Kaplan- Meier- Schätzer

Größe: px
Ab Seite anzeigen:

Download "Kaplan- Meier- Schätzer"

Transkript

1 Kaplan- Meer- Schätzer Glederung 1. Enletung 2. Zensur 3. Notaton 4. Methoden zur Schätzung der Überlebensfunton a. Reduced Sample Method/ Drect Method b. Actuaral Method bzw. verscherungsmath. Methode c. Kaplan- Meer- Schätzer bzw. Produt-Lmt-Schätzer (PL- Schätzer) 5. Varanz der Überlebensfunton a. Varanz für de Actuaral Method b. Varanz für PL- Schätzer 6. Umvertelung-nach-Rechts Algorthmus 7. Lteraturverzechns 1. Enletung Der Kaplan-Meer-Schätzer (auch Produt-Lmt-Schätzer) dent zum Schätzen der Wahrschenlchet, dass be enem Versuchsobjet en bestmmtes Eregns nnerhalb enes Zetntervalls ncht entrtt 1 Dese Methode wurde 1958 von Edward Kaplan und Paul Meer entwcelt. de statstsche Analyse von Lebensdauern spelt n medznschen und mechanschen Studen ene wchtge Rolle o Funtonsfähget von eletrschen oder mechanschen Bautelen o Ehe o Kranheten Startpunt: Reruterung des Patenten= Begnn der Therape Interesserende Eregns: Genesung, Tod, Lnderung Lebensdauer: de Zetspanne zwschen enem wohldefnerten Startzetpunt t 0 und dem Entrtt des nteresserenden Eregnsses, dem Endzetpunt t 0 + t Häufg snd Lebensdauer zensert, d.h. der nteresserende Endzetpunt ann ncht beobachtet werden o z.b. Ende ener Stude, obwohl nteresserendes Mermal noch ncht engetreten t 0 + c= Zetpunt der letzten Beobachtung, wobe c, de zenserte Lebenszet st 2. Zensur Man weß nur: egentlche Lebensdauer T > c => Rechtszensur Typ-I- Rechtszensur 1 Wpeda

2 Studenende, bevor das nteresserende Eregns be allen Telnehmern engetreten st n Telnehmer/Enheten werden von t=0 bs festgelegten t=c beobachtet Eregns nur beobachtet, wenn vor Zetpunt c legt, ansonsten T > c Typ-II-Rechtszensur n Enheten werden so lange beobachtet, bs de ersten von hnen ausfallen n wrd vorher festgelegt Zufällge Zensur Versuchsenheten/ Patenten önnen aus zahlrechen Gründen noch vor dem Beenden der Stude der Beobachtung entzogen werden o z.b. Wohnortwechsel, Ausfall aufgrund enes anderen Bautels Realtät: Zensur st Mschung aus zufällger und Typ-I-Rechtszensur o -> zufällge Typ-I-Rechtszensur 3. Notaton Unvollständge Beobachtungen -> ene Analyse mt statstschen Standardverfahren Grundlegende Aufgabe: Aussagen über de Zet T machen, zu der das nteresserende Eregns entrtt T, ncht negatve Zufallsvarable T~F Vertelungsfunton, de de Ausfallzeten beschrebt Wr suchen: Zuverlässgets- bzw. Überlebensfunton, welche de Wahrschenlchet angbt, dass en belebges Indvduum/ Bautel aus ener Populaton/ Menge den Zetpunt t überlebt ges.: F (t) = S(t) = P(T > t), t > 0 zufällge Zenserungen => C ncht neg. Zufallsvarable und C~G Dann snd de Lebenszeten T 1, T 2,, T n d, ncht neg. bzgl. F und de Zensurzeten c 1, c 2,, c n d, ncht neg. bzgl. G vertelt. De Zetpunte der Beobachtungen snd y = mn(t, c ) für,..,n und δ = 1, falls T c 0, falls T > c st Indatorfunton. De Lebenszet wrd nur be T c beobachtet, andernfalls wssen wr nur: T > c. Datensatz für ene Stchprobe: (y 1, δ 1 ), (y 2, δ 2 ), (y n, δ n )

3 4. Methoden zur Schätzung der Überlebensfunton Intervallentelung der Zet n fxerte Intervalle I 1, I 2,, I n a. Reduced Sample Method/ Drect Method n = Anzahl der Überlebenden zu Begnn des Intervalls I d = Anzahl der Verlust während I l = Anzahl der Zensuren während I Dann st de geschätzte Überlebendfunton S (t ) = 1 d n, wobe snd. d = d und n = n 1 l b. Actuaral Method bzw. verscherungsmath. Methode S (t ) = P(T > t ) = P(T > t 1 ) P(T > t 2 T > t 1 ) P(T > t T > t 1 ) = p 1 p 2 p wobe p = P(T > t T > t 1 ) Probate Stchprobengröße (effectve sample sze) n = n 1 2 l Dann glt für de geschätzten Wahrschenlcheten p = 1 q mt q = d n c. Kaplan- Meer- Schätzer bzw. Produt-Lmt-Schätzer (PL- Schätzer) Länge der Intervalle st varabel -> de Beobachtungen selbst legen de Intervalllänge fest

4 x- zensert und 0- unzensert Seen y (1) < y (2) < < y (n) de geordneten statstschen Daten von y 1, y 2,, y n. Dementsprechend st δ = δ (j) genau dann, wenn y = y (j), wobe δ (1), δ (2),, δ (n) ncht geordnet snd. n = Anzahl der Überlebenden zum Zetpunt y () d = Anzahl der Verluste zum Zetpunt y () p = P(T > t T > t 1 ) Für de Schätzung glt: p = n d = 1 d = 1 1 falls δ () = 1 (unzensert) n n n 1 falls δ () = 0 (zensert) Be stetger Vertelung F bzw. ene glechzetgen Verluste/ Zensuren, glt S (t) = p y () t = 1 1 δ () n y () t δ() n = n + 1 y () t n 1 = y () t Erwartungswert für T 1, T 2,, T n zensert und unzensert st n E (T) = (y () y ( 1) ) S (y ( 1) ) mt y 0 = 0 n δ () 5. Varanz der Überlebensfunton Delta- Methode n-tes Taylorpolynom T n (x) = f(x 0 ) + f (x 0 ) 1! f(x) (x x 0 ) + f (x 0 ) 2! Se X~N(μ, σ 2 ) und Entwclungspunt: x 0 = E(X) = μ E f(x) E T 1 (x) = E[f(μ) + f (μ)(x μ)] (x x 0 ) f(n) (x 0 ) (x x n! 0 ) n

5 Aufgabe: Berechne! = E f(μ) + E f (μ)(x μ) = f(μ) + f (μ) E(X μ) =0 = f(μ) Var f(x) Var T 1 (x) = Var f(μ) + f (μ)(x μ) = Var f(μ) + Var[f (μ)(x μ)] =0 = f (μ) 2 Var(X μ) = f (μ) 2 [Var(X) Var(μ)] = f (μ) 2 σ 2 a. Varanz für de Actuaral Method S (t ) = p log S (t ) = log p = log(p ) Unter der Annahme n p ~B(n, p ) folgende Schrtte abarbeten: log p log(p ) + log (p ) (p p ) = log(p ) + 1 (p p p ) 1. Schrtt: Var(log p ) Var log(p ) + 1 (p p p ) = Var(log(p )) + Var 1 (p p p ) = 1 p 2 Var(p p ) = 1 p 2 [Var(p ) Var(p )] = 1 p 2 p q = q n n p 2. Schrtt (Annahme, dass log p 1, log p unabhängg snd) : Var log(s (t ) Var log(p ) = Var [log(p )]

6 = q n p Mt den geschätzten Werten ergbt sch für de geschätzte Varanz: Va r log(s (t ) = q n p = d n n n d n = d n (n d ) 3. Schrtt: Va r S (t ) = Va r exp[log(s (t )] exp[log(s (t )] exp[log(s(t )] + exp [log(s(t )] log(s (t ) log(s(t ) = S(t ) + S(t ) log(s (t ) log(s(t ) Var S (t ) Var S(t ) + S(t ) log(s (t ) log(s(t ) = Var S(t ) + S(t ) 2 Var log(s (t ) log(s(t ) =0 = S(t ) 2 Var log(s (t ) Var(log(S(t )) =0 = S(t ) 2 q n p Va r S (t ) S(t ) 2 n (n d ) Greenwood Formel d b. Varanz für PL- Schätzer Aufgabe: Berechne Va r S (t) unter der Annahme, dass n p ~ B(n, p )! 1. Var log S (t) log S (t) = log 1 1 δ () n = log (p ) δ () = δ () log p

