen. Das vielleicht wichtigste Beispiel ist die Diamantstruktur der Halbleiter (C, Si, Ge) in der 4. Spalte des Periodensystems. Jedes Atom findet 4 Nachbarn in tetraedrischer Anordnung. Bei Metallen mit kovalenten Bindungsanteilen findet man häufig die kubischraumzentrierte (krz/bcc) Struktur mit 8 nächsten Nachbarn. H ex ag onal, dichtgepackt D iam antstruktur

7 4.3.3 Typische Länge der Basisvektoren (Gitterkonstanten) Wir fragen uns auf welcher Längenskala werden die Translationseigenschaften des Diskontinuums die igenschaften beeinflussen? rstaunlicherweise reicht eine einfache Dichtemessung des Festkörpers, um diese Frage zu beantworten. Beispiel Al, kristallisiert in kfz Struktur. Diese Struktur hat 4 Atome / pro inheitszelle (ckplätze zählen 1/8, Flächenzentren ½). Die Dichte von Al beträgt ρ Al,7 g/cm 3, die Masse eines Atoms m Al g. Für den Gitterparameter finden wir 3 4m a Al (4.16) ρ also a 4, m. d.h. Die Translationssymmetrie macht sich folglich erst bei mikroskopischen ffekten auf einer Wellenlänge unter 1 nm bemerkbar. Kontinuumstheorien abstrahieren von diesen, was dann etwa für Längenskalen ab 10 nm gerechtfertigt sein sollte.

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Festkörper, ausgewählte Beispiele spezieller Eigenschaften von Feststoffen, Kohlenstoffmodifikationen, Nichtstöchiometrie, Unterscheidung kristalliner und amorpher

Mehr

11. Deformierbare Festkörper

11. Deformierbare Festkörper 11. Deformierbare Festkörper Segen der erformung (kippelnder Stuhl, usw.) 11.1. Dehnung und Kompression Hier steht die Kraft auf der Bezugsfläche! In xperimenten zeigt sich: mit: 1 l F A... lastizitätsmodul

Mehr

1 Die elastischen Konstanten 10 Punkte

1 Die elastischen Konstanten 10 Punkte 1 Die elastischen Konstanten 10 Punkte 1.1 Ein Würfel wird einachsig unter Zug belastet. a) Definieren Sie durch Verwendung einer Skizze den Begriff der Spannung und der Dehnung. b) Der Würfel werde im

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Bei der Messung eines belasteten Blechs wurden drei Dehnungs-Messstreifen (DMS) verwendet und wie rechts dargestellt appliziert. Die Dehnungen der entsprechenden DMS wurden zu

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0a) Es sollen aus folgenden kubischen Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte

Mehr

( ) i. 6 Reale Feste und Flüssige Körper. F i F = F = grad E pot. Atomares Modell der Aggregatszustände. Kraft auf ein Atom:

( ) i. 6 Reale Feste und Flüssige Körper. F i F = F = grad E pot. Atomares Modell der Aggregatszustände. Kraft auf ein Atom: 6 Reale Feste und Flüssige Körper Atomares Modell der Aggregatszustände Kraft auf ein Atom: F = i F i r ( ) i potentielle Energie hängt von der Anordnung der Atome ab F = grad E pot 1 Atomares Modell der

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung: Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse

Mehr

Festkörper Struktur von Festkörpern. 1. Kristalline Festkörper:

Festkörper Struktur von Festkörpern. 1. Kristalline Festkörper: Festkörper Struktur von Festkörpern. Kristalline Festkörper: nordnung der Bausteine (tome, Moleküle oder Ionen) in regelmäßigen Raumgittern Symmetrieeigenschaften. bstand der Gitterpunkte liegt in der

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Elastizitätslehre Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 13. Jan. 2016 Elastizitätsgrenze und Plastizität Zugfestigkeit Versuch

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII Prof. Dr. F. Koch Dr. H. E. Porteanu fkoch@ph.tum.de porteanu@ph.tum.de SS 2005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII 19.05.05 Festkörperphysik - Kristalle Nach unserem kurzen Ausflug in die Molekülphysik

Mehr

3. Struktur des Festkörpers

3. Struktur des Festkörpers 3. Struktur des Festkörpers 3.1 Kristalline und amorphe Strukturen Amorphe Struktur - Atombindung ist gerichtet - unregelmäßige Anordnung der Atome - keinen exakten Schmelzpunkt, sondern langsames Erweichen,

Mehr

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 0. 0. 009 1 Aufgaben

Mehr

10.3 Flussquantisierung durch Supraleitung

10.3 Flussquantisierung durch Supraleitung Bemerkung : Die Londonsche Eindringtiefe ist über die Dichte der Cooperpaare temperaturabhängig Sie divergiert bei Annäherung an die kritische Temperatur Experimentell bestätigt ist das folgende Verhalten

Mehr

Elastizitätslehre. Verformung von Körpern

Elastizitätslehre. Verformung von Körpern Baustatik II Seite 1/7 Verformung von Körpern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Elastische Verformungen 3 4.1 Allgemeines 3 4.2 Achsiale Verformungen und E-Modul 3

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

3. Elastizitätsgesetz

3. Elastizitätsgesetz 3. Elastizitätsgesetz 3.1 Grundlagen 3.2 Isotropes Material 3.3 Orthotropes Material 3.4 Temperaturdehnungen 1.3-1 3.1 Grundlagen Elastisches Material: Bei einem elastischen Material besteht ein eindeutig

Mehr

Formänderungs- und konjugierte Formänderungsenergie

Formänderungs- und konjugierte Formänderungsenergie Formänderungs- und konjugierte Formänderungsenergie Dipl.- Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 8. November 01 Letzte Revision: 7. April 015 Inhaltsverzeichnis 1 Einleitung zum

Mehr

Zugversuch. Carsten Meyer. Raum 110. Telefon: Institut für Werkstoffanwendungen im Maschinenbau

Zugversuch. Carsten Meyer. Raum 110. Telefon: Institut für Werkstoffanwendungen im Maschinenbau Carsten Meyer c.meyer@iwm.rwth-aachen.de Raum 110 Telefon: 80-95255 F F S 0 σ F S 0 äußere Kraft Spannung ( innere Kraft ) Jeder noch so kleine Teil des Querschnittes überträgt einen noch so kleinen Teil

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M3 Elastizität Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 9.01.001 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das Hooksche Gesetz. Die elastische Biegung.3 Die elastische

Mehr

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG Chemische Bindung - Struktur - Physikalische Eigenschaften Für diese Aufgabe benötigen Sie das Programm VESTA. Sie finden es im Internet unter http://jp-minerals.org/vesta. Laden Sie die Kristallstrukturen

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Struktur von Festkörpern

Struktur von Festkörpern Struktur von Festkörpern Wir wollen uns zunächst mit der Struktur von Festkörpern, daß heißt mit der Geometrie in der sie vorliegen beschäftigen Kovalent gebundene Festkörper haben wir bereits in Form

Mehr

1.1 Gegenstand der Technischen Mechanik Lernziele und Lernmethoden... 9

1.1 Gegenstand der Technischen Mechanik Lernziele und Lernmethoden... 9 3 Inhaltsverzeichnis Teil 1 Technische Mechanik 1 Einführung 1.1 Gegenstand der Technischen Mechanik... 8 1.2 Lernziele und Lernmethoden... 9 2 Winkel und Winkelfunktionen 2.1 Winkel und Winkelmaße...

Mehr

Gliederung der Vorlesung im SS

Gliederung der Vorlesung im SS Gliederung der Vorlesung im SS A. Struktureller Aufbau von Werkstoffen. Atomare Struktur.. Atomaufbau und Periodensystem der Elemente.2. Interatomare Bindungen.3. Aggregatzustände 2. Struktur des Festkörpers

Mehr

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung: Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

1. Systematik der Werkstoffe 10 Punkte

1. Systematik der Werkstoffe 10 Punkte 1. Systematik der Werkstoffe 10 Punkte 1.1 Werkstoffe werden in verschiedene Klassen und die dazugehörigen Untergruppen eingeteilt. Ordnen Sie folgende Werkstoffe in ihre spezifischen Gruppen: Stahl Holz

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

8. Vorlesung. 5.1 Mechanismen der plastischen Verformung kristalliner Materialien

8. Vorlesung. 5.1 Mechanismen der plastischen Verformung kristalliner Materialien 8. Vorlesung 5.1 Mechanismen der plastischen Verformung kristalliner Materialien Während der plastischen Verformung ändert sich das Volumen nicht und die Kristallstruktur leit unverändert (Röntgendiffraktometrie).

Mehr

ELASTISCHE EIGENSCHAFTEN VON FESTKÖRPERN. A. Grundlagen der Elastizitätstheorie. 1. Hookesches Gesetz und Verallgemeinerung

ELASTISCHE EIGENSCHAFTEN VON FESTKÖRPERN. A. Grundlagen der Elastizitätstheorie. 1. Hookesches Gesetz und Verallgemeinerung XII. ELASTISCHE EIGENSCHAFTEN VON FESTKÖRPERN A. Grundlagen der Elastizitätstheorie 1. Hookesches Gesetz und Verallgemeinerung Man unterscheidet zwischen reversiblen elastischen und irreversiblen plastischen

Mehr

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik Hookesches Gesetz.Übung Werkstoffmechanik Aus der lastostatik ist das Hookesche Gesetz im -dimensionalen Raum bekannt. σ = ε Wobei σ die Spannung, das lastizitätsmodul und ε die Dehnung oder allgemeiner

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

1. Formänderungsenergie

1. Formänderungsenergie 1. Formänderungsenergie 1.1 Grundlagen 1. Grundlastfälle 1.3 Beispiele.1-1 1.1 Grundlagen Zugstab: F L F x E, A F W u u An einem am linken Ende eingespannten linear elastischen Stab greift am rechten Ende

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik - Festkörper - Prof. Dr. Ulrich Hahn WS 2008/2009 Grundtypen Gläser, amorphe Festkörper Nahordnung der Teilchen 5 10 Atom- unterkühlte Flüssigkeiten

Mehr

5. Elastizitätsgesetz

5. Elastizitätsgesetz 5. Elastizitätsgesetz Das Materialgesetz ist eine Beziehung zwischen den Spannungen, den Verzerrungen und den Temperaturänderungen. Das Materialgesetz für einen elastischen Körper wird als Elastizitätsgesetz

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Zusammenfassung. Reale feste und flüssigekörper

Zusammenfassung. Reale feste und flüssigekörper Zusammenfassung Kapitel l6 Reale feste und flüssigekörper 1 Reale Körper Materie ist aufgebaut aus Atomkern und Elektronen-Hülle Verlauf von potentieller Energie E p (r) p und Kraft F(r) zwischen zwei

Mehr

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

Musterlösung Übung 11: Sandwichstrukturen

Musterlösung Übung 11: Sandwichstrukturen Herbstsemester 015 Übung 11 Ausgabe: 09.1.015 Musterlösung: 16.1.015 Übung Musterlösung Übung 11: Sandwichstrukturen Aufgabe 1: Biegesteifigkeit und Schubspannungen Die Biegesteifigkeit eines Sandwich-Querschnittes

Mehr

3. Struktur des Festkörpers

3. Struktur des Festkörpers 3. Struktur des Festkörpers 3.1 Kristalline und amorphe Strukturen Amorphe Struktur - Atombindung ist gerichtet - unregelmäßige Anordnung der Atome - keinen exakten Schmelzpunkt, sondern langsames Erweichen,

Mehr

Experimentalphysik 1. Vorlesung 3

Experimentalphysik 1. Vorlesung 3 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 Vorlesung 3 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Klassische Physik-Versuch 23. Elastizitätsmodul

Klassische Physik-Versuch 23. Elastizitätsmodul Klassische Physik-Versuch 2 KLP-2-1 Elastizitätsmodul 1 Vorbereitung Allgemeine Grundlagen zu elastischen Eigenschaften fester Körper, Neutrale Faser, Anisotropie von Kristallen Lit.: EICHLER/KRONFELD/SAHM

Mehr

9. Festkörperreaktionen

9. Festkörperreaktionen 9. Festkörperreaktionen Wir hatten bereits bei der Diskussion von Diffusionsvorgängen gesehen, dass auch im festen Zustand Atome ständig ihre Plätze tauschen und so chemische Reaktionen in fester Materie

Mehr

2.1 Translationssymmetrie

2.1 Translationssymmetrie 2.1 Translationssymmetrie Die periodische Anordnung eines Kristalls entspricht mathematisch einer Translationssymmetrie. Diese wird mit Hilfe von drei fundamentalen Translationsvektoren beschrieben: T

Mehr

Zusammenfassung vom

Zusammenfassung vom Festkörperphysik für Bachelor, WS 0/ magnetische Domäne (=Weiss scher Bezirk) Ursachen für Zerfall in Domänen Bereich einheitlicher ferromagnetischer Ordnung Aufbau eines großen externen Streufelds für

Mehr

Mechanik der Strukturmaterialien WS2014 Balogh/Schmitz. 2. Vorlesung

Mechanik der Strukturmaterialien WS2014 Balogh/Schmitz. 2. Vorlesung . Voresung 16.10.014 Katverfestigung: rhöhung der Festigkeit mit zunehmender Verformung, d.h., das Bautei verfestigt sich dort, wo es beansprucht wird; Katverfestigung ist eine grundegende Voraussetzung

Mehr

11 Balkenbiegung Technische Mechanik Balkenbiegung

11 Balkenbiegung Technische Mechanik Balkenbiegung 11 Balkenbiegung Balkenbiegung 2 Motivation / Einführung Ziele: Berechnung der Balkendurchbiegung (Deformation) Berechnung der Schnittgrößen für statisch unbestimmte Systeme Balken Definition Stabförmig;

Mehr

1 Kristallgitter und Kristallbaufehler 10 Punkte

1 Kristallgitter und Kristallbaufehler 10 Punkte 1 Kristallgitter und Kristallbaufehler 10 Punkte 1.1 Es gibt 7 Kristallsysteme, aus denen sich 14 Bravais-Typen ableiten lassen. Charakterisieren Sie die kubische, tetragonale, hexagonale und orthorhombische

Mehr

Schülerwettbewerb: Brücken für Erfurt Einführungsveranstaltung: Wettkampftag: , Uhr, Hörsaal 5.E.11

Schülerwettbewerb: Brücken für Erfurt Einführungsveranstaltung: Wettkampftag: , Uhr, Hörsaal 5.E.11 Schülerwettbewerb: Brücken für Erfurt Einführungsveranstaltung: 24.01.2014 Wettkampftag: 14.03.2014, 10.00 Uhr, Hörsaal 5.E.11 Grande Viaduc de Millau, www.zdf.de/terra Xpress 1. Aufgabenstellung 2. Statikvorlesung

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

PERIODISCHE STRUKTUR DES FESTKÖRPERS. A. Reziproke Gitterbeziehung zwischen fcc- und bcc Gitter

PERIODISCHE STRUKTUR DES FESTKÖRPERS. A. Reziproke Gitterbeziehung zwischen fcc- und bcc Gitter II. PERIODISCHE STRUKTUR DES FESTKÖRPERS A. Reziproke Gitterbeziehung zwischen fcc- und bcc Gitter 1. Zeigen Sie für das kubisch flächenzentrierte Gitter in Fig. 1 mit der Kantenlänge a: Das Volumen der

Mehr

Es wird ein Koordinatensystem gewählt. Mit einem Schnitt senkrecht zur x-achse wird der Spannungsvektor

Es wird ein Koordinatensystem gewählt. Mit einem Schnitt senkrecht zur x-achse wird der Spannungsvektor 1 Theorie: Elastizität Mit dem Wissen über die mechanischen Eigenschaften von Zugstäben und über den atomaren Aufbau der Materie wird der Spannungs- und Dehnungsbegriff verallgemeinert. 1.1 Spannungen

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung

Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung Wiederholung der letzten Vorlesungsstunde: Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung Thema heute:

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Zugversuch. 1. Einleitung, Aufgabenstellung. 2. Grundlagen. Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 2009

Zugversuch. 1. Einleitung, Aufgabenstellung. 2. Grundlagen. Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 2009 Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 29 Zugversuch Gruppe 3 Protokoll: Simon Kumm Mitarbeiter: Philipp Kaller, Paul Rossi 1. Einleitung, Aufgabenstellung Im Zugversuch sollen

Mehr

Biomechanik am PC. Was sind Geograbra-Modelle zur Biomechanik? Informationen zu den Modellen

Biomechanik am PC. Was sind Geograbra-Modelle zur Biomechanik? Informationen zu den Modellen Biomechanik-Versuche im Computer geht das? Ja, mit den Geogebra-Modellen auf dieser Seite. Die dynamischen Modelle erlauben es biomechanische Zusammenhänge anschaulich darzustellen und eindrucksvoll zu

Mehr

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können: Festk234 37 11/11/22 2.9. Drehungen und Drehinversionen Bereits kennen gelernt: Translationssymmetrie. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Experimentalphysik 1

Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Winter 2015/16 Vorlesung 3 Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 6 Stöße zwischen Teilchen 3 6.1 Elastische Stöße im Laborsystem.........................

Mehr

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Grundlagen-Vertiefung PW3 Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Kristalle besitzen einen geordneten und periodischen Gitteraufbau. Die überwiegende Mehrzahl der anorganischen Festkörper

Mehr

Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...!

Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...! Kristalle und deren Fehler Was sollen Sie mitnehmen? Definition und Aufbau eines Kristalls Elementarzellen Typische Gitter nach Verbindungsklassen Navigation im Kristall: Richtung, Ebenen Allotropie Fehlertypen

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Vorlesung Physik für Pharmazeuten PPh - 04

Vorlesung Physik für Pharmazeuten PPh - 04 Vorlesung Physik für Pharmazeuten PPh - 04 Starrer Körper: Hebelgesetz, Drehmoment, Schwerpunkt, Drehimpuls Deformierbarer Körper: Elastizitätsmodul Punktmassen-Systeme Abgeschlossenes System : * Keine

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Mehrdimensionale Integralrechnung 2

Mehrdimensionale Integralrechnung 2 Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

106 Torsionsmodul. 1.2 Bestimmen Sie für zwei weitere Metallstäbe den Torsionsmodul aus Torsionsschwingungen!

106 Torsionsmodul. 1.2 Bestimmen Sie für zwei weitere Metallstäbe den Torsionsmodul aus Torsionsschwingungen! Physikalisches rundpraktikum 06 Torsionsmodul. Aufgaben. Messen Sie für zwei Metallstäbe den Torsionswinkel bei unterschiedlichen Drehmomenten. Stellen Sie den Zusammenhang grafisch dar, und bestimmen

Mehr

Übung zu Mechanik 2 Seite 16

Übung zu Mechanik 2 Seite 16 Übung zu Mechanik 2 Seite 16 Aufgabe 27 Ein Stab wird wie skizziert entlang der Stabachse durch eine konstante Streckenlast n beansprucht. Bestimmen Sie den Verlauf der Normalspannungen σ 11 (X 1 ) und

Mehr

Landau-Theorie der Phasenumwandlung von Membranen

Landau-Theorie der Phasenumwandlung von Membranen Landau-Theorie der Phasenumwandlung von Membranen Vorbemerkung Vorbemerkung: Um Einblick in die thermodynamischen aber auch strukturellen Eigenschaften von Lipidschichten zu erhalten, ist die klassische

Mehr

Gleichgewicht am Punkt

Gleichgewicht am Punkt Gleichgewicht am Punkt 3.1 Gleichgewichtsbedingung für einen Massenpunkt.. 52 3.2 Freikörperbild................................... 52 3.3 Ebene Kräftesysteme............................ 55 3.4 Räumliche

Mehr

Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung

Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung Messen mit Dehnungsmessstreifen Formelsammlung für die elementaren Lastfälle Stand: 21.01.2018, Kab. Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung

Mehr

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl 2.4 Metallische Bindung und Metallkristalle Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Unterteilung in Metalle, Halbmetalle, Nicht metalle Metalle etwa

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 8

Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Daniel Weiss 1. Dezember 29 Inhaltsverzeichnis Aufgabe 1 - inhomogener hängender Balken 1 a) Seilkräfte...................................... 1 b) Schwerpunkt....................................

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Übung zu Mechanik 2 Seite 38

Übung zu Mechanik 2 Seite 38 Übung zu Mechanik 2 Seite 38 Aufgabe 64 Gegeben sind die Zustandslinien für Biegemoment und Normalkraft von einem räumlich beanspruchten geraden Stab. a) Bemessen Sie den Stab auf Normalspannungen! Es

Mehr

Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...!

Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...! Kristalle und deren Fehler Was sollen Sie mitnehmen? Definition und Aufbau eines Kristalls Elementarzellen Typische Gitter nach Verbindungsklassen Navigation im Kristall: Richtung, Ebenen Allotropie Fehlertypen

Mehr

1 Theorie: Spannung und Dehnung

1 Theorie: Spannung und Dehnung 1 Theorie: Spannung und Dehnung Bei der Auswahl von Werkstoffen sind deren Eigenschaften von entscheidender Bedeutung. Sie folgen aus deren mikroskopischem Aufbau. Das heisst aus den Atomen, aus denen

Mehr

Das Verformungsverhalten metallischer Werkstoffe

Das Verformungsverhalten metallischer Werkstoffe σ w in N/mm² Das Verformungsverhalten metallischer Werkstoffe Das Spannungs-Dehnungs-Diagramm Das Spannungs-Dehnungs-Diagramm (Abb.1) beschreibt das makroskopische Veformungsverhalten metallischer Werkstoffe

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y Aufgabe : ) Biegespannungsverlauf: σ b, ) M M I I bh h b cm cm) cm cm), 8 cm, 56 cm σ b, ) N cm, 8 cm N cm, 56 cm 7, N cm 89, N cm ) Gleichung der neutralen Achse : σ b, ) : M M I 7, N cm 89, N cm P Die

Mehr

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf.

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. 6.4 Phänomene an Flüssigkeitsgrenzflächen Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. effektive Kräfte nur in Grenzschichten. Oberflächenspannung Energie nötig, um Molekül von innen

Mehr

7.4: Zusammenfassung / Merkpunkte zu Kapitel 7: Mechanische Eigenschaften

7.4: Zusammenfassung / Merkpunkte zu Kapitel 7: Mechanische Eigenschaften 7.4: Zusammenfassung / Merkpunkte zu Kapitel 7: Mechanische Eigenschaften Der Zugversuch ergibt einefülle von Materialeigenschaften: Unterscheidung spröde - duktil - gummiartig usw.; und damit auch elastische

Mehr

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 5

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 5 Aufgabe S1: Auf einem Balken der Länge l 0 und der Querschnittsfläche A 0 wirkt eine Axiallast P. Bestimmen Sie das Elastizitätsmodul des Material, wenn dieser sich um Material hat linear-elastisches Verhalten.

Mehr

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf.

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. 6.4 Phänomene an Flüssigkeitsgrenzflächen Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. effektive Kräfte nur in Grenzschichten. Oberflächenspannung Energie nötig, um Molekül von innen

Mehr

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper

Mehr

Übungen zu Physik 2 für Maschinenwesen

Übungen zu Physik 2 für Maschinenwesen Physikdepartment E13 SS 011 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 1.07.011,

Mehr

( ) Winter Montag, 19. Januar 2015, Uhr, HIL E 1. Name, Vorname: Studenten-Nr.:

( ) Winter Montag, 19. Januar 2015, Uhr, HIL E 1. Name, Vorname: Studenten-Nr.: Baustatik I+II Sessionsprüfung (101-0113-00) Winter 2015 Montag, 19. Januar 2015, 09.00 12.00 Uhr, HIL E 1 Name, Vorname: Studenten-Nr.: Bemerkungen 1. Die Aufgaben dürfen in beliebiger Reihenfolge bearbeitet

Mehr