Anwendungsbeispiel Strahlensatz
|
|
|
- Nele Langenberg
- vor 9 Jahren
- Abrufe
Transkript
1 Anwendungsbeispiel Strahlensatz L5 Das berühmteste Beispiel der Proportionalität ist der Strahlensatz aus der Geometrie (siehe dazu auch Geometrie). Hier noch einmal die Hauptsätze des Strahlensatzes: Voraussetzung: Zwei oder mehrere Parallelen l 1, l 2, l 3, usw... schneiden zwei oder mehrere Schenkel a, b und c eines beliebigen Winkels α (siehe Skizze): l 3 b l 2 C l 1 B A c S α A B C A B C a Strahlensatz 1: Zwei beliebige Streckenabschnitte auf den Schenkeln verhalten sich gleich (zum Beispiel; SA:AB SA :A B oder SA:SB SA :SB ). Strahlensatz 2: Die Abschnitte auf den Parallelen verhalten sich gleich zu den jeweiligen Strecken auf den Schenkeln (zum Beispiel; AA :SA BB :SB CC :SC oder auch AA :SA BB :SB CC :SC ). Strahlensatz 3: Die Abschnitte auf den Parallelen verhalten sich zueinander gleich (zum Beispiel; AA :A A BB :B B CC :C C ). Alle diese Zuordnungen oder Verhaltensweisen sind nichts anderes als proportionale Zuordnungen, das heisst diese Strecken stehen zueinander jeweils in einem direkt-proportionalen Zusammenhang. Folglich können sie auch durch Brüche in Gleichungen umgeschrieben werden: Strahlensatz 1: SA AB Strahlensatz 2: AA SA Strahlensatz 3: AA Seite 96 A A SA oder A B BB SB BB B B CC SC CC C C SA SB oder SA SB AA SA BB SB CC SC
2 A5 Übungen 1. Löse die folgenden Aufgaben, indem die jeweiligen Problemstellungen durch eine Skizze auf das Problem des Strahlensatzes reduziert wird (und löse es dann natürlich mit Hilfe des Strahlensatzes - aber: mit den Werkzeugen der Proportionalität): a) Die Dörfer Pontring und Gelfaring liegen von der Stadt Hondelch aus gesehen auf einer Geraden. Dabei ist Pontring von Hondelch 43km weit entfernt und Gelfaring von Hondelch 28km weit entfernt. Die Dörfer Maysaneck und Penetrumba liegen von Hondelch aus gesehen ebenfalls auf einer Geraden und die Luftlinienentfernungen von Maysaneck nach Gelfaring und von Penetrumba nach Pontring bilden zwei Parallelen. - Wie weit liegt nun Maysaneck von Hondelch entfernt, wenn Penetrumba 102km weit entfernt von Hondelch liegt? - Wie weit voneinander entfernt liegen Penetrumba und Maysaneck? - Wie weit entfernt ist Penetrumba von Pontring, wenn es von Maysaneck bis Gelfaring 80km sind? b) Die zwei Bergspitzen des Piz Gadín und des Piz Kolden liegen von der Stadt Syra aus betrachtet auf einer Geraden. Auf einer Landkarte ist ersichtlich, dass der Piz Gadín von oben gesehen 48km weit von Syra entfernt ist, der Piz Kolden liegt 201km weit entfernt von Syra. Die Stadt Syra liegt 720m ü.m. - Wie hoch ist nun der Piz Kolden, wenn der Piz Gadín genau 2044m ü.m. liegt? - Wie weit ist es von der Bergspitze des Piz Gadín zu der Bergspitze des Piz Kolden, wenn die Bergspitze des Piz Kolden 5548km von Syra entfernt ist? - Wie weit erscheinen die beiden Bergspitzen voneinander entfernt auf einer Landkarte, d.h. von oben betrachtet? c) Eine kleine Lastendrahtseilbahn soll zwischen dem Dorf Ruls und dem Dorf Rishgutta errichtet werden. Diese beiden Dörfer haben einen Höhenunterschied von 80m und sind auf einer Landkarte betrachtet (von oben gesehen) 240m voneinander entfernt. Es sollen nun jeweils im Abstand von 60m von Ruls aus Masten gebaut werden, die diese Lastendrahtseilbahn stützen. - Wie hoch werden die 3 Masten werden? - Welche Strecken auf dem Draht liegen zwischen den 3 Masten? - Wie lange muss der Draht der Lastendrahtseilbahn im Minimum sein? Seite 97
3 *Proportionalitäten mit anderen Grundoperationen L6 Bereits in L 0 wurde beschrieben, dass die Proportionalität, so wie wir sie kennen und benannt haben, nur ein Spezialfall aller möglichen Proportionalitätszusammenhänge ist, nämlich derjenige, welcher als zugrunde liegende mathematische Operation die Multiplikation hat. Andere proportionale Zusammenhänge, die nicht die Multiplikation als mathematische zugrundeliegende Operation haben, sind jedoch gleichfalls Proportionalitäten, man nennt sie nur spezifisch in Bezug auf ihre zugrundeliegende mathematische Operation, da ansonsten Verwechslungen entstehen können. Sehr häufig treten solche Zusammenhänge zum Beispiel in Bezug auf die zugrundeliegende mathematische Operation der Exponentialfunktion auf (Zinseszinsrechnung, Wachstums- und Zerfallsrechnungen) oder der Potenzen (Zusammenhang zwischen der Fläche und dem Volumen von Körpern). Es werden im Folgenden einige exemplarische Beispiele gezeigt. Beispiel 1: Zusammenhang zwischen Länge und Fläche / Fläche und Volumen: a) Ein Quadrat mit einer Seitenlänge von 3m besitzt eine Fläche von 9m 2. Wie gross ist die Fläche eines Quadrates mit Seitenlänge 5m? b) Die Oberfläche eines Würfels mit einer Kantenlänge von 4cm beträgt 96cm 2. Wie gross ist die Oberfläche eines Würfels mit einer Kantenlänge von 5cm? c) Die Oberfläche einer Kugel mit einem Radius von 12dm beträgt 1,81m 2. Wie gross muss der Radius einer Kugel sein, damit die Oberfläche 2m 2 wird? Seite 98 d) Die Fläche der Lungenkapillaren einer 2kg schweren Lunge beträgt ungefähr 90m 2. Wie schwer wird eine Lunge sein, deren Lungenkapillaren eine Fläche von 500m 2 beträgt?
4 L6 *Proportionalitäten mit anderen Grundoperationen Interessant ist, dass es proportionale Zusammenhänge gibt, die scheinbar direkt proportional erscheinen, sie sind es jedoch nicht. Das einfachste Beispiel dazu ist der Zusammenhang zwischen der erreichten Punktzahl einer Probe und der dafür erhaltenen Note. So betrachte man eine Probe, in welcher maximal 120 Punkte erreicht werden können. Es ist wahr, dass 120 Punkte die Note 6 ergeben wird. Es ist hingegen nicht so, dass 60 Punkte die Note 3 (die Hälfte der Note 6) ergeben würden, 60 Punkte ergeben eine Note von 3,5. Und 0 Punkte ergibt nicht die Note 0, da diese ja gar nicht existiert, sondern eben die Minimalnote 1. Was verursacht nun hier diese Verzerrung gegen die Note 1 hin? Die Notenberechnung beschreibt sehr wohl einen proportionalen Zusammenhang zwischen erhaltener Punktzahl und daraus resultierender Note, es liegen jedoch mehr als eine mathematische Grundoperation diesem Zusammenhang zugrunde. Ebenfalls interessant ist zu betrachten, wie sich die Kosten eines Natelvertrages in Bezug auf die verstrichene Zeit, die man telefoniert hat, verhält. Nehme man an, dass 1 Stunde zu telefonieren 12 CHF koste. Nun ist es so, dass, auch wenn man nie telefoniert hat (also 0 Stunden), man die Grundgebühr für das Abonnement zahlen muss, zum Beispiel 25 CHF. Und hier wird der Grund für die bereits oben erwähnte Verzerrung der Notenberechnung klar. Es liegt ein direkt proportionaler Zusammenhang zwischen Zeit und Kosten vor, dieser wird aber stets mit einer konstanten Summe (der Preis für das Abonnement) summiert. Und dies ist bei der Notenberechnung dasselbe. Aus diesen Beispielen wird rasch eine Notwendigkeit ersichtlich. Eine Notwendigkeit nach einer allgemeinen Form, solche allgemein-proportionale Zusammenhänge mathematisch beschreiben zu können. Und dies ist möglich mit dem sogenannten Funktionsbegriff. Eine Funktion beschreibt einen allgemeinen, formalen Zusammenhang zwischen zwei (oder sogar mehreren) kategorischen Dingen. Dabei ist eine Funktion nichts anderes als eine Formel, welche die kategorischen Dinge (oft mit Variablen ausgedrückt) miteinander in Beziehung setzt. Seite 99
5 *Funktionale Zusammenhänge L7 Die Proportionalität, wie sie in L 1, L 2, L 3 und L 5 beschrieben wird, beschreibt einen mathematischen Zusammenhang zwischen zwei oder mehreren kategorischen Dingen, dem nur eine mathematische Grundoperation zugrunde liegt, nämlich die Multiplikation. Im Falle der indirekten Proportionalität (siehe dazu L 4 ) die Division. Das Beispiel der Berechnung einer Note aus der erreichten Punktzahl aus L 6 zeigt, dass es im Leben oft jedoch wichtige, oft verwendete, aber einfache Zusammenhänge gibt, denen mehr als eine mathematische Grundoperation zugrunde liegt. Daher ist die Theorie für die Proportionalität, deren zugrundeliegende mathematische Operation nur die Multiplikation oder die Division ist, nicht ausreichend, um alle möglichen Proportionalitäten, die es geben kann, zu beschreiben. Dies wird jedoch möglich mit dem sogenannten Funktionsbegriff, wie er am Ende von L 6 erwähnt wird. Dabei wird ein mathematischer Zusammenhang zwischen zwei oder auch mehreren kategorischen Dingen direkt mit den zugrundeliegenden mathematischen Operationen in Form einer Formel beschrieben. Da per Definition (siehe dazu L 0 ) Proportionalitäten (mathematische Zusammenhänge) nur dann auftreten, wenn sie in allen möglichen, unterscheidbaren Fällen gleich bleibt, können in dieser Formel die kategorischen Dinge, zwischen denen der mathematische Zusammenhang besteht, variabel bleiben. Diese Dinge werden somit oft auch mit Variabeln in der Formel beschrieben, zum Beispiel x und y. Desweiteren ist es oft sinnvoll, diese Formel in eine Form zu bringen, sodass man den Wert des einen kategorischen Dinges einsetzen kann und die Formel sodann gleich den Wert des anderen kategorischen Dinges berechnet. Das heisst, die Formel muss nach einer der Variable aufgelöst sein (auf der einen Seite der Gleichung steht nur eine Variable allein). Falls eine Formel in einer solchen Form vorhanden ist, so spricht man davon, dass diese Formel explizit angegeben ist. Falls dies nicht so ist (falls auf keiner Seite der Gleichung eine der Variablen alleine steht), so spricht man davon, dass die Formel implizit angegeben ist. Eine solche Formel nennt man nun einen Funktionalen Zusammenhang, da die Formel den mathematischen Zusammenhang zwischen zwei oder mehreren kategorischen Dingen in Form einer Funktion beschreibt. Dabei wird die Formel oft Seite 100
6 L7 *Funktionale Zusammenhänge durch den Buchstaben der Variablen beschrieben, welche für das isolierte kategorische Ding steht, und in Klammern wird die Variable angegeben, welche das andere oder die anderen kategorischen Dinge beschreibt/en, die als Werte zur Berechnung des isolierten Dinges in die Formel eingesetzt werden können. Man spricht dabei von der Abhängigkeit zwischen der isolierten Variablen und ihren Argumenten. Es sollen nun die Beispiele aus L 6 in Form solcher Funktionen beschrieben werden: Beispiel: a) Die Seitenlänge beschreibe die Variable s und die Fläche des Quadrates beschreibe die Variable A: Funktionen: A(s) s 2 oder s(a) A b) Die Kantenlänge des Würfels beschreibe die Variable k und die Oberfläche des Würfels beschreibe die Variable O: Funktionen: O(k) 6 k 2 oder k(o) (O 6) c) Der Radius der Kugel beschreibe die Variable r und die Oberfläche der Kugel beschreibe die Variable O: Funktionen: O(r) 4 π r 2 oder r(o) (O (4 π)) d) leider nicht trivial, d.h. es kann nur in individuellen Fällen beschrieben werden. Notenberechnung: Es sei die Maximalpunktzahl 120 Punkte, die erreichten Punkte werden mit der Variable p beschrieben und die Note mit der Variable N: Funktionen: N(p) ((5 p) 120) + 1 oder p(n) (120 N - 120) 5 Natelvertrag: Die Stunden, die man telefoniert hat sei durch die Variable t beschrieben und die Kosten, die man zahlen muss, durch die Variable K: Funktionen: K(t) 12 t + 25 oder t(k) (K - 25) 12 Seite 101
Minimalziele Mathematik
Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen
Grundwissen Mathematik 8.Jahrgangsstufe G8
Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache
4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen
. Mathematik Olympiade Saison 196/1965 Aufgaben und Lösungen 1 OJM. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch
Natürliche Zahlen, besondere Zahlenmengen
Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,
math-circuit 10 Hefte kosten CHF Hefte kosten CHF 2.40 Wie viel kosten 2, 5 oder 6 Hefte? 5 Hefte kosten CHF 6. 6 Hefte kosten CHF 7.
Im Bereich «Zuordnungen» 2 5 Proportionale, umgekehrt proportionale und andere Zuordnungen (ab LU ) Diese Übung kann man mit Kärtchen durchführen. Ist die Zuordnung proportional (p), umgekehrt proportional
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN
ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN Beispiel: Wenn zwei Röhren gleichzeitig geöffnet sind, kann ein Wasserbecken in 40 Minuten gefüllt werden. Fließt das Wasser
Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g )
Serie W1 Klasse 9 RS 1. 1 1 + 2. -14(-3 + 5) 3 5 3. 5% von 600 4. 4,5 h = min 5. 4³ 6. Runde auf Tausender. 56508 7. Vergleiche (). 1 und 5 1 4 8. Stelle die Formel nach der Größe in der Klammer
Bayerischer Mathematiktest an Realschulen 2006
Jgst. 6 Aufgabe: 1.1 Die vier Grundrechenarten 1.0 Berechne: 1.1 73 3 22 + 30 = 37 Aufgabe 1.1 76,4% 23,6% Jgst. 6 Aufgabe: 1.2 Potenzen 1.0 Berechne: 1.2 2 2 2 5 4 + 3 = 18 Aufgabe 1.2 80,4% 19,6% - 2
Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich:
Elementargeometrie Der. Strahlensatz Geschichte: In den Elementen des Euklid wird im 5.Buch die Proportionenlehre behandelt, d.h. die geometrische Theorie aller algebraischen Umformungen der Proportion.
ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17
Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:
Inhaltsverzeichnis / Modul 1
Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
Achsen- und punktsymmetrische Figuren
Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken
Mathematik für das Ingenieurstudium
Mathematik für das Ingenieurstudium von Martin Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzeichnis schnell
Station A * * 1-4 ca. 16 min
Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt
Lineare Algebra - Übungen 1 WS 2017/18
Prof. Dr. A. Maas Institut für Physik N A W I G R A Z Lineare Algebra - Übungen 1 WS 017/18 Aufgabe P1: Vektoren Präsenzaufgaben 19. Oktober 017 a) Zeichnen Sie die folgenden Vektoren: (0,0) T, (1,0) T,
Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski
02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:
Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck
Repetition Mathematik 7. Klasse
Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro
Definitions- und Formelübersicht Mathematik
Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar
16. Platonische Körper kombinatorisch
16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder
Drei Flugzeuge unterwegs
Anwendungsaufgaben: R. 3. 1 Drei Flugzeuge unterwegs Um die Bewegungen dreier Flugzeuge zu analysieren, wird ein räumliches kartesisches Koordinatensystem gewählt, das an die Navigation auf bzw. über der
Aufnahmeprüfung Mathematik
Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden
1 (ca. 4 n, 16 h) Stellen zu Sachsituationen Fragen, suchen nach nutzen Lösungsstrategien (Schätzen, Probieren) und hinterfragen diese Größen und Messen: Längen, Flächeninhalt und Volumina unterscheiden
Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $
$Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken
Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung. Stand April 2012
Dimensionen Mathematik 5 GK Grundkompetenzen für die neue Reifeprüfung Stand April 2012 Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Zahlen und Rechengesetze Funktionen Gleichungen Lineare Gleichungssysteme
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Grundwissen. 5. Jahrgangsstufe. Mathematik
Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe
Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen
Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -
Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29
Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die
Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Elementare Geometrie Vorlesung 2
Elementare Geometrie Vorlesung 2 Thomas Zink 24.4.2017 Vierecke Definition Ein Viereck ABCD ist ein Streckenzug aus vier Strecken AB, BC,CD, DA ohne Selbstüberschneidungen. Vierecke Definition Ein Viereck
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten
WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren
Grundwissen 8 - Aufgaben Seite 1
Grundwissen 8 - Aufgaben 22.01.2016 Seite 1 1. Ergänze jede der folgenden Aussagen zum Rechnen mit Potenzen mathematisch sinnvoll und grammatikalisch korrekt. a) Zwei Potenzen mit gleicher Basis werden
Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:
Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:
Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.
I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Oberfläche von Körpern
Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h
Übersicht Grundwissen 8. Klasse
Übersicht Grundwissen 8. Klasse Direkt proportionale Größen 1. Diese Größen sind direkt proportional, wenn es bei mehreren Äpfeln keinen Preisnachlass (Rabatt) gibt. Diese beiden Größen sind voneinander
Direkt und indirekt proportionale Größen
8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der
Fit in Mathe. Mai Klassenstufe 9. Körper ohne π
Thema Musterlösungen 1 Körper ohne π Ein rechtwinkliges Dreieck besteht aus den Seiten a, b und c, wobei der Seite c ein rechter Winkel gegenüberliegt. Berechne jeweils die Länge der fehlenden Seite(n).
Klausur zur Einführung in die Geometrie im SS 2002
Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt
Schularbeitsstoff zur 2. Schularbeit am
Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen
ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein
Aufnahmeprüfung: Mathematik
Aufnahmeprüfung: Mathematik Alle Fragen orientieren sich am Lehrplan für die Unterstufe bzw. Neue Mittelschule. Beispiele für mögliche Fragestellungen (mit Lösungen) Zahlen und Maße Vorrangregeln Bruchrechnen
Quadratische Gleichungen
1 Quadratische Gleichungen ax 2 + bx + c = 0 1. Löse folgende Gleichungen: a) x 2 + 2x 15 = 0 b) x 2 6x + 7 = 0 c) x 2 + 15x + 54 = 0 d) x 2 + 12x 64 = 0 e) x 2 34x + 64 = 0 f) x 2 + 15x 54 = 0 g) x 2
Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6
Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):
Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a=5m.
TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 1.2.55 Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a5m. Kapitel 1 TG TECHNOLOGISCHE GRUNDLAGEN Seite
ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE
ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib Länge und Breite des Rechtecks in einer Formel an. Es ist natürlich leicht
Tag der Mathematik 2010
Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt
2.3 Potenzen (Thema aus dem Bereichen Algebra)
. Potenzen Thema aus dem Bereichen Algebr Inhaltsverzeichnis 1 Repetition: Potenzen mit natürlichen Exponenten Potenzen mit ganzzahligen Exponenten 4 Potenzen mit rationalen Exponenten 8 1 Potenzen 19.11.007
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2016 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
Grundwissen. 6. Jahrgangsstufe. Mathematik
Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren
Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis
Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken
Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016
1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q
Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen
Grundwissen 5. Klasse
Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)
Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen
Thema aus dem Bereich Algebra - 1.1 lineare Gleichungen und Ungleichungen Inhaltsverzeichnis 1 allgemeine Gleichungen 2 2 lineare Gleichungen mit einer Variabeln 2 3 allgemeingültige und nichterfüllbare
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Dieses Kapitel vermittelt:
2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften
Wahlteil Geometrie/Stochastik B 1
Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG
Grundwissen 9. Klasse. Mathematik
Grundwissen 9. Klasse Mathematik Philipp Kövener I. Reelle Zahlen 1.1 Quadratwurzel Definition Für a 0 ist die Quadratwurzel diejenige nicht-negative Zahl, deren Quadrat a ergibt. a heißt Radikand und
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,
Mathematik 2 SS 2016
Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,
Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1
Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind
3.6 Einführung in die Vektorrechnung
3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................
Aufgaben. zu Inhalten der 5. Klasse
Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht
Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $
$Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:
Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)
fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................
Lösungen Kapitel A: Zuordnungen
Windgeschwindigkeiten Lösungen Kapitel A: Zuordnungen Arbeitsblatt 01: Graphen einer Zuordnung 5 4 3 2 1 0 1 2 3 4 5 6 Tage Strandabschnitte 1 2 3 4 5 6 Muscheln 4,2 2,1 0,7 1,2 7,3 0,5 Arbeitsblatt 02:
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei
2.6 Potenzen (Thema aus dem Bereichen Algebra)
2.6 Potenzen Thema aus dem Bereichen Algebra) Inhaltsverzeichnis 1 Einführung in den Begriff der Potenz 2 2 Repetition: Potenzen mit natürlichen Exponenten 2 Potenzen mit ganzzahligen Exponenten 4 4 Potenzen
Grundwissen Klasse 7
Grundwissen Klasse 7 Zahlenmengen = {1; 2; 3; 4; 5; 6;... } Die Menge der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die Menge der ganzen Zahlen. Die Menge der rationalen Zahlen. Multiplikation
! % Note: mit P. ! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2
! % Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 10 Aufgaben mit einigen
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss
Kompetenzen am Ende der Einheit GRUNDWISSEN
Kompetenzen am Ende der Einheit GRUNDWISSEN A) Grundrechenarten mit - 1.Natürlichen Zahlen : Berechne ohne Taschenrechner : a) 6438 + 64742 b) 8633 5877 c) 28 * 36 d) 7884 : 9-2. Brüchen : Berechne ohne
Realschule Abschlussprüfung
Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks
min km/h
Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t
Mathematische Theorien im kulturellen Kontext. Fläche eines Parabelsegments nach Archimedes
Seminar: Mathematische Theorien im kulturellen Kontext Thema: Fläche eines Parabelsegments nach Archimedes von: Zehra Betül Koyutürk Studiengang Angewandte Mathematik 27.01.2016 ARCHIMEDES Über das Leben
Zahlensystem und Grundrechnen Gleichungen und Formeln umstellen
Seite 1 M 1.11 Das Gleichheitszeichen wird in der nicht nur benutzt, um ein Ergebnis auszudrücken. Mathematische Ausdrücke mit einem Gleichheitszeichen nennt man auch Gleichung. Eine Gleichung besteht
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13
Aufgaben für Dienstag, 23.10.2012: Physik im Straßenverkehr Für die Sicherheit im Straßenverkehr spielen die Bedingungen bei Beschleunigungsund Bremsvorgängen eine herausragende Rolle. In der Straßenverkehrsordnung
2.4A. Reguläre Polyeder (Platonische Körper)
.A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:
Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g
Themenbereich : Proportionalitätszuordnungen Benzinmenge in Abhängigkeit von dem Preis: Proportionale Zuordnungen Wenn eine Größe verdoppelt wird, führt dies zur Verdoppelung der Anderen Die Zuordnungsvorschrift
Repetition Mathematik 6. Klasse (Zahlenbuch 6)
Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von
PDF created with pdffactory Pro trial version
1. Berechne: a) - 311 185 b) - 176 + 213 c) 234 865 d) 195 (- 523) e) (- 324) (- 267) f) 165 + (- 316) g) (-23) 18 h) (- 17) (- 54) i) 35 (- 78) j) 314 1234 k) (- 8) 4 l) (- 11) 3 m) (- 2) 9 n) (- 2) 10
Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg
Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480