7 Var log S (t) = Var δ () log p = Var δ () log p = δ 2 () Var(log p ) q = δ () n p 2. Va r log(s (t) = δ () q n p δ () 1 n = n 1 1 n = δ () n (n 1) 3. Va r S (t) S(t) 2 Var log S (t) = S(t) 2 δ () n (n 1) y () t δ = S(t) 2 () (n + 1) (n ) 6. Umvertelung-nach-Rechts Algorthmus (von Efron)

8 Zusatz: Grafsche Verfahren ln S (y () ) y () 7. Lteraturverzechns E. L. Kaplan, Paul Meer Nonparametrc Estmaton from Incomplete Observatons. Journal of the Amercan Statstcal Assocaton. Vol. 53, 1958, 282. Glomb, Patrca Statstsche Modelle und Methoden. Oldenburg : Dplomarbet, Mller, Rupent Survval Analyss

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert.

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert. SS 2013 Prof. Dr. J. Schütze/ J. Puhl FB GW Ds. ZG 1 Zufallsgrößen An dem Ergebns enes Zufallsexperments nteressert oft nur ene spezelle Größe, mestens en Messwert. Bespel 1. Zufällge Auswahl enes Studenten,

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen

Verteilungen eindimensionaler diskreter Zufallsvariablen Vertelungen endmensonaler dskreter Zufallsvarablen Enführung Dskrete Vertelungen Dskrete Glechvertelung Bernoull-Vertelung Bnomalvertelung Bblografe: Prof. Dr. Kück Unverstät Rostock Statstk, Vorlesungsskrpt,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Menhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzet nach Verenbarung und nach der Vorlesung. Mathematsche und statstsche Methoden II Dr. Malte Perske perske@un-manz.de

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung)

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung) LÖSUNG KLAUSUR STATISTIK I Berufsbegletender Studengang Betrebswrtschaftslehre Sommersemester 016 Aufgabentel I: Theore (10 Punkte) Snd de nachfolgenden Aussagen rchtg oder falsch? (1 Punkt pro korrekter

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastk, 11.5.13 Wr gehen stets von enem Maßraum (, A, µ) bzw. enem Wahrschenlchketsraum (,A,P) aus. De Borel σ-algebra auf R n wrd mt B n bezechnet, das Lebesgue Maß auf R n wrd mt

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr/Paul Prasse Domnk Lahmann Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte,

Mehr

Übung zu Erwartungswert und Standardabweichung

Übung zu Erwartungswert und Standardabweichung Aufgabe Übung zu Erwartungswert und Standardabwechung In ener Lottere gewnnen 5 % der Lose 5, 0 % der Lose 0 und 5 % der Lose. En Los kostet 2,50. a)berechnen Se den Erwartungswert für den Gewnn! b)der

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht.

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht. 14 Schätzmethoden Egenschaften von Schätzungen ˆθ Se ˆθ n ene Schätzung enes Parameters θ, de auf n Beobachtungen beruht. ˆθn n θ Konsstenz (Mnmalforderung) Eˆθ n = θ Erwartungstreue Eˆθ n n θ Asymptotsche

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte Ökonomsche und ökonometrsche Evaluaton 90 Emprsche Analyse des Arbetsangebots Zele: Bestmmung von Arbetsangebotselastztäten als Test der theoretschen Modelle Smulaton oder Evaluaton der Wrkungen von Insttutonen

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Numerische Methoden II

Numerische Methoden II umersche Methoden II Tm Hoffmann 23. Januar 27 umersche Bespele umersche Methoden zur Approxmaton von Dervatpresen: - Trnomsche Gttermethode - Implzte Fnte Dfferenzen - Explzte Fnte Dfferenzen - Crank-colson

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Exkurs: Entropie in der Wahrscheinlichkeitstheorie

Exkurs: Entropie in der Wahrscheinlichkeitstheorie Exkurs: Entrope n der Wahrschenlchketstheore a) Physk/Thermodynamk: S = k B ln(w) mt W=Anzahl glech-wahrschenlcher Möglchketen (Mkrozustände) a) Informatonstheore: Shannon (1948) Entrope wobe p = f /N

Mehr

Der Parameter Migrationsmatrix Teil I

Der Parameter Migrationsmatrix Teil I Der Parameter Mgratonsmatrx el I Anne-Chrstne Barthel Semnar Portfolokredtrsko Unverstät Mannhem 22..27 Glederung. Bedeutung der Mgratonsmatrx 2. Schätzung der Mgratonsmatrx. Statstscher Hntergrund: Markov-Ketten.

