Kapitel 2 Elastische Stoßprozesse
|
|
|
- Dorothea Straub
- vor 9 Jahren
- Abrufe
Transkript
1 Kapitel Elastische Stoßprozesse In diesem Kapitel untersuchen wir die Auswirkungen von elastischen Kollisionen auf die Bewegungen der Kollisionspartner.. Kollision mit gleichen Massen Elastische Stöße zwischen Kugeln, Teilchen etc. können wir mit den Konzepten der Energie- und Impulserhaltung verstehen. Bei einem elastischen Stoß zweier Kugeln muss der Gesamtimpuls des Systems aus den beiden Kugeln vor der Kollision P = p + p (.) genauso groß sein, wie der Gesamtimpuls nach der Kollision P = p + p. (.) Da die Kugel mit der Masse m anfangs ruht, vereinfacht sich die Impulserhaltung zu M. Erdmann, Experimentalphysik, Springer-Lehrbuch, DOI 0.007/ _, C Springer-Verlag Berlin Heidelberg 0 3
2 4 Elastische Stoßprozesse P = P (.3) p + p }{{} = p + p. (.4) =0 Ebenso muss die Energieerhaltung gelten. Die Gesamtenergien vor und nach der Kollision müssen gleich groß sein: E = E (.5) Die Kugeln sollen sich auf einem Tisch reibungsfrei mit Energien E kin bewegen und außer der direkten Kollision keine zusätzliche Wechselwirkung austauschen (E pot = 0). Die Gesamtenergie des Systems aus beiden Kugeln können wir aus dem Anfangszustand berechnen, bei dem nur die erste Kugel Bewegungsenergie besitzt: E = E kin, + E pot }{{} hier =0 = p m (.6) (.7) Mit der anfangs ruhenden Kugel (E kin, = 0) ist die Energieerhaltung (.5) E = E + E. (.8) Betrachten wir zunächst den Fall, dass beide Massen gleich groß sind (m = m = m). Quadrieren wir die Gleichung der Impulserhaltung (.4), so ergibt sich Aus der Energieerhaltung (.8) folgt: p p ) (.9) = p + p + p. (.0) p m = p m + p m (.) p + p (.) Aus den Gl. (.0) und (.) erhalten wir, dass abgesehen von trivialen Lösungen im Allgemeinen das Skalarprodukt p (.3) p ) = 0 (.4)
3 . Kollision mit verschiedenen Massen 5 Null sein muss. Die Bedingung ist dann erfüllt, wenn cos (θ ) = 0ist,alsowenn der Winkel der beiden Flugrichtungen der Kugeln im Endzustand θ = 90 beträgt. Ein Spezialfall ist das zentrale Auftreffen der ersten Kugel auf die zweite Kugel (zentraler Stoß). Für θ = 0 ist cos (θ ) =. Die Bedingung (.4) ist dann erfüllt, wenn p = 0 ist, d.h. die erste Kugel nach dem Stoß liegen bleibt. Experiment: Stoß zweier Kugeln Lässt man eine Kugel über eine schräg gestellte Schiene auf eine zweite, ruhende Kugel treffen, die anschließend beide in einen mit Sand gefüllten Kasten fallen, so kann man die Differenz der Flugwinkel von 90 sehr schön nachweisen. Für verschiedene Stoßparameter (Abweichung vom zentralen Auftreffen auf die zweite Kugel) lässt sich die Kreisform (Thaleskreis) demonstrieren.. Kollision mit verschiedenen Massen Wählen wir Kugeln mit ungleichen Massen, so lassen sich die Massenterme in der Energieerhaltung (.) p = p m + p (.5) m m nicht einfach eliminieren. Wir wählen das Koordinatensystem so, dass sich die erste, einlaufende Kugel in der x-richtung auf die zweite, ruhende Kugel zubewegt. Im Allgemeinen haben
4 6 Elastische Stoßprozesse beide Kugeln nach der Kollision einen von Null verschiedenen Impuls, den wir in seine p x - und p y - Komponenten zerlegen. Da vor der Kollision keine Impulskomponente in der p y -Richtung vorhanden war, impliziert die Impulserhaltung, dass die p y -Komponenten der Kugelimpulse nach dem Stoß entgegengesetzt gleich groß sind: p y = p y (.6) In Abhängigkeit der Impulskomponenten sind dann die Quadrate der Impulse nach dem Stoß p = p x + p p = ( p p x y (.7) ) + p y. (.8) Durch Einsetzen in die Energieerhaltungsgleichung (.5) und Umsortieren der Terme nach p x und p y erhalten wir: ( p p p ) x + p y = m m + p x + p y (.9) m 0 = p x + p y p p x + p x + p y (.0) m m m m m [ 0 = p x + ] [ p x m m v + p y + ] (.) m m [ m + m 0 = p x p x v m m Wir definieren die sogenannte reduzierte Masse μ durch Damit vereinfacht sich die Gleichung (.) zu ] + p y (.) μ m m m + m. (.3) p x p x v μ + p y = 0. (.4)
5 . Kollision mit verschiedenen Massen 7 Die Interpretation der Gleichung können wir durch quadratische Ergänzung erleichtern: ( ) p x μv + p y (μv ) = 0 (.5) ( ) p x μv + p y = (μv ) (.6) Diese Gleichung hat die Form einer Kreisgleichung (x + y = R ). Auch beim Stoß zweier Kugeln ungleicher Massen liegen die Impulskomponenten der zweiten Kugel auf einem Kreis, dessen Radius R = μv beträgt und dessen Mittelpunkt um μv = R verschoben ist: Der Impuls der ersten Kugel nach dem Stoß lässt sich aus (.6) und der Impulserhaltung berechnen. p = p p (.7)
6
E1 Mechanik Musterlösung Übungsblatt 6
Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten
Lösung 12 Klassische Theoretische Physik I WS 15/16
Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung 1 Klassische Theoretische Physik I WS 1/16 Prof. Dr. G. Schön + Punkte Sebastian Zanker, Daniel Mendler
2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.
- 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung
Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt
Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Aufgabe 3 Prof. Dr. Schön und Dr. Eschrig Wintersemester 004/005 Durch Trennung der Veränderlichen und anschließende Integration ergibt sich aus
Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?
Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision
Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )
Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander
Experimentalphysik E1
Experimentalphysik E 3. Nov. Systeme von Massepunkten - Stöße Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Def. M = m i Schwerpunkt Gesamtmasse m r s =
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C
Lösungen Aufgabenblatt 6
Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 6 Übungen E Mechanik WS 07/08 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
3.3 Stöße zwischen zwei Körpern
3.3. STÖSSE ZWISCHEN ZWEI KÖRPERN 131 3.3 Stöße zwischen zwei Körpern 3.3.1 Allgemeine Anmerkungen Wir wollen im folgenden Abschnitt Stossprozesse zwischen zwei Körpern der Masse m 1 bzw. m betrachten.
Lösung VIII Veröentlicht:
1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision
EXPERIMENTALPHYSIK I - 4. Übungsblatt
Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle
Grundlagen der Physik 1 Lösung zu Übungsblatt 6
Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
Physik 1. Stoßprozesse Impulserhaltung.
Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz
m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:
Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen
Impulserhaltung in zwei Dimensionen (M5)
Impulserhaltung in zwei Dimensionen (M5) Ziel des Versuches Der elastische Stoß zweier Scheiben mit sowohl gleicher als auch unterschiedlicher Masse, die sich auf einem Luftkissentisch nahezu reibungsfrei
3. Kapitel Der Compton Effekt
3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 26/7 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 7 / 3..26. Wegintegral Gegeben sei das Vektorfeld A( r) = ay
Experimentalphysik E1
Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct
Übungen zu Experimentalphysik 1 für MSE
Physik-Department LS für Funktionelle Materialien WS 017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,
SG Stoßgesetze. Inhaltsverzeichnis. Marcel Schmittfull (Gruppe 2) 25. April Einführung 2
SG Stoßgesetze Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Stöße............................ 2 2.2 Schwerpunktsystem....................
Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen
Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen 1. Eine Lore mit der Masse 800 kg fährt mit 1,5 m/s durch ein Bergwerk. Während der Fahrt fallen von oben 600 kg Schotter in die Lore. Mit welcher
I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems
I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also
Kinetische Gastheorie
Prof. Dr. Norbert Hampp /4. Kinetische Gastheorie Kinetische Gastheorie In der kinetischen Gastheorie sind die Gasteilchen - massebehaftet - kugelförmig mit Durchmesser d (mit Ausdehnung) - haben keine
Übungsblatt IX Veröffentlicht:
Pendel Eine Kugel der Masse m und Geschwindigkeit v durchschlägt eine Pendelscheibe der Masse M. Hinter der Scheibe hat die Kugel die Geschwindigkeit v/2. Die Pendelscheibe hängt an einem steifen Stab
Physikunterricht 11. Jahrgang P. HEINECKE.
Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig
Experimentalphysik I: Mechanik
Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m
T2 Quantenmechanik Lösungen 2
T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,
Experimentalphysik 1. Vorlesung 2
Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg ([email protected]) Katharina Scheidt ([email protected]) Inhaltsverzeichnis
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit
Versuch 2 - Elastischer und inelastischer Stoß
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 2 - Elastischer und inelastischer Stoß 26. überarbeitete Auflage vom 10. Mai 2016 Dr. Stephan
Übung 8 : Spezielle Relativitätstheorie
Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die
Übungsblatt 06. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,
Übungsblatt 06 PHYS00 Grundkurs I Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, [email protected]) 5.. 005 und 8.. 005 Aufgaben. Ein Auto fährt auf 45 -Breite mit der Geschwindigkeit v
Klassische Experimentalphysik I (Mechanik) (WS 16/17)
Klassische Experimentalphysik I (Mechanik (WS 16/17 http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 6 Lösungen Name des Übungsgruppenleiters und Gruppenbuchstabe:
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
Klausur Physik I für Chemiker
Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Agio Department Physik Klausur Physik I für Chemiker Lösung zu Aufgabe 1: Kurzfragen Lösung zu Aufgabe 2:
Blatt 4. Stoß und Streuung - Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei
4.4 Berechnung von Wirkungsquerschnitten
. Berechnung von Wirkungsquerschnitten. Berechnung von Wirkungsquerschnitten Bei Streuprozessen ist der Wirkungsquerschnitt ein Mass für die Wahrscheinlichkeit einer Streuung je einlaufendem Teilchenpaar
Experimentalphysik 1. Aufgabenblatt 2
Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2017/18 Aufgabenblatt 2 Annika Altwein Maximilian Ries Inhaltsverzeichnis 1 Aufgabe 1(zentraler Stoß elastisch, unelastisch)
M3 Stoß zweier Kreisscheiben
Christian Müller Jan Philipp Dietrich I. Versuchsdurchführung a) Erläuterung b) Fehlerbetrachtung II. Auswertung a) Massenmittelpunktsatz b) Impulserhaltungssatz c) Drehimpulserhaltungssatz d) Relativer
Solution V Published:
1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
5. Raum-Zeit-Symmetrien: Erhaltungssätze
5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen
Die Vektoren der Geschwindigkeit lassen sich zu einem Parallelogramm addieren, es gilt:
Stoßgesetze Stöße Ein Stoß ist eine zeitlich begrenzte Wechselwirkung zwischen zwei Teilchen. Vor und nach einem Stoß unterscheiden sich Geschwindigkeit, Impuls und Energie der einzelnen Stoßpartner. Je
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 21/211 13. Übungsblatt - 31. Januar 211 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (2 Punkte) Der Mensch
Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung:
Fixieren wir ein Seil der Länge r an einem Punkt M, nehmen das lose Ende in die Hand und bewegen uns so um den Punkt M herum, dass das Seil stets gespannt bleibt, erhalten wir, wie in nebenstehender Abbildung
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften
5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen
5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )
Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall
Inhalt Stöße Fallunterscheidung Stöße
Inhalt.. Stöße Fallunterscheidung Stöße Physik, WS 05/06 Literatur M. Alonso, E. J. Finn: Physik; dritte Auflage, Oldenbourg Verlag, 000. Paul A. Tipler: Physik für Wissenschaftler und Ingenieure; sechste
Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund
Einführung in die Boltzmann-Gleichung Flavius Guiaş Universität Dortmund Antrittsvorlesung, 19.04.2007 INHALT 1 Herleitung der Boltzmann-Gleichung 2 Boltzmann-Ungleichung und Maxwell-Verteilung 3 H-Theorem
Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.
Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis
1 Drehimpuls und Drehmoment
1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin
Übungsblatt 1: Lösungswege und Lösungen
Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel
5. Arbeit und Energie
Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer
Übungen zu Theoretischer Mechanik (T1)
Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare
Lösung III Veröentlicht:
1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition
Joachim Stiller. Über die Stoßgesetze. Alle Rechte vorbehalten
Joachim Stiller Über die Stoßgesetze Alle Rechte vorbehalten Über die Stoßgesetze Der Impulssatz 1. Der Impulssatz für abgeschlossene Systeme Zwei Billardkugeln stoßen aufeinander. Will man die Geschwindigkeit
1 Rund um die Kugel. a) Mathematische Beschreibung
Rund um die Kugel a) Mathematische Beschreibung Die Punkte der Oberfläche haben vom Mittelpunkt M alle die Entfernung r. Oder, mit den Mitteln der analytischen Geometrie: Für alle Punkte der Kugeloberfläche
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 8. Übung Lösungen 8.1 Innere und äußere Kräfte Die Körper
Übungsblatt 3 ( ) mit Lösungen
Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2011/12 Übungsblatt 3 (25.11.2011) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]
Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Übungen zu Experimentalphysik 1 für MSE
Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin
Energie und Energieerhaltung
Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen
Impuls- und Energieerhaltungssatz, Stoßgesetze
Impuls- und Energieerhaltungssatz, Stoßgesetze Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 6. Januar 2009 1 Inhaltsverzeichnis 1 Impuls- und Energieerhaltungssatz,
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort
Teil 8 Teilchensysteme Impuls
Tipler-Mosca 8. Teilchensysteme und die Erhaltung des linearen Impulses (Systems of particles and conservation of linear momentum) 8.1 Der Massenmittelpunkt (The center of mass) 8. Bestimmung des Massenmittelpunkts
Theoretische Physik 1 Mechanik
Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller
Impuls und Impulserhaltung
Urs Wyder, 4057 Basel [email protected] Impuls und Impulserhaltung Impuls. Einführung und Definition Der Impuls (engl. momentum) eines Körpers ist das, was in der Umgangssprache als Schwung oder Wucht
Durch Ausmultiplizieren von Gleichung (1) erhält man eine Gleichung der Form
49 9. Der Kreis 9.1 Die Koordinaten- und Parameterform der Kreisgleichung Def. Unter dem Kreis k mit Mittelpunkt M(u,v) und Radius R versteht man die Menge aller Punkte P(x,y) die von M den Abstand R haben,
Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung
Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
Kinematik und Dynamik eines Massepunktes GK
Kinematik und Dynamik eines Massepunktes GK Sto ße Interpretiere obiges v/t Diagramm eines Stoßes (v in m/s und t/s) Lösung: Wagen (oben) fährt mit v = 0,4 m/s gegen Wagen (unten) Nach dem unelastischen
Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls
Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung
VII. Streuprozesse. Dieser erste Abschnitt fasst die Definitionen von ein paar Grundbegriffen betreffend Streuprozesse
II. Streuprozesse In diesem Kapitel werden Streuprozesse, d.h. Teilchenstöße, diskutiert. Nach der Einführung von ein paar Begriffen (Aschn. II.1) wird das Prinzip der Berechnung des Wirkungsquerschnitts
Mechanik. Entwicklung der Mechanik
Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik
Kugel - Kugelgleichung, Lagebeziehungen
. Kugelgleichung. Lage Punkt / Kugel 3. Lage Gerade / Kugel 3. Standardverfahren 3. Alternative Kugel - Kugelgleichung, Lagebeziehungen. Lage Ebene / Kugel 5. Lage Kugel / Kugel (Schnittkreis, Berührungspunkt).
Wirkung einer Kraft auf einen Körper durch Angabe der F noch nicht eindeutig bestimmt: hängt noch von der Körpereigenschaft m ab: a.
.0 Impuls /lap5.../mewae_act_scr0_7.0(impuls)_s.tex_6_nov_03 Wirkung einer Kraft auf einen Körper durch Angabe der F noch nicht eindeutig bestimmt: hängt noch von der Körpereigenschaft m ab: a dv F dt
c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13
Lineare Algebra / Analytische Geometrie Grundkurs Aufgabe 9 U-Boot Während einer Forschungsfahrt tritt ein U-Boot am Punkt P(100 0 540) alle Angaben in m in den Überwachungsbereich seines Begleitschiffes
Klassische Theoretische Physik I WS 2013/2014
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2
Kapitel 2 ARBEIT, ENERGIEERHALTUNG, WÄRME UND ERSTER HAUPTSATZ LERNZIELE INHALT. Definition der mechanischen Arbeit
Kapitel 2 ARBEIT, ENERGIEERHALTUNG, WÄRME UND ERSTER HAUPTSATZ LERNZIELE Definition der Arbeit Mechanische Energieformen, kinetische Energie, potentielle Energie, Rotationsenergie Mechanischer Energieerhaltungssatz
1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.
1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit
Experimentalphysik II
Experimentalphysik II PK2-6SP Webpage http://photonik.physik.hu-berlin.de/lehre/ss08exp2/ 1 Übungstermine 1. Dr. J. Puls: Die, 15-17, Raum 1'12, NEW 14 2. Dr. H.J. Wünsche: Die, 15-17, Raum 1 11 NEW 14
v 1 vor m 1 v 1 nach
Aufgaben Aufgabe 1 Ein Gleiter mit der Masse = 500g stößt elastisch auf einen zweiten Gleiter (Masse ist unbekannt). Die Geschwindigkeit des 1. Gleiters vor dem Stoß beträgt v 1 vor = 1,5 m/s, und nach
Lagrangeformalismus. Lagrangegleichungen 1. Art. (v8) Newton: Kraft gegeben; löse N2: Aber:
Lagrangeformalismus Lagrangegleichungen 1. Art (v8) Newton: Kraft gegeben; löse N2: Aber: Oft treten Zwangskräfte auf, die erst durch Bewegung geweckt werden. Gesamtkraft: Beispiel: Ebenes Pendel Zwangskraft
Impulserhaltung. einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss viel grösser
Impulserhaltung Raketenersuch (Vorlesung) einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss iel grösser Elastischer Stoss zweier Massen m 1 und m 2 Versuche: Hammerschlag,
5. Arbeit und Energie
5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit
Passerellen Prüfungen 2009 Mathematik
Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.
Thermodynamik (Wärmelehre) III kinetische Gastheorie
Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes
MAP Physik Prüfung für Biologen und Chemiker WS 09 / 10
MAP Physik Prüfung für Biologen und Chemiker WS 09 / 10 Teil I 09.04.2010 Aufgabe 1 (10 P) Der Wagen einer Achterbahn auf Schienen (hier vereinfacht als grauer Block dargestell startet auf der Höhe h 0
