Statistik-Klausur vom
|
|
|
- Hanna Buchholz
- vor 9 Jahren
- Abrufe
Transkript
1 Statistik-Klausur vom Bearbeitungszeit: 90 Minuten Aufgabe 1 a) Ein Unternehmen möchte den Einfluss seiner Werbemaßnahmen auf den erzielten Umsatz quantifizieren. Hierfür werden die jährlichen Ausgaben für Werbung und die jährlich erzielten Umsätze über einen Zeitraum von acht Jahren erfasst. Die Daten sind der folgenden Tabelle zu entnehmen: Werbung Umsatz Jahr in 00 = in = Berechnen und interpretieren Sie eine geeignete statistische Maßzahl zur Messung des linearen Zusammenhangs zwischen den jährlichen Werbeausgaben und dem Umsatz. 2. Angenommen das Unternehmen plant, = für Werbung auszugeben. Mit welchem Umsatz kann es dann rechnen? 3. Für wie verlässlich halten Sie Ihre Ergebnisse aus 2)? (Begründung!) b) Angenommen ein empirischer Korrelationskoeffizient nehme den Wert von null an. Können Sie dann daraus die Schlussfolgerung ziehen, dass die beiden Variablen stochastisch unabhängig voneinander sind? Begründen Sie kurz Ihre Meinung. Aufgabe 2 In der folgenden Tabelle ist der Verbraucherpreisindex für Nordrhein-Westfalen auf verschiedenen Basisjahren angegeben: 1
2 Verbraucherpreisindex Basisjahr Basisjahr Basisjahr Jahr , ,0 6, , , , , ,0 7, , ,7 a) Berechnen Sie eine von 1999 bis 2007 durchgehende Indexreihe, die 2000 als Basisjahr hat. b) Wie hoch ist die Preissteigerung (Inflationsrate) insgesamt in Prozent in der Zeit von 1999 bis 2007? c) Wie hoch ist die durchschnittliche jährliche Preissteigerung (Inflationsrate) in Prozent in der Zeit von 1999 bis 2007? d) Wie hoch war der Kaufkraftverlust insgesamt in der Zeit von 1999 bis 2007? e) Im Jahr 2005 betrugen die privaten Konsumausgaben in NRW insgesamt Mio. Euro, im Jahr 2006 betrugen die privaten Konsumausgaben in NRW insgesamt Mio. Euro. Berechnen Sie die reale Zunahme der Konsumausgaben in Prozent von 2005 auf Aufgabe 3 Die Anzahl der Tage, die ein Kunde auf einen Neuwagen wartet, kann als normalverteilt angesehen werden mit dem Erwartungswert einundzwanzig Tage und der Standardabweichung zehn Tage. a) Wie groß ist die Wahrscheinlichkeit, dass ein Kunde 1. höchstens einundzwanzig Tage auf seinen Neuwagen warten muss? 2. genau einundzwanzig Tage auf seinen Neuwagen warten muss? 3. zwischen zwanzig und dreißig Tagen auf seinen Neuwagen warten muss? b) Mit welcher Wartezeit auf den Neuwagen muss ein Kunde mit der Wahrscheinlichkeit von 1. 90% mindestens rechnen? 2. 95% höchstens rechnen? 2
3 c) Eine Autofirma möchte den Anteil der Kunden, die länger als achtundzwanzig Tage auf einen Neuwagen warten müssen, mit Hilfe eines 99%-Konfidenzintervalls schätzen. In einer Umfrage stellt sich heraus, dass von 250 Käufern eines Neuwagens insgesamt 147 länger als achtundzwanzig Tage auf einen Neuwagen warten mussten. Berechnen Sie aus den Daten das 99%-Konfidenzintervall. Aufgabe 4 Ein Unternehmen hat Forderungen an drei Kunden A,B und C. Die Höhe der Forderungen und die zugehörigen Ausfallwahrscheinlichkeiten (Wahrscheinlichkeit, dass eine Forderung nicht bezahlt wird) sind wie folgt gegeben: Kunde Höhe der Forderung Ausfallin Geldeinheiten Wahrscheinlichkeit A 000 % B % C % Die Wahrscheinlichkeit, dass die Forderungen an die Kunden A und B beide ausfallen, beträgt 0,8% an die Kunden A und C beide ausfallen, beträgt 1,0% an die Kunden B und C beide ausfallen, beträgt 1,0% an alle drei Kunden A,B und C ausfallen, beträgt 0,2% a) Berechnen Sie die Wahrscheinlichkeit, dass mindestens eine der beiden Forderungen an die Kunden A und C ausfällt. b) Sind die Ereignisse Forderung an den Kunden A fällt aus und Forderung an den Kunden B fällt aus stochastisch unabhängig? c) Sind die Ereignisse Forderung an den Kunden B fällt aus und Forderung an den Kunden C fällt aus stochastisch unabhängig? d) Berechnen Sie die Wahrscheinlichkeit, dass nur die Forderung an Kunde B, nicht aber die Forderungen an die Kunden A und C ausfallen. e) Das Unternehmen möchteeinerückstellung für drohende Verluste in Höhe des erwarteten Verlustes aus diesen drei Forderungen in die Bilanz einstellen. In welcher Höhe muss dieser Bilanzposten angesetzt werden? 3
4 Lösung zu Aufgabe 1: a) X=Werbeausgaben (in Euro pro Jahr) Y =Jahres-Umsatz (in Euro) x i y i x i y i x 2 i yi b 1 = = =1,5 624 b 2 = = =0,416 r =+ 1,5 0,416 = 0, d.h. es liegt positive mittel starke Korrelation vor 2. Gesucht: a 1 + b 1 14 =? 1 1,5 88 a 1 = = 2,75 8 2,75 + 1,5 14 = 18,25 d.h. es ist mit einem Umsatz von Euro zu rechnen. 3. Da es sich bei der Berechnung um eine Interpolation handelt und da der lineare Zusammenhang beinahe stark ist, hat der Prognosewert Verlass. b) Der empirische Korrelationskoeffizient zweier Variablen wird aus den Werten (x 1,y 1 ),...,(x n,y n ) berechnet und ist ein Maß für den linearen Zusammenhang der Werte x 1,...x n und y 1,...,y n. Die stochastische Unabhängigkeit zweier Variablen ist eine Aussage über die gemeinsame Wahrscheinlichkeitsverteilung der beiden Variablen. Insofern kann ausgehend von r xy =0für einen Datensatz aus X und Y nichts über die stochastische Abhängigkeit oder Unabhängigkeit von X und Y ausgesagt werden. Der Wert r xy = 0 besagt lediglich, dass kein linearer Zusammenhang zwischen den x-werten und y-werten vorliegt. Lösung zu Aufgabe 2: 4
5 a) Jahr Index ,2 =98,4 6, , , , , , , ,6 1,4 = 9, ,6 3,7 = 111,6 0 b) 111,6 98,4 =1, d.h. die Preissteigerung beträgt 13 Prozent. c) 8 1, = 1, d.h. die durchschnittliche jährliche Inflationsrate beträgt 1,6 %. 1 d) Kaufkraft = 1, =0, d.h. der Kaufkraftverlust beträgt 11,8 % e) W = =1, und P La = 1,4 0 =1,014 Q = W P = 1, =1, d.h. die reale Steigerung beträgt 0,7%. 1,014 Lösung zu Aufgabe 3: a) 1. P (X µ) =0,5 d.h. die Wahrscheinlichkeit beträgt 50%. 2. P (X = 21) = 0 d.h. die Wahrscheinlichkeit beträgt null. 3. P (X 30) P (X 20) = F ( ,816 0,460 = 0,356 d.h. die Wahrscheinlichkeit beträgt etwa 36%. ) F ( ) = F (0,9) F ( 0,1) = b) 1. 0, = P (X x) 1,2816 = x 21 x =8,2 d.h. mit 90%iger Wahrscheinlichkeit ist mit einer Wartezeit von mindestens acht Tagen zu rechnen. 2. 0,95 = P (X x) 1,6449 = x 21 x =37,4 d.h. mit 95%iger Wahrscheinlichkeit ist mit einer Wartezeit von höchstens siebenunddreißig Tagen zu rechnen. 5
6 c) p=anteil der Kunden, die länger als achtundzwanzig Tage auf ihren Neuwagen warten müssen p = =0,588 Faustregel n = erfüllt 0,99-KI für p 0,588 0,412 0,588 ± 2,5758 =[0,508; 0,668] [51%; 67%] 250 Lösung zu Aufgabe 4: A=die Zahlung von Kunde A fällt aus B=die Zahlung von Kunde B fällt aus C=die Zahlung von Kunde C fällt aus a) Arbeitstabelle A A C 0,01 0,04 0,05 C 0,09 0,86 0,95 0, 0,90 1 P (A C) =1 0,86 = 0,14 d.h. die Wahrscheinlichkeit beträgt 14%. b) P (A B) =0,008 = 0, 0,08 = P (A) P (B) d.h. A, B sind stochastisch unabhängig. c) P (B C) =0,01 0,004 = 0,08 0,05 = P (B) P (C) d.h. B,C sind stochastisch abhängig. d) Wir tragen die Prozentzahlen in ein Venn-Diagramm ein: A B 8,4 0,6 6,4 0,2 0,8 3,2 C 79,6 P (A B C) =0,064 d.h. die Wahrscheinlichkeit beträgt 6,4%. e) X=Verlust (in Euro) aus den Forderungen an die drei Kunden 6
7 Verlust Wkt , , , , , , , ,796 E[X] = , , , , , , , ,796 = d.h. es ist mit einem Verlust von Euro zu rechnen. 2. Lösungsweg: P (A B C) 000+P (A B C) ( )+P (A B C) ( ) +P (A B C) ( ) + P (A B C) P (A B C) ( ) + P (A B C) = P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) P (A B C) = P (A) P (B) P (C) = 000 0, , ,05 =
Statistik-Klausur vom 11. Februar 2005
Statistik-Klausur vom 11. Februar 005 Bearbeitungszeit: 90 Minuten Aufgabe 1 Ein Konzern erstellt einen Überblick über die Umsätze von drei Tochterunternehmen in der vergangenen Periode. Dazu werden die
Statistik-Klausur vom 10. Juli 2007
Statistik-Klausur vom 10. Juli 2007 Bearbeitungszeit: 90 Minuten Aufgabe 1 a) Ein Unternehmen produziert und vertreibt Fahrräder vom Typ A, B und C. Insgesamt 35% der abgesetzten Fahrräder sind vom Typ
Übungen zur Vorlesung Wirtschaftsstatistik Lineare Regression
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 [email protected] Übungen zur Vorlesung Wirtschaftsstatistik Lineare Regression
Statistik-Klausur vom 28. Januar 2008
Statistik-Klausur vom 28. Januar 2008 Bearbeitungszeit: 90 Minuten Aufgabe 1 a) Ein Unternehmen erstellt folgende Statistik über die Aufträge der Wirtschaftsjahre 2006 und 2007: Umsatz in Geldeinheiten
Statistik-Klausur vom 6. Februar 2007
Statistik-Klausur vom 6. Februar 2007 Bearbeitungszeit: 90 Minuten Aufgabe 1 Bei einer Besucherumfrage in zwei Museen wurden die Besuchsdauern (gemessen in Stunden) festgestellt: Besuchsdauer Anteil der
Wirtschaftsstatistik-Klausur am
Wirtschaftsstatistik-Klausur am 0.07.017 Aufgabe 1 Ein Handy- und PC-Hersteller verfügt über ein exklusives Filialnetz von 900 Filialen. Der Gewinn (in GE) der Filialen ist in der folgenden Tabelle nach
Statistik-Klausur vom 12. Juli 2005
Statistik-Klausur vom 12. Juli 2005 Bearbeitungszeit: 90 Minuten Aufgabe 1 Die Divino GmbH plant für den Herbst die Markteinführung eines innovativen Partygetränks. Zur Abschätzung des Marktpotenzials
Statistik-Klausur vom
Statistik-Klausur vom 09.02.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 a) Bei einer Umfrage unter FH-Studierenden ergaben sich die folgenden Anreisezeiten (in Min) zur FH: von... bis unter... Anzahl 0-20
Statistik-Klausur vom
Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen
Statistik-Klausur vom 30. März 2005
Statistik-Klausur vom 30. März 2005 Bearbeitungszeit: 90 Minuten Aufgabe 1 An einer Klausur nahmen 179 Studierende teil. Es konnten die Punktzahlen 0; 0,5; 1; 1,5; 2; 2,5;... ; 80 erreicht werden. Eine
W-Statistik-Klausur
W-Statistik-Klausur 06.07.06 Aufgabe Auf einem Flughafen kann die Wartezeit zwischen zwei Anschlussflügen als normalverteilt mit dem Erwartungswert 0 Minuten und der Standardabweichung 60 Minuten angesehen
Wirtschaftsstatistik-Klausur am
Wirtschaftsstatistik-Klausur am 7.01.01 Bearbeitungszeit: 60 Minuten Aufgabe 1 In der nachfolgenden Tabelle sind die Jahresendwerte des Dax 30 und das Wachstum (in %) des BIP gegenüber dem Vorjahr (Quelle:
Statistik-Klausur vom 2. Februar 2006
Statistik-Klausur vom 2. Februar 2006 Bearbeitungszeit. 90 Minuten Aufgabe 1 a) In einem Unternehmen mit 29 Außendienstmitarbeitern wird eine Statistik über die Anzahl der im abgelaufenen Quartal abgeschlossenen
Übungsblatt 9 (25. bis 29. Juni)
Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell
2. Übung zur Vorlesung Statistik 2
2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen
2. Übung zur Vorlesung Statistik 2
2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen
Statistik-Klausur vom 25. April 2003
Statistik-Klausur vom 25. April 2003 Bearbeitungszeit: 120 Minuten Aufgabe 1 Performance-Vergleich weltweit angelegter Aktienfonds im Drei-Jahres-Vergleich vom 1.1.1999 bis 31.12.2001 Investmentfonds Astra
Übungen zu QM III (Wirtschaftsstatistik) Indexrechnung
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel 39 14 [email protected] Übungen zu QM III (Wirtschaftsstatistik) Indexrechnung
Wahrscheinlichkeitstheorie und Statistik vom
INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen
Mathematik 2 Probeprüfung 1
WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel
Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)
Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.
Der Korrelationskoezient nach Pearson
Der Korrelationskoezient nach Pearson 1 Motivation In der Statistik werden wir uns häug mit empirisch erfassten Daten beschäftigen. Um diese auszuwerten, ist es oftmals notwendig einen Zusammenhang zwischen
Übungen zu QM III (Wirtschaftsstatistik) Indexrechnung
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel 39 14 [email protected] Übungen zu QM III (Wirtschaftsstatistik) Indexrechnung
13 Mehrdimensionale Zufallsvariablen Zufallsvektoren
3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Mathematik für Naturwissenschaften, Teil 2
Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Übungsblatt 9. f(x) = e x, für 0 x
Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable
Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem
Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem
2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017
. Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Bei der Produktion eines Werkstückes wurde die Bearbeitungszeit untersucht. Für die als normalverteilt angesehene zufällige Bearbeitungszeit
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist
WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.
Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im
Regression und Korrelation
Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen
FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte
Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die
Kontingenztabelle: Führerschein Ja Nein Ja Nein Auto. Wie viel Prozent der Studierenden besitzen kein Auto?
Aufgabe 1: Eine (nicht repräsentative) Umfrage unter 200 Studierenden auf dem Campus der Ruhr-Universität ergab: 130 Studierende besitzen ein Auto, 160 einen Führerschein und 128 sowohl Auto als auch Führerschein.
Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie
Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.
Übung zu QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 3914 [email protected] Übung zu QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer
b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!
Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies
Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt
Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2011/12. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2011/12 Aufgabe 1 Übungsleiter
Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:
Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Wahrscheinlichkeit und Statistik BSc D-INFK
Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete
Statistik Probeprüfung 1
WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Statistik Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur Orientierung:
Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 A 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................
Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017
für Wirtschaftsingenieure (B.Sc.) Sommersemester 017 Dr. rer. nat. habil. E-mail: [email protected] 1 Hochschule Darmstadt, Fachbereich MN Sommersemester 017 Testklausur zur Vorlesung Wirtschaftsstatistik
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2.
Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k=1 (2k 1) = n 2. Aufgabe 2. (7 Punkte) Gegeben sei das lineare Gleichungssystem x + 2z = 0 ay
Klausur Statistik Lösungshinweise
Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei
Nachholklausur Statistik: Lösungshinweise
Nachholklausur Statistik: Lösungshinweise Prüfungsdatum: 14. Januar 2014 Prüfer: Etschberger/Jansen/Nebel Studiengang: BW, IM Aufgabe 1 An einer Hochschule sollen die Studierenden ihre Dozenten bezüglich
Probeklausur Statistik Lösungshinweise
Probeklausur Statistik Lösungshinweise Prüfungsdatum: Juni 015 Prüfer: Studiengang: IM und BW Aufgabe 1 18 Punkte 0 Studenten werden gefragt, wie viele Stunden sie durchschnittlich pro Tag ihr Smartphone
(8 + 2 Punkte) = = 0.75
Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,
Klausur zu Statistik II
GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel
67 Zufallsvariable, Erwartungswert, Varianz
67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In
Prüfung aus Statistik 1 für SoziologInnen. Musterlösung
Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort
Übungen zur Vorlesung QM II Lageparameter Aufgabe 5.1 Drei Studierende A, B, C zahlen folgende Miete pro Monat:
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Vorlesung QM II Lageparameter Aufgabe 5.1
Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14
Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.
Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 1. Klausur Wintersemester 2012/2013 Hamburg, 19.03.2013 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Übungen zur Vorlesung Wirtschaftsstatistik Lageparameter Aufgabe 5.1 Drei Studierende A, B, C zahlen folgende Miete pro Monat:
Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Vorlesung Wirtschaftsstatistik Lageparameter Aufgabe
Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006
Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand
Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik
Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer
1 Verteilungsfunktionen, Zufallsvariable etc.
4. Test M3 ET 27 6.6.27 4. Dezember 27 Regelung für den.ten Übungstest:. Wer bei den Professoren Dirschmid, Blümlinger, Vogl oder Langer die UE aus Mathematik 2 gemacht hat, sollte dort die WTH und Statistik
0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1
Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x
Wiederholung der Hauptklausur STATISTIK
Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende
Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,
Übungsaufgaben zu Statistik II
Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben
Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel
Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Aufgaben Lösen Sie A1 und A sowohl mit der Bernoulli-Formel als auch mit dem TR(BV), die anderen Aufgaben lösen sie mit dem TR(BV). A1 Eine Familie
Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)
2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Historische Renditen, Experteninterviews, Analyse von Marktpreisen
1 Portfoliotheorie 1.1 Grundlagen der Portfoliotheorie 1.1.1 Welche vier grundsätzlichen Anlageziele werden von Investoren verfolgt? Minimales Risiko Liquidation wenn nötig Hohe Rendite Gewinnmaximierung
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
Prüfung aus Statistik 1 für SoziologInnen- Gruppe A
Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort
Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen
Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k
Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 /
Aufgabenblock 3 Aufgabe ) A sei das Ereignis: schwerer Verkehrsunfall B sei das Ereignis: Alkohol ist im Spiel Herr Walker betrachtet die Wahrscheinlichkeit P(B A) = 0.3 und errechnet daraus P(-B A) =
Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.
Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc
i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1
1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen
Statistik I. Aufgabe 1
Statistik I, WS 2004/05, Seite 1 von 8 Statistik I Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - selbst erstellte Formelsammlung
TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK Dr. H. Hansen
TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK 11.02.2011 Dr. H. Hansen Klausur für den Bachelorstudiengang zur Vorlesung Statistik für Ökonomen Bitte in Druckschrift ausfüllen
Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.
11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:
4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR
Im Allgemeinen wird sich das Verhalten einer ZR über die Zeit ändern, z.b. Trend, saisonales Verhalten, sich verändernde Variabilität. Eine ZR wird als stationär bezeichnet, wenn sich ihr Verhalten über
Auswertung und Lösung
Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage
Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2
Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k = k=1 n (n + 1). 2 Aufgabe 2. (5 Punkte) Bestimmen Sie das folgende Integral mithilfe partieller
Mehrdimensionale Zufallsvariablen
Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,
Nachklausur Statistik
Aufgabe 1 2 3 4 5 6 7 8 9 10 Punkte Summe Punkte Gesamtpunkte: Nachklausur Statistik Hinweise: Die Klausur besteht aus 5 Seiten mit insgesamt 10 Aufgaben. Sie müssen aus jeder der beiden Kategorien jeweils
Statistik 1 Beispiele zum Üben
Statistik 1 Beispiele zum Üben 1. Ein Kühlschrank beinhaltet 10 Eier, 4 davon sind faul. Wir nehmen 3 Eier aus dem Kühlschrank heraus. (a Bezeichne die Zufallsvariable X die Anzahl der frischen herausgenommenen
entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.
Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