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alternatve Darstellung des -Stchprobentests für Antele DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Response No Response Total absolut DCF 43 68 111 CF 6 86 11 69 154

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

1.1 Beispiele zur linearen Regression

1.1 Beispiele zur linearen Regression 1.1. BEISPIELE ZUR LINEAREN REGRESSION 0 REGRESSION 1: Multple neare Regresson 1 Enführung n de statstsche Regressonsrechnung 1.1 Bespele zur lnearen Regresson b Bespel Sprengungen. Erschütterung Funkton

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2 Übungen zur Vorlesung Physkalsche Chee 1 B. Sc.) Lösungsorschlag zu Blatt Prof. Dr. Norbert Happ Jens Träger Soerseester 7. 4. 7 Aufgabe 1 a) Aus den tabellerten Werten ergbt sch folgendes Dagra. Btte

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologe Prof. Dr. G. Menhardt 2. Stock, Nordflügel R. 02-429 (Perske) R. 02-431 (Menhardt) Sprechstunde jederzet nach Verenbarung Forschungsstatstk I Dr. Malte Perske perske@un-manz.de WS 2008/2009

Mehr

Übungsblatt 7 Lösungsvorschläge

Übungsblatt 7 Lösungsvorschläge Insttut für Theoretsche Informatk Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Lösungsvorschläge Vorlesung Algorthmentechnk m WS 09/10 Problem 1: Mnmale Schnttbass Approxmatonsalgos relatver Gütegarante

Mehr

Versuch Nr. 6. Chemische Kinetik Aktivierungsenergie (Inversion von Saccharose)

Versuch Nr. 6. Chemische Kinetik Aktivierungsenergie (Inversion von Saccharose) Chrstan Wdlng, Georg Deres Versuch Nr. 6 Chemsche Knet Atverungsenerge (Inverson von Saccharose) Zel des Versuchs: Das Zel des Versuches st de Bestmmung der Atverungsenerge der Reaton von Saccharose (S)

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Sicherheit von Π MAC2

Sicherheit von Π MAC2 Scherhet von Π MAC2 Satz Scherhet von Π MAC2 Se Π scher. Dann st Π MAC2 ebenfalls scher. Bewes: Se A en Angrefer für Π MAC2 mt Erfolgsws ɛ(n). Wr konstrueren enen Angrefer A für Π. Algorthmus Angrefer

Mehr

Dr. Dirk Hasenclever IMISE, Leipzig

Dr. Dirk Hasenclever IMISE, Leipzig De Technk der Metaanalyse und Studen zur Kombnaton von Chemo- und Radotherape n frühen Staden des Hodgkn Lymphoms I Dr. Drk Hasenclever IMISE, Lepzg Hasenclever@IMISE.un-Lepzg.de Systematsche Reves und

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 2. Übung (05.02.2009) Agenda Agenda Datenbsp. scalefactors.dat Berechnen der Varanzen der Latent Response Varablen Berechnen der modellmplzerten

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Kapitel 7. Netzplantechnik CPM/PERT. - Bezeichnung der Aktivitäten und ihre Beschreibung - Festlegung der Vorgänger - Dauer der Aktivitäten

Kapitel 7. Netzplantechnik CPM/PERT. - Bezeichnung der Aktivitäten und ihre Beschreibung - Festlegung der Vorgänger - Dauer der Aktivitäten Kaptel 7 Netzplantechnk CPM/PER ALG. 7. 1 (CPM) Schrtt 1 (Aulten der Aktvtäten): Stelle ene abelle au mt olgenden Inormatonen: - Bezechnung der Aktvtäten und hre Bechrebung - Fetlegung der Vorgänger -

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Statistische Kennzahlen für die Lage

Statistische Kennzahlen für die Lage Statstsche Kennzahlen für de Lage Bsher: gernge Informatonsverdchtung durch Vertelungsbeschrebung Jetzt: stärere Zusammenfassung der Daten auf hr Zentrum ls Raabe: Wahrschenlchetsrechnung und Statstsche

Mehr

MASCHINELLES LERNEN TOBIAS SCHEFFER, NIELS LANDWEHR, MATTHIAS BUSSAS. Mathematische Grundlagen

MASCHINELLES LERNEN TOBIAS SCHEFFER, NIELS LANDWEHR, MATTHIAS BUSSAS. Mathematische Grundlagen MASCHINELLES LERNEN TOBIAS SCHEFFER, NIELS LANDWEHR, MATTHIAS BUSSAS Matheatsche Grundlagen Überblck Lneare Algebra: Vektoren, Matrzen, Analyss & Opterung: Dstanzen, konvexe Funktonen, Lagrange-Ansatz,

Mehr

4. Rechnen mit Wahrscheinlichkeiten

4. Rechnen mit Wahrscheinlichkeiten 4. Rechnen mt Wahrschenlchketen 4.1 Axome der Wahrschenlchketsrechnung De Wahrschenlchketsrechnung st en Telgebet der Mathematk. Es st üblch, an den Anfang ener mathematschen Theore enge Axome zu setzen,

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Protokoll zu Versuch C1-Mischungsvolumina

Protokoll zu Versuch C1-Mischungsvolumina Protokoll zu Prnz: De sezfschen Mschungsvolumna ener Lösung werden durch auswegen fester Flüssgketsvolumna bekannter Lösungszusammensetzungen mt Hlfe von Pyknometern bestmmt. Theoretsche Grundlagen: Um

Mehr

Musterlösung zu Übung 4

Musterlösung zu Übung 4 PCI Thermodynamk G. Jeschke FS 05 Musterlösung zu Übung erson vom 6. Februar 05) Aufgabe a) En Lter flüssges Wasser egt m H O, l ρ H O, l L 998 g L 998 g. ) De Stoffmenge n H O, l) von enem Lter flüssgen

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9 WS 2016/17 Prof. Dr. Horst Peters 06.12.2016, Sete 1 von 9 Lehrveranstaltung Statstk m Modul Quanttatve Methoden des Studengangs Internatonal Management (Korrelaton, Regresson) 1. Überprüfen Se durch Bestmmung

Mehr

3. Vorlesung Sommersemester

3. Vorlesung Sommersemester 3. Vorlesung Sommersemester 1 Bespele (Fortsetzung) 1. Der starre Körper: Formulerung der Zwangsbedngungen später. Anschaulch snd schon de Frehetsgrade: dre der Translaton (z. B. Schwerpuntsoordnaten)

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik Kaptel 4: Wahrschenlchetsrechnung und Kombnator 1 4. Wahrschenlchetsrechnung De Wahrschenlchetsrechung stellt Modelle beret zur Beschrebung und Interpretaton solcher zufällger Erschenungen, de statstsche

Mehr

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0 8. MARKOVKETTEN 17 8. Marovetten Abbldung 8.1: Reduzble und perodsche Marovette 8.1. Homogene Marovetten n dsreter Zet En Prozess {X n : n IIN} hesst homogene Marovette (n dsreter Zet) mt (abzählbarem)

Mehr

2. Wahrscheinlichkeitsrechnung

2. Wahrscheinlichkeitsrechnung . Grundlagen der Wahrschenlchketsrechnung. Wahrschenlchketsrechnung Der Wahrschenlchketstheore kommt ene wchtge Rolle als Bndegled zwschen der deskrptven und der nduktven Statstk zu. Aufgabe der nduktven

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheore Wntersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabrele Helga Franke Deskrptve Statstk 4-1 bs 4-2 1 GHF m WSe 2008 / 2009 an der HS MD-SDL(FH) m

Mehr

»Möglichkeiten und Grenzen der Wirkungsmessung«

»Möglichkeiten und Grenzen der Wirkungsmessung« »Möglchketen und Grenzen der Wrkungsmessung«18. Natonale Gesundhetsförderungs-Konferenz 19. Januar 2017, Neuenburg Prof. Dr. Alexandra Caspar caspar@fb4.fra-uas.de Fachberech 4 Sozale Arbet und Gesundhet

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik 0 Lneare Regresson Tel des Weterbldungskurses n angewandter Statstk der ETH Zürch Folen Werner Stahel, September 2017 1.1 Bespele zur lnearen Regresson 1 1 Enführung n de statstsche Regressonsrechnung

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Zusammenfassung. 1) Falls Zwangsbedinungen die Freiheitsgrade einschränken, kann man die abhängige Koordinaten aus der Lagrangfunktion elimieren;

Zusammenfassung. 1) Falls Zwangsbedinungen die Freiheitsgrade einschränken, kann man die abhängige Koordinaten aus der Lagrangfunktion elimieren; Zusammenfassung 1) Falls Zwangsbednungen de Frehetsgrade enschränken, kann man de abhängge Koordnaten aus der Lagrangfunkton elmeren; 2) Es st auch möglch de Zwangsbednungen mt Hlfe der Lagrangefaktoren

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr