Tutorium: Diskrete Mathematik
|
|
|
- Franz Kurzmann
- vor 8 Jahren
- Abrufe
Transkript
1 Tutorium: Diskrete Mathematik Steven Köhler mathe.stevenkoehler.de 2
2 Definition I Im allgemeinen Sinn versteht man in der linearen Algebra unter einem Vektor ein Element eines Vektorraums, d.h. einobjekt,das zu anderen addiert und mit Zahlen, die Skalare genannt werden, multipliziert werden kann. (Quelle: Wikipedia) 3 Definition II In der analytischen Geometrie kann man einen Vektor als ein Objekt au assen, dass eine Parallelverschiebung in der Ebene oder im Raum beschreibt. Ein Vektor kann als Pfeil aufgefasst werden, der einen Urbildpunkt mit seinem Bildpunkt verbindet. 4
3 Definition III Jedem Punkt (x; y) 2 R 2 bzw. zugeordnet werden. (x; y; z) 2 R 3 kann ein Vektor Analoges gilt auch fäur alle Punkte (x ;x 2 ;:::;x n ) 2 R n. 5 Schreibweise I Ein Vektor kann wie folgt dargestellt werden: v x ya : z Anstatt die einzelnen EintrÄage mit x, y oder z zu bezeichnen, ist auch die folgende Notation sehr gebräauchlich: v v v 2 v 3 A : 6
4 Schreibweise II Bisher haben wir immer als Spaltenvektoren betrachtet: v v A : AlternativkannmanaberauchalsZeilenvektoren betrachten: v = v v 2 v 3 : Zur besseren ÄUbersicht däurfen zwischen den einzelnen EintrÄagen auch Trennzeichen { beispielsweise Kommas oder Semikolons { gesetzt werden: v = v ; v 2 ; v 3 : v 2 v 3 7 Nullvektor Als Nullvektor wird der folgende spezielle Vektor bezeichnet, dessen EintrÄage alle Null sind: B v C. A : OftwirdderNullvektormitodero bezeichnet. 8
5 Transponieren von käonnen transponiert werden. Das bedeutet nichts anderes, als einen Zeilenvektor als einen Spaltenvektor aufzuschreiben { und andersherum: v v A wird zu v T =(v ;v 2 ;v 3 ); v 2 v 3 u =(u ;u 2 ;u 3 ) wird zu u T u u 2 u 3 A : 9 Länge eines Vektors Die LÄange eines Vektors läasst sich leicht mit Hilfe des Skalarprodukts oder geometrisch Äuber den Satz des Pythagoras bestimmen. Es gilt q v = v 2 + v2 2 + v2 3 : Allgemein gilt q v = v 2 + :::+ v2 n :
6 Normieren von Unter einem normierten Vektor v zu einem Vektor v versteht man einen Vektor der LÄange, der dieselbe Richtung wie v besitzt. Man erhäalt den normierten Vektor v zu einem beliebigen Vektor v, indemmanv mit dem Reziproken seiner LÄange multipliziert. v = jvj v Addition von Die Addition von erfolgt komponentenweise: a + b a a 2 A b b 2 A a + b a 2 + b 2 A : a 3 b 3 a 3 + b 3 Gra sch kann man die Vektoraddition als HintereinanderhÄangen der betrachten. a a+b b b a 2
7 Subtraktion von Die Subtraktion von erfolgt ebenfalls komponentenweise: a b a a 2 b b 2 A a b a 2 b 2 A : a 3 b 3 a 3 b 3 Man kann die Subtraktion auch als Addition des Vektors b zum Vektor a betrachten. Gra sch sieht dies wie folgt aus: a-b b a 3 Skalare Multiplikation EinVektorkannmiteinemkonstantenFaktor 2 R multipliziert werden. Den Wert nennt man Skalar. a a a 2 A a a 2 A a 3 a 3 Man kann die skalare Multiplikation als Strecken oder Stauchen des Vektors interpretieren. -a ½ a a 2a 4
8 Aufgaben Aufgabe a) Berechne die Summe und die Di erenzen der beiden a =(5; ; 23) und b =(4; 2; 7). b) Berechne die Summe und die Di erenzen der beiden a =(47; 8; ) und b =(3; 42). Aufgabe 2 Gegeben seien die v =(; 2; 3), v 2 = (7; 5; 3) und v 3 =(; 2; ). Berechne die LÄange des Vektors v = v v 2 +3v 3. 5 Aufgaben Aufgabe 3 Kannst du entscheiden, ob die v v 2 =( 2; 4; ) orthogonal sind? = (4; 2; 5) und 6
9 Skalarprodukt I Das Skalarprodukt (auch inneres Produkt oder Punktprodukt) ist eine weitere Art der Vektormultiplikation. Dabei werden die komponentenweise multipliziert und diese Produkte aufsummiert: a b a a 2 b b 2 A = a b + a 2 b 2 + a 3 b 3 : a 3 b 3 Man nennt dies auch die Koordinatenform des Skalarprodukts. 7 Skalarprodukt II Anhand des Skalarprodukts zweier a und b kann man RÄuckschlÄusse auf den Winkel zwischen diesen beiden ziehen. Es gilt a b = () a?b: In Worten: Das Skalarprodukt zweier ist genau dann, wenn die beiden senkrecht zueinander (orthogonal)sind. 8
10 Skalarprodukt III Eine andere Art, das Skalarprodukt zu de nieren, ist die folgende: a b = jaj jbj cos : ²jaj und jbj sind die LÄangen der a und b; ² ist der zwischen den beiden eingeschlossene Winkel. 9 Skalarprodukt IV Aus der Formel a b = jaj jbj cos kann man RÄuckschlÄusse auf den Winkel zwischen den beiden a und b ziehen: cos = a b jaj jbj : Hieraus folgt μ a b =arccos : jaj jbj 2
11 Skalarprodukt V Abschlie¼end sehen wir uns an, wie die bereits erwäahnte Koordinatenform des Skalarprodukts hergeleitet werden kann. Gegeben seien die beiden u = (u ;u 2 ;u 3 ) und v = (v ;v 2 ;v 3 ). ' sei der zwischen u und v eingeschlossene Winkel. Nach dem Kosinussatz gilt Umformen ergibt jv uj 2 = jvj 2 + juj 2 2jujjvj cos ': jujjvj cos ' = 2 ³jvj 2 + juj 2 jv uj 2 : 2 Skalarprodukt VI Einsetzen der De nition des Skalarprodukt ergibt u v = ³jvj juj 2 jv uj : 2 Mit der bekannten Formel fäur den Betrag eines Vektors erhalten wir: u v = ³ u u2 2 + u2 3 + v2 + v2 2 + v2 3 2 (v u ) 2 (v 2 u 2 ) 2 (v 3 u 3 ) = ³2u v +2u 2 v 2 +2u 3 v 3 2 = u v + u 2 v 2 + u 3 v 3 : 22
12 Kreuzprodukt Das Kreuzprodukt (auch Äau¼eres Produkt, vektorielles Produkt oder Vektorprodukt )istebenfallseineart,zweia und b zu multiplizieren. Das Resultat ist ein neuer Vektor c, dersowohl senkrecht zu a (d.h. a?c) als auch senkrecht zu b (d.h. b?c)steht: a b a 2 b 3 a 3 b 2 c = a b a 2 b 2 A a 3 b a b 3 A : a 3 b 3 a b 2 a 2 b Wichtig: Das Kreuzprodukt ist nur im R 3 de niert! 23 Aufgaben Aufgabe 4 Gegeben sind die folgenden a, b und c: a 3 A ; b 5 A und c 6 2A 2 2 a) Bestimme a b, a c sowie b c. Welche der a, b und c sind senkrecht zueinander? b) Bestimme einen Vektor, der sowohl senkrecht zu a als auch senkrecht zu b ist.gibdiesenalsnormiertenvektoran. 24
u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.
Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,
Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?
In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen
Lineare Algebra und Computer Grafik
Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare
ax 2 + bx + c = 0, (4.1)
Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der
3.1. Die komplexen Zahlen
3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Einführung in die Tensorrechnung
1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer
Lineare Algebra - alles was man wissen muß
Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Statistische Methoden
Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante
Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.
Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
Leitprogramm Vektorgeometrie
Leitprogramm Vektorgeometrie Torsten Linnemann Pädagogische Hochschule FHNW Gymnasium Oberwil E-mail:[email protected] 18. September 2011 Dank: Ich danke der Klasse 4aL, Kantonsschule Solothurn,
Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009
Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches
Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.
6 Symmetrische Matrizen und quadratische Formen
Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische
ToDo-Liste für s Mathe-Abi 2009
ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:
Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter
Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser
Kill Keyword Density. Weshalb die Keyword Density blanker Unsinn ist.
Kill Keyword Density Weshalb die Keyword Density blanker Unsinn ist. Kill Keyword Density» & Karl Kratz Das ist. Jana ist Diplom- Mathematikerin und Controlling-Leiterin bei der Innovation Group AG. Ihr
Skript zur Vorlesung Höhere Mathematik für Bachelorstudiengänge. Prof. Dr. R. Herzog. gehalten im SS2013 Technische Universität Chemnitz
Skript zur Vorlesung Höhere Mathematik für Bachelorstudiengänge Prof. Dr. R. Herzog gehalten im SS2013 Technische Universität Chemnitz Auszug aus den Studienordnungen zu den Ausbildungszielen der mit dieser
Komplexe Zahlen und Wechselstromwiderstände
Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.
Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren
Vektorgeometrie Version: 28. Dezemer 2007 Bitte nur für den Eigengerauch verwenden) mathenachhilfe.ch. Mathematische Operationen für Vektoren Addition + a + 3 = a + + + 3 + Sutraktion a 3 = a 3 Skalare
Vortrag Postscript, Einführung, Koordinatgeometrie und Prozeduren
Vortrag Postscript, Einführung, Koordinatgeometrie und Prozeduren 03.05.2006 1 2 Punkte und Vektoren Einfache Parallelogramme Vektorprojektion Rotation 3 Variablen Prozeduren 4 3 Grundlegende Fragen zum
ÜBERBLICK ÜBER DAS KURS-ANGEBOT
ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer
Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.
Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht
Mathematik I für Wirtschaftswissenschaftler
1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.
5. Komplexe Zahlen. 5.1 Was ist eine Zahl?
5. Komplexe Zahlen Komplexe Zahlen sind Zahlen der Form a + bi, wo a und b reelle Zahlen sind und i = 1 ist. Wurzeln aus negativen Zahlen gibt es nicht, wird man da antworten, und in der Tat gibt es keine
Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015
ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis
Einführung in MATLAB
Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB
Übungsbuch Algebra für Dummies
...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe
KAPITEL 0. Einführung
Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert
Elemente der Analysis II
Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1
Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen
Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen
Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
DAS ABI-PFLICHTTEIL Büchlein
DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal
Mathematik für das Ingenieurstudium Lösungen der Aufgaben. 4. Dezember 2014
Mathematik für das Ingenieurstudium Lösungen der Aufgaben Jürgen Koch Martin Stämpfle 4. Dezember 4 Inhaltsverzeichnis Grundlagen 5 Lineare Gleichungsssteme 9 Vektoren 7 4 Matrizen 5 Funktionen 9 6 Differenzialrechnung
A Matrix-Algebra. A.1 Definition und elementare Operationen
A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne
Themenkreise der Klasse 5
Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.
Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10
Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel
x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2
Komplexe Zahlen Komplexe Zahlen treten in der Schule zum ersten Mal bei der Lösung von quadratischen Gleichungen auf. Wir nehmen die Gleichung x 2 + 6x + 25 als Beispiel. Diesen Gleichungstyp können wir
Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011
Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h
Elemente der Mathematik. Sachsen 12
Elemente der Mathematik Sachsen 12 ClassPad-Materialien (Betriebsystemversion 3.04) Erstellt von: Steffen Einhorn, Jens Spiegelhauer, Peter Weigert 2010 Schroedel / 2010 CASIO Europe GmbH Inhaltsverzeichnis
Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015
ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen
INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN
INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon
MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE
Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein
Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: [email protected]
1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:
1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Matlab - eine kurze Einführung
Matlab - eine kurze Einführung Helke Karen Hesse, Thomas Dunne [email protected], [email protected] 13.11.2006 1 / Gliederung Überblick Grundlegende Syntax Variablen Vektoren
Grundregeln der Perspektive und ihre elementargeometrische Herleitung
Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.
4. Kapitel 3D Engine Geometry
15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08
Probestudium der Physik: Mathematische Grundlagen
Probestudium der Physik: Mathematische Grundlagen Ludger Santen 1. Februar 2013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 1 Einführung Die Mathematik ist die Sprache der
Definition 27 Affiner Raum über Vektorraum V
Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,
Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man
die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40
Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren.
Komplexe Hier ist noch eine Matheaufgabe, die ich nicht lösen kann. Was ist 9+4? Oh, die ist schwer. Dafür brauchst du Analysis und imaginäre Zahlen. Imaginäre Zahlen?! Du weißt schon. Elfzehn, zwölfunddreißig,
Übungen zum Ferienkurs Lineare Algebra WS 14/15
Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)
Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule
Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
2 Matrizen. 2.1 Definition A = a 32... Element in der 3. Zeile und 2. Spalte RP =
Matrizen James Joseph Sylvester 97 war ein britischer Mathematiker. Eines seiner vielseitigen Arbeitsgebiete war die Theorie von Matrizen und Determinanten. Die ezeichnung Matrix wurde von ihm eingeführt.
Vorlesungsskript. für den Vorkurs Mathematik für Elektrotechniker und Informationstechniker
Vorlesungsskript für den Vorkurs Mathematik für Elektrotechniker und Informationstechniker Nach einer Vorlesung von Prof. Dr. Josef F. Dorfmeister an der Technischen Universität München Verfasst von Conrad
Vorlesung. Komplexe Zahlen
Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems
Didaktischer Kommentar: Vektorrechnung in der Ebene, Teil 1
Didaktischer Kommentar: Vektorrechnung in der Ebene, Teil 1 Dieser Lernpfad bietet einen Einstieg in die Grundlagen der Vektorrechnung. Durch interaktive Applets, Übungen und Aufgaben mit Lösungen sollen
Seminararbeit für das SE Reine Mathematik- Graphentheorie
Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis
Tensorrechnung. Prof. Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieurwesen und Umweltwissenschaften
Tensorrechnung Prof. Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieurwesen und Umweltwissenschaften Wintertrimester 2015 Inhaltsverzeichnis Literatur 2 1 Tensoren 3 1.1 Tensoren
Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7
1. Rationale Zahlen Vernetzen Geben Ober- und Unterbegriffe an und führen Beispiele und Gegenbeispiele als Beleg an (z.b. Proportionalität, Viereck) Überprüfen bei einem Problem die Möglichkeit mehrerer
Optimalitätskriterien
Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen
DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)
DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,
Mathematik Berufskolleg zur Erlangung der Fachhochschulreife
Mathematik Berufskolleg zur Erlangung der Fachhochschulreife INHALTSVERZEICHNIS. GRUNDLAGEN. DAS KOORDINATENSYSTEM. DARSTELLUNG VON GERADEN. SEITENVERHÄLTNISSE IM RECHTWINKLIGEN DREIECK 4. WEITERE GERADENGLEICHUNGEN
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Dietrich-Bonhoeffer-Gymnasium Wiehl
Dietrich-Bonhoeffer-Gymnasium Wiehl Erneuerbare Energien - die maximal nutzbare Energie der Wasserkraft Facharbeit Projektkurs Erneuerbare Energien Abiturjahrgang 2012/2013 vorgelegt von Jan Wittersheim
Klaus Kerber (HTL Anichstraße Innsbruck) Berufsbild MathematiklehrerIn an Höheren Technischen Lehranstalten (HTL) Institut für Mathematik, 17.10.
(HTL Anichstraße Innsbruck) Berufsbild MathematiklehrerIn an Höheren Technischen Lehranstalten (HTL) Institut für Mathematik, 17.10.2012 PROGRAMM Schultyp HTL (was geboten wird) Mathematik an den HTL s
Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.
Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst
1 Lineare Gleichungssysteme
MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Dateiname Name(n) und Matrikelnr. des/der Bearbeiter Tel.-Nr. und E-Mail-Adresse für den Fall, dass die Diskette nicht lesbar ist.
Matrizenrechner Schreiben Sie ein CProgramm, das einen Matrizenrechner für quadratische Matrizen nachbildet. Der Matrizenrechner soll mindestens folgende Berechnungen beherrschen: Transponieren, Matrizenaddition,
Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie
Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern
Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften
Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den
Einführung in die Vektorgeometrie und Lineare Algebra
Vektorgeometrie und Lineare Algebra 1 Einführung in die Vektorgeometrie und Lineare Algebra Anhang: Anleitung zur Nutzung des Computer-Algebra-Systems MAPLE in der Linearen Algebra Prof. Siegfried Krauter
Liebe Teilnehmerinnen und Teilnehmer am Telekolleg,
Liebe Teilnehmerinnen und Teilnehmer am Telekolleg, der Vorkurs Mathematik des Telekollegs soll dazu dienen, mathematische Kenntnisse und Fertigkeiten, die im Telekolleg als Voraussetzung benötigt werden,
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik
Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der
Einführung in Maple. Version 0.2. Tobias Müller
Version. Tobias Müller Ammerbuch, den 5. April 5 Inhaltsverzeichnis Einfaches Rechnen mit Maple 3. Grundlagen................................................ 3. Einfaches Rechnen mit Maple.......................................
Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008
Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)
I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
PHYSIK Kräfte. Kräfte Überlagerungen Zerlegungen. Datei Nr. 91011. Friedrich W. Buckel. Juli 2002. Internatsgymnasium Schloß Torgelow
PHYSIK Kräfte Kräfte Überlagerungen Zerlegungen Datei Nr. 90 riedrich W. Buckel Juli 00 Internatsgymnasium Schloß Torgelow Inhalt Kräfte sind Vektoren. Überlagerung zweier gleich großer Kräfte. Zerlegung
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen
