= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y

Größe: px
Ab Seite anzeigen:

Download "= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y"

Transkript

1 Aufgabe : ) Biegespannungsverlauf: σ b, ) M M I I bh h b cm cm) cm cm), 8 cm, 56 cm σ b, ) N cm, 8 cm N cm, 56 cm 7, N cm 89, N cm ) Gleichung der neutralen Achse : σ b, ) : M M I 7, N cm 89, N cm P Die Gleichung der neutralen Achse ist also: ) 89, 7, neutrale Achse P ) Bestimmung der maximalen Biegespannungen: Punkte, die am weitesten entfernt von der neutralen Achse liegen: ) b P, h P b, h ) Damit ergeben sich die maximale Zug- und Druckspannung u: maximale Zugspannung P ): σ b b, h ) 7, N h cm 89, N b ) 6 N cm cm maximale Druckspannung P ): σ b b, h ) 7, N h ) 89, N b cm cm 6 N cm

2 ) Grafische Darstellung des Biegespannungsverlaufs: Es werden die Spannungen in allen Profilecken benötigt: ) b σ b, h 6 N cm σ b b, h ) σ b b ), h ) σ b b, h 6 N cm 868 N cm 868 N cm 868 N/cm 6 N/cm P x P 868 N/cm neutrale Achse 6 N/cm

3 Aufgabe : ) Verlauf der Biegespannung: Für die Biegespannung bei der schiefen Biegung gilt: σ b, ) M M wobei hier: M konst, M konst I Geometrie und Lage der Teilflächenschwerpunkte für den doppeltsmmetrischen, usammengesetten Querschnitt: h h h A A A S b b 5 b Zahlenwerte: h h h b b b M b cm 6 cm cm 8 cm cm 8 cm, 5 Nm M b und: A A h b 6 cm A h b cm Außerdem werden die Abstände der Teilschwerpunkte vom Gesamtschwerpunkt S, S für die Bestimmung der Steiner-Anteile benötigt, wobei der Teilflächenschwerpunkt der Fläche A gerade identisch mit dem Gesamtschwerpunkt ist Weiterhin liegen alle drei Teilflächenschwerpunkte auf der -Achse : S h + h cm S S cm η, η η S S S S S S, ζ ζ ζ

4 Bestimmung der Flächenmomente Grades: h h h I η + I η h b + h b 5 cm M M M b b b b I [I ζ + S A ] + I ζ [ ] b h + S A + b h 676 cm und sind Smmetrieachsen Das Biegemoment M b ist auf die Hauptachsen u erlegen: M M b sin 5 M b M +M b cos 5 M b Die Flächenmomente und die Biegemomente M und M eingesett in σ b σ b, ) M M I M b + I ) σ b, ) N cm 6 N cm ) Bestimmung der neutralen Achse: σ b, )! 6 ), Diese Gleichung beschreibt eine Gerade, die durch den Schwerpunkt verläuft und die folgende Steigung hat: tanα, α 7,

5 ) Ort und Größe der maximalen Normalspannungen: Die maximalen Normalspannungen treten in den Punkten Zug Druck P 7 neutrale Achse M P M h P + h ; b ) und P h h ; b ) auf, die den maximalen Abstand u der neutralen Achse haben, also P 5 cm ; cm) P 5 cm ; cm) Einseten der Koordinaten von P und P in σ b, ) ergibt die gesuchten maximalen Biegespannungen: Maximale Druckspannung im Punkt P : σ b, 56 N cm Maximale Zugspannung im Punkt P : σ b, 56 N cm ) Grafische Darstellung des Biegespannungsverlaufs P neutrale Achse P

6 Aufgabe : ȳ O ) Bestimmung des Schwerpunktes: ȳda ȳda ȳ s s A A ρdϕ ϕ ρ dρ A da π ρdϕdρ ρ π ) dρ π π r ρ dϕdρ ρ dρ π ρ r πr ρ ϕ π dρ ȳda π ρ cosϕρdϕdρ ρ [ ] dρ π ρ ρ dρ cos ϕ dϕdρ ρ r ρ [sin ϕ] r r π dρ da π ρ sin ϕρdϕdρ ρ [ + ] dρ π ρ ρ dρ sin ϕ dϕdρ ρ r r r ρ [ cos ϕ] π dρ ȳ s r π, 76 r s r π, 77 r ) Axiale und biaxiale Flächenmomente Grades beogen auf den Punkt O Iȳ A da r ρ dρ π ϕ π ρ sin ϕ) ρdϕdρ sin ϕ) dϕ ρ sin ϕ ) π r 8 r π π + π ρ sin ϕ) dϕdρ π sin ϕdϕ r ), 59 r cos ϕ dϕ I A ȳ da r ρ dρ π ϕ + π ρ cosϕ) ρdϕdρ cosϕ) dϕ ρ sin ϕ ) π r 8 r π π π ρ cosϕ) dϕdρ π cos ϕdϕ r ), 77 r + cos ϕ dϕ

7 Iȳ A ȳ da ρ r π o sin ϕ π ρ cosϕ ρ sin ϕρdϕdρ dϕ r [ cos ϕ ] π o π ρ dρ cosϕsin ϕ dϕ r 8 r, 975 r Axiale und biaxiale Flächenmomente Grades beogen auf den Schwerpunkt S Iȳ A s, 776 r I I Aȳ s, 79 r β S Iȳ Aȳ s s, r Hauptachse aus dem Mohr schen Trägheitskreis Mittelpunkt : x M + I )/, 7 r Radius R I ) / + I, 59 r R β, I x M R, 57 r I I I x M + R, 55 r sin β) R, r, 866, 59 r β arcsin, β )Das maximale Biegemoment und die Spannungsverteilung an der Stelle, wo das maximale Biegemoment entsteht Allgemein : σx,, ) Lx) A + M x) M x) Lx), M, M?) I Keine äußere Belastung in x Richtung Lx) Um M und M u berechnen, müssen M und M uerst gesucht werden Aber die gegebene Streckenlast in Richtung verursacht nur das Biegemoment um -Achse M ) Das Biegemoment um Achse M ) ist nicht hervorgerufen werden M x)

8 Das Biegemoment im x-kos : M? Aus der Streckenlast lassen sich die Querkraft und das Biegemoment berechnen : Qx) qx)dx q sin πx l πx dx q cos l π l + C M x) Qx)dx q l ) ) πx l cos π l + C dx q sin πx π l + C x + C Mit den Randbedingungen M x ) M x l) können die beiden Konstanten bestimmt werden: M ) C ) ) l π M l) q sin + C l π ) l C q, 7 ql π l Dann ergibt sich das Moment : ) l M x) q sin πx π l q l π ) l x Das maximale Biegemoment Das maximale Moment entsteht an der Stelle M Q Daraus folgt : ) l π l Qx) q l πx cos π l q M,max M x max ) q x Mmax l π arccos ) [ l sin arccos π π, 78 ql, 68 ql, ql ), 57 l π )] ) ) l q π π arccos π Als nächster Schritt muss man das Biegemoment in Richtung der Hauptachsen erlegen β M M Die Biegemomente im x -KOS M M M cosβ und M M sin β

9 Die Spannungsverteilung σx max,, ) Lx max) A }{{} + M x max) M x max) I M x max ) cosβ M x max ) sin β I cosβ M x max ) sin β ) I, ql cosβ sin β ) I ) Neutrale Achse findet an der Stelle σx,, ) statt: cosβ sin β tanβ I I, 96 5) maximale Zug- und Druckspannung entstehen an den Stellen, die maximal von der neutralen Achse entfernt sind : P : max Drucksp β neutrale Achse Q : max Zugsp +

10 cosβ Die Spannung σ, ql sin β ) I, cos, 57, 5, , 57, 6 )[kn/m ] ) sin [kn/m ], 55, 5 σ P m ;, 76 m) 55, 6 [kn/m ] σ Q, 9 m ;, 97 m) 6, 5 [kn/m ]

11 Aufgabe : ) Bestimmung des Schwerpunktes: Ai i S t a a )) t +, 7 cm Ai t a + a t) t Ai i S t a t) ) a t + t ) +, 7 cm t a + a t) t Ai ) Biaxiales und axiale Flächenmomente Grades: a t + a t t a t) S + + t a t) 8, cm a t + t S ) I t ) a a t + a t a t) t + S + + t a t) S I 8, cm a t S ) 6, 6 cm a t ) a t + S + t a t) S + t ) S Der Mohr sche Trägheitskreis: [cm ] I ;I ) ϕ I,I [cm ] ϕ 5 I ; I ) I 7, cm I 86, 6 cm

12 ) Die Spannungsverteilung: M σx,, ) Lx) A + M x) M x) I mit: M M cos 5 M M M sin 5 M σx,, ) F M M A + I σx,, ) N cm 96 N cm 6, 7 N cm I 5 M 5 M ) Neutrale Achse: σx,, )!, cm, 56 Steigung: m, 56 α, 7 5) maximale Zug- und Druckspannung: Punkte aus der Zeichnung entnehmen Den maximalen Abstand der Punkte von der neutralen Achse auf der jeweiligen Seite abtragen: Punkt P: ;, 6 cm σ P 97 N cm Punkt Q: 6, 5 cm ;, 9 cm σ Q 98 N cm P Zug) neutrale Achse Q Druck)

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 Musterlösung ur 10. Übung Mechanik II SS 08 Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 b, h können die Schubspannungen in Richtung der bereichsweise einuführenden

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013 TM Übung, Aufgaben an der Tafel 9.4.3, Prof. Gerling, SS 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Wir erheben keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

a) b) c) d) e) f) g) h) i)

a) b) c) d) e) f) g) h) i) Ausgabe: 8.1.15 Übung 5: Schub Einleitung und Lernziele strukturen bestehen meist aus dünnwandigen Profilen. Während bei vollen Querschnitten die Schubspannungen oft kaum eine Rolle spielen, ist der Einfluss

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben Modulrüfung in Technischer Mechanik am 6. August 206 Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutlich lesbar. Zeichnungen müssen sauber und übersichtlich sein. Die

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

20 Statik Die resultierende Kraft im ebenen Kräftesystem

20 Statik Die resultierende Kraft im ebenen Kräftesystem 20 Statik Die resultierende Kraft im ebenen Kräftesstem 6.1.3 Beispiel zur Resultierenden im allgemeinen Kräftesstem An einem Brückenträger mit der Segmentlänge a=4m greifen die äußeren Kräfte F 1 =F 2

Mehr

Übung zu Mechanik 2 Seite 38

Übung zu Mechanik 2 Seite 38 Übung zu Mechanik 2 Seite 38 Aufgabe 64 Gegeben sind die Zustandslinien für Biegemoment und Normalkraft von einem räumlich beanspruchten geraden Stab. a) Bemessen Sie den Stab auf Normalspannungen! Es

Mehr

Übungsblatt 05. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 05. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 05 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 18. 11. 005 und 1. 11. 005 1 Aufgaben 1. Berechnen Sie für einen LKW von 40t Masse

Mehr

Hausübung 2. y z. Aufgabe 2.1a: Berechnung von Querschnittswerten. Baumechanik II - Sommersemester Nachzügler PVL Hausübung 2

Hausübung 2. y z. Aufgabe 2.1a: Berechnung von Querschnittswerten. Baumechanik II - Sommersemester Nachzügler PVL Hausübung 2 Hausübung 2 Name, Vorname: Matr.Nr.: 1112975 Ausgabe: 15.01.2015 Rückgabe: 11.02.2015 Anerkannt: ja / nein Aufgabe 2.1a: : Berechnung von Querschnittswerten Für den dargestellten Querschnitt eines Fertigteilträgers

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM 1.) (6+4+2 Punkte) Die grauen Balken haben pro ängeneinheit die Gewichtskraft 60G, die als Streckenlast u berücksichtigen ist (tanα = 7/24). F A α 3/4 C a.) Wie groß sind die inneren Kräfte und Momente

Mehr

Statisch unbestimmtes System

Statisch unbestimmtes System HT-Kapfenberg Statisch unbestimmtes System Seite von 8 Franz Hubert Kainz franz.kainz@htl-kapfenberg.ac.at Statisch unbestimmtes System Mathematische / Fachliche Inhalte in Stichworten: Grundlagen der

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

1. Einführung Festigkeitslehre

1. Einführung Festigkeitslehre 1. Einführung estigkeitslehre Themen der estigkeitslehre Zugbeanspruchung Hooksches Gesetz lächenmomente. Grades estigkeitslehre Druckbeanspruchung Abscherung lächenpressung www.lernen-interaktiv.ch 1

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden bernhard.nietrost@htl-steyr.ac.at Seite 1 von 17 Kettenlinie Mathematische / Fachliche Inhalte in Stichworten: Differentialgleichungen (1. und 2. Ordnung, direkt integrierbar, Substitution, Trennen der

Mehr

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen

Mehr

11 Balkenbiegung Technische Mechanik Balkenbiegung

11 Balkenbiegung Technische Mechanik Balkenbiegung 11 Balkenbiegung Balkenbiegung 2 Motivation / Einführung Ziele: Berechnung der Balkendurchbiegung (Deformation) Berechnung der Schnittgrößen für statisch unbestimmte Systeme Balken Definition Stabförmig;

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

tgt HP 1983/84-2: Erdölpumpe

tgt HP 1983/84-2: Erdölpumpe Die Schubstange der abgebildeten Erdölpumpe bewegt sich abwärts. Seilkraft am kreisförmigen Segmentstück Gegengewicht F P 20 kn F G 10 kn a 18 b 30 Kurbel r 800 mm a 1700 mm b 2300 mm c 2800 mm Teilaufgaben:

Mehr

Räumliche Bereichsintegrale mit Koordinatentransformation

Räumliche Bereichsintegrale mit Koordinatentransformation Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe

Mehr

Euler-Bernoulli-Balken

Euler-Bernoulli-Balken Euler-Bernoulli-Balken 2 2.1 Einführende Bemerkungen Ein Balken ist als langer prismatischer Körper, der schematisch in Abb. 2.1 dargestellt ist, definiert. Die folgenden Ableitungen unterliegen hierbei

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

Grundbau und Bodenmechanik Übung Mohr scher Spannungskreis und Scherfestigkeit 1. G Mohr scher Spannungskreis und Scherfestigkeit. Inhaltsverzeichnis

Grundbau und Bodenmechanik Übung Mohr scher Spannungskreis und Scherfestigkeit 1. G Mohr scher Spannungskreis und Scherfestigkeit. Inhaltsverzeichnis Übung Mohr scher Spannungskreis und Scherfestigkeit Lehrstuhl für Grundbau, Bodenmechanik, Felsmechanik und Tunnelbau G Mohr scher Spannungskreis und Scherfestigkeit Inhaltsverzeichnis G. Allgemeiner Spannungszustand

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure Kerstin Rjasanowa ISBN 3-446-4479- Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-4479- sowie im Buchhandel 7.9 Anwendungen der Integralrechnung

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof Dr-Ing D Weichert 1Übung Mechanik II SS 28 21428 1 Aufgabe An einem ebenen Element wirken die Spannungen σ 1, σ 2 und τ (Die Voreichen der Spannungen sind den Skien u entnehmen Geg: Ges: 1 σ 1 = 5

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM s y HTWG Konstanz 26.9.2017 1.) (5+3.5+3 Punkte) Die Frau kann nur mit einer Kraft, die parallel zum Boden ist, auf den Wagen wirken. Am Wagen ist als Gewichtskraft nur G des Kindes zu berücksichtigen

Mehr

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti:

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti: ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 05. 08. 011 1. Aufgabe a Konti: Impuls: Energie: u x + v = 0 ρ u u x + v u ρ c p u T x + v T = η u = λ T dimensionslose Größen: ū = u u

Mehr

1. Aufgabe: (ca. 12 % der Gesamtpunkte)

1. Aufgabe: (ca. 12 % der Gesamtpunkte) . August 07. Aufgabe: (ca. % der Gesamtunkte) a) Skizzieren Sie an den dargestellten Stäben die Knickformen der vier Euler-Knickfälle inklusive Lagerung und geben Sie zum Eulerfall mit der höchsten Knicklast

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Gedächtnisprotokoll GGET 3 Klausur Vorwort:

Gedächtnisprotokoll GGET 3 Klausur Vorwort: Gedächtnisprotokoll GGET 3 Klausur 2010 Vorwort: Es handelt sich wieder einmal um ein Gedächtnisprotokoll, das direkt nach der Klausur erstellt wurde. Die Aufgaben entsprechen also in grober Näherung dem

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018 Theorie zu Serie erstellt von A. Menichelli 16. Februar 018 1 Spannungen in D 1.1 Allgemein Die Definition der Spannung ist im allgemeinen die Verteilung einer Kraft auf der Fläche, auf der diese Kraft

Mehr

tgt HP 1999/2000-2: Turmdrehkran

tgt HP 1999/2000-2: Turmdrehkran tgt HP 1999/000-: Turmdrehkran tgt HP 1999/000-: Turmdrehkran Der skizzierte Turmdrehkran darf in der gezeichneten Lage eine maximale Last von 10 kn heben. Die Hubbewegung erfolgt über eine Seiltrommel,

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Diplomprüfung Frühjahr 2009 Prüfungsfach Statik Klausur am 23.02.2009 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 5 5 25 25 30

Mehr

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 1

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 1 Aufgabe S1: Ein Würfel mit Kantenlänge L und Gewicht G liegt reibungsbehaftet auf einer schiefen Ebene (Winkel 45 ). Wie in der Skizze dargestellt, wirkt am Würfel eine dreiecksverteilte Linienlast mit

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Fluss durch einen Zylindermantel

Fluss durch einen Zylindermantel Fluss durch einen Zylindermantel Der Fluss eines Vektorfeldes F = F ϱ e ϱ + F ϕ e ϕ + F z e z nach außen durch den Mantel eines Zylinders mit Randkurve ϱ = ϱ(ϕ) ist 2π z max z min F ϱ ϱ F ϕ ϕ ϱ dz dϕ.

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

rechnerisch, ob weitere Lösungen dieser Gleichung im Bereich 0 x l existieren.

rechnerisch, ob weitere Lösungen dieser Gleichung im Bereich 0 x l existieren. Anwendungs- und Optimierungsaufgaben (Technik) 1. Ein Balken der Länge l ist auf zwei Stützen gelagert (siehe Bild). Der Balken wird durch sein Eigengewicht auf Biegung beansprucht. Die Durchbiegung ist

Mehr

Theoretische Physik II Elektrodynamik Blatt 5

Theoretische Physik II Elektrodynamik Blatt 5 PDDr.S.Mertens M. Hummel Theoretische Physik II Elektrodynamik Blatt 5 SS 9 9.4.9 1. Energie von Ladungsverteilungen. a b Welche Arbeit ist nötig, um eine Ladungsmenge Q aus dem Unendlichen gleichmäßig

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Theorie 6. erstellt von A. Menichelli. 23. März 2018

Theorie 6. erstellt von A. Menichelli. 23. März 2018 Theorie 6 erstellt von A. Menichelli 23. März 2018 1 Das Flächenträgheitsmoment Das Flächenträgheitsmoment ist ein Mass, um die Drehbarkeit einer Fläche zu berechnen. Es hängt stark von der Geometrie der

Mehr

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017 Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W.

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Klausur vom 4. September 009 Aufgabe : Pendelnde Hantel

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Aufgabe 6. Lösungsvorschlag zu Aufgabe 6. Klausur Mechanik II vom 27. März 2007 Seite 1 von 12

Aufgabe 6. Lösungsvorschlag zu Aufgabe 6. Klausur Mechanik II vom 27. März 2007 Seite 1 von 12 Klausur echanik II vom 7. ärz 7 Seite 1 von 1 ufge 6 a Der Querschnitt eines Trägers ist aus drei gleichen Rechtecken zusammengesetzt. a) estimmen Sie I yy und I zz! b) Wie groß ist I yz? y b S Gegeben:,

Mehr

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter 1. Berechnen Sie die jeweils fehlenden Größen (Winkel α, β und γ, Seiten a, b und c) in den folgenden Dreiecken: a) a = 5 cm, b = 9 cm, γ = 90 b) c = 9 cm, a = 6 cm, γ = 56, 3 (Überlegen Sie zuerst, wo

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft 1. Zeichen eindeutige Fehler in der oberen Hälfte: eine Körperkante uviel / falsch eine Körperkante u wenig Doppelpassungen am Lager Doppelpassung am Zahnrad Lagerung -> Loslagerung falsch, da falsche

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) rev: 1.17 WiSe 017/18 Klassische Theoretische Phsik III Elektrodnamik) Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 8 Ausgabe: Fr, 15.1.17 Abgabe: Fr,.1.17 Besprechung: Mi, 10.01.18

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen

Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 1.) (3+6+3 Punkte) Auf den dargestellten smmetrischen Spindelrasenmäher mit der Gewichtskraft G und der Spurweite 4L wirken die dargestellten Kräfte. Keine Kräfte in x-richtung sind u berücksichtigen Die

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 y HTWG Konstanz 19.7.2017 1.) (5+4+2+2 Punkte) Am Riemen des Schaufelradbaggers wirkt der Haftreibungskoeffizient µ = ln(5 1/π ). Der Ausleger mit der Schaufel hat den dargestellten Querschnitt (tanα =

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2 D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Volumen eines Rotationskörpers

Volumen eines Rotationskörpers Volumen eines Rotationskörpers Das Volumen V des durch Rotation des Funktionsgraphen r = f (x) 0, a x b, um die x-achse erzeugten Körpers lässt sich durch Integration über die kreisförmigen Querschnitte

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy)

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy) Man nde die gesuchten Funktionswerte. Übung i) f, ) = + 3 f, ) f, ) f, 3) f 3, ) ii) f, ) = sin) f, π/6) f 3, π/) fπ, /4) f π/, 7) Übung Man nde und skizziere den Denitionsbereich und nde den Wertebereich

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr